Лекция Дифференцирование сложной функции

Размер: px
Начинать показ со страницы:

Download "Лекция Дифференцирование сложной функции"

Транскрипт

1 Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема в соответствующей точке M где ϕ t t Тогда сложная функция дифференцируема в точке N При этом частные производные этой сложной функции в точке N определяются формулами t t t t где все частные производные берутся в точке M а все частные производные t берутся в точке N В частном случае если все переменные являются функциями только одной переменной t то функция f также является сложной функцией одной переменной и имеет в точке d N t обычную производную t Формула для вычисления этой производной получается d заменой в формуле частных производных на обычные производные t d d d Пример Пусть s t d t t Найдем Для функции двух переменных и это формула принимает вид 3 d используя формулу 3 d d d 4 Для заданной функции d d cos cos t t Подставляя найденные значения производных в 4 получим d cos t cos t Инвариантность формы первого дифференциала Пусть аргументы дифференцируемой функции f сами являются дифференцируемыми функциями переменных t t t В этом случае для дифференциала d справедлива та же формула что и в случае независимых переменных : d d d d Другими словами выражение для дифференциала не зависит от того являются переменные независимыми или они представляют собой функции других переменных Это свойство первого дифференциала называют свойством инвариантности его формы

2 Заметим что если рассматривать функцию f где ϕ t t t как сложную функцию аргументов t t t то ее дифференциал можно также представить в виде d t t t 3 Производная по направлению Градиент Пусть функция f z трех переменных z определена в некоторой окрестности точки M z Проведем через точку M ось l! составляющую с осями OX OY OZ углы α β γ соответственно Возьмем на этой оси произвольную точку M z и обозначим через l величину направленного отрезка M M Тогда l cosα l cos β z z l cosγ На указанной оси функция f z является сложной функцией переменной l Если эта функция имеет в точке l производную по переменной l то эта производная называется производной по направлению l! и обозначается символом Итак l f M f M l l l l Применяя формулу для дифференцирования сложной функции получим z cos α cos β cos γ 5 l l l z l z Напомним что cos α cosβ cosγ являются координатами единичного вектора сонаправленным с осью l! Обозначим его a! Итак a!!! acos α cosβ cosγ l Вектор с координатами равными производным вычисленными в точке M z называется градиентом функции f z в точке M и обозначается символом grad то есть grad z Из формулы 5 следует что производная по направлению и градиент связаны между собой соотношением! a grad 6! l где a grad скалярное произведение векторов a! и grad Если функция является функцией двух переменных то grad а производная по направлению l! задается формулой cos α cos β cos α s α l где α угол между вектором задающим направление и положительным направлением оси OX π β α угол между вектором l! и положительным направлением оси OY

3 где a В случае функции переменных соответствующие формулы имеют вид grad a a a l a a координаты единичного вектора задающего направление Свойства градиента Градиент функции f z в точке M характеризует направление и величину максимального роста этой функции в точке M Действительно согласно формуле 6 и определению скалярного произведения! a grad cosϕ l где ϕ угол между вектором a! и grad Но cos ϕ принимает максимальное значение равное при ϕ а a! Следовательно grad l a если ϕ то есть если направление вектора a! совпадает с направлением градиента Итак именно в направлении градиента функция растет наиболее быстро и скорость ее роста равна grad Градиент функции f z в точке M ортогонален к той поверхности уровня которая проходит через точку M Докажем это утверждение для функции двух переменных Уравнение линии уровня проходящей через точку M имеет вид C C Тогда M где d d d Разделив последнее равенство на d получим d 7 d Равенство 7 можно переписать в виде grad! 8! где направляющий вектор касательной проведенной к линии уровня в точке M Из равенства 8 следует что grad ортогонален касательной и следовательно линии уровня Неявная функция задаваемая одним уравнением Нередко приходится сталкиваться с задачами когда переменная являющаяся по смыслу задачи функцией своих аргументов задана посредством функционального уравнения 9 В этом случае говорят что как функция своих аргументов задана неявно Эту функцию можно определить явно решив уравнение 9 относительно переменной Однако не всегда это решение можно выразить через элементарных функций 3

4 Получим формулу для вычисления частных производных функции f заданной неявно уравнением 9 предполагая что выполнены следующие условия: функция дифференцируема в некоторой окрестности точки M ; M ; 3 M Известно что при этих условиях в окрестности точки X существует однозначная непрерывная и дифференцируемая функция f удовлетворяющая уравнению 9 Введем вначале понятие полной частной производной функции по аргументу если функция сама является дифференцируемой функцией аргументов Тогда функцию можно рассматривать как сложную функцию аргументов Частные производные этой сложной функции по будем называть полными частными производными и обозначать символами По правилу дифференцирования сложной функции получим следующую формулу для полных частных производных: Если функция задана неявно уравнением 9 то то есть Отсюда следует формула Пример Найти частные производные функции f заданной неявно уравнением 3 3 Воспользовавшись формулой 7 где 3 получим Неявные функции определяемые системой функциональных уравнений Рассмотрим систему функциональных уравнений При некоторых условиях эта система однозначно разрешима относительно переменных в окрестности точки M в которой M Тогда говорят что функции 4

5 5 f f f 3 которые являются решением системы заданы этой системой неявно Заметим что совокупность функций 3 называется решением системы если все уравнения системы при подстановки в нее функций 3 превращаются в тождества Это решение называется непрерывным и дифференцируемым в некоторой области изменения переменных если каждая из функций 3 непрерывна и дифференцируема в области Пусть функции имеют в некоторой точке M все частные производные первого порядка по переменным Определитель составленный из частных производных этих функций называется определителем Якоби или якобианом функций по переменным и кратко обозначается символом Далее будем считать что функции дифференцируемы в некоторой окрестности точки M ; M ; 3 M При этих условиях система однозначно разрешима относительно переменных причем полученное решение является в некоторой окрестности точки X непрерывным и дифференцируемым Вычислим частные производные неявно заданных функций по переменной Для этого продифференцируем уравнения системы по этой переменной используя правило дифференцирования сложной функции В результате для определения частных производных получим систему линейных уравнений 4 Определитель этой системы является определителем Якоби функций по переменным который согласно сформулированным выше условиям отличен от нуля Следовательно система 4 имеет единственное решение определяемое например по правилу Крамера

6 6 Пример Функции и двух независимых переменных заданы системой уравнений 5 Найти частные производные В данном случае функции дифференцируемы в любой точке M причем Якобиан отличен от нуля при Следовательно система 5 однозначно разрешима относительно и при Найдем при частные производные Для частных производных по переменной система 4 принимает вид 6 Подставляя в 6 получим По правилу Крамера где это определитель Якоби Следовательно Частные производные и по переменной удовлетворяют системе которая после подстановки выражений принимает вид Отсюда находим

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. - дифференцируемые функции, то сложная функция y f ( g( тоже дифференцируема, причѐм:

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. - дифференцируемые функции, то сложная функция y f ( g( тоже дифференцируема, причѐм: ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Дифференцирование сложных и неявных функций Приложения понятия частных производных(производная по направлению, градиент функции) Дифференцирование

Подробнее

5. Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных

5. Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных Величина называется функцией переменных величин n если каждой точке М n принадлежащей некоторому множеству X поставлено

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M Лекция 8 Тема: Деление отрезка в данном отношении Ориентация плоскости Угол между векторами на ориентированной плоскости План лекции Деление отрезка в данном отношении Ориентация плоскости 3 Угол между

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ.

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

Тема 6. Дифференцирование функций. производная логарифмической функции. На предыдущем занятии по четырехступенчатому правилу нами была найдена

Тема 6. Дифференцирование функций. производная логарифмической функции. На предыдущем занятии по четырехступенчатому правилу нами была найдена Тема 6 Дифференцирование функций log Производная логарифмической функции a На предыдущем занятии по четырехступенчатому правилу нами была найдена производная логарифмической функции ( loga ) (7) l a в

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

6.1 Определения, предварительные сведения

6.1 Определения, предварительные сведения 6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

Тема: Условные экстремумы ФНП

Тема: Условные экстремумы ФНП Математический анализ Раздел: Функция нескольких переменных Тема: Условные экстремумы ФНП Лектор Рожкова СВ 212 г 21 Условные экстремумы ФНП ОПРЕДЕЛЕНИЕ Условным экстремумом функции n переменных u = 1

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование СА Лавренченко wwwlawrencenkoru Лекция 4 Дифференцирование сложных функций Неявное дифференцирование Вспомним правило дифференцирования для функций одной переменной также называемое цепным правилом (см

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

Теория поверхностей в дифференциальной геометрии

Теория поверхностей в дифференциальной геометрии Теория поверхностей в дифференциальной геометрии Элементарная поверхность Определение Область на плоскости называется элементарной областью, если она является образом открытого круга при гомеоморфизме,

Подробнее

9. Производная и дифференциал Основные формулы и определения для решения задач

9. Производная и дифференциал Основные формулы и определения для решения задач 9 Производная и дифференциал 91 Основные формулы и определения для решения задач Определение Пусть функция y f () определена на некоторой f ( Δ) f ( ) Δy окрестности точки Предел отношения при Δ Δ Δ, если

Подробнее

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми.

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми. Контрольная работа Тема Пределы и производные функций Найти пределы нижеследующих функций одной переменной (без правила Лопиталя) а) б) в) г) Пример а) Решение Определяем вид неопределенности При формальных

Подробнее

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ):

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ): Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

Подробнее

Раздел 2. Дифференциальное исчисление функции одной и нескольких переменных

Раздел 2. Дифференциальное исчисление функции одной и нескольких переменных - - Раздел Дифференциальное исчисление функции одной и нескольких переменных Функция действительного аргумента Действительные числа Целые положительные числа называются натуральными Добавим к натуральным

Подробнее

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ Лекция 6 Тема: Элементарные поверхности. Вектор-функции двух переменных. Кривые на гладкой поверхности

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ Лекция 6 Тема: Элементарные поверхности. Вектор-функции двух переменных. Кривые на гладкой поверхности ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ Лекция 6 Тема: Элементарные поверхности. Вектор-функции двух переменных. Кривые на гладкой поверхности План лекции. Понятие элементарной поверхности и способы ее

Подробнее

Лекции 19, Локальные экстремумы функции многих переменных

Лекции 19, Локальные экстремумы функции многих переменных Лекции 9 Локальные экстремумы функции многих переменных Определение Пусть функция многих переменных f f ( задана на ( некотором множестве D и ( некоторая точка этого множества Точка называется точкой локального

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ. 1. Основные понятия. Если каждой паре независимых друг от друга переменных

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ. 1. Основные понятия. Если каждой паре независимых друг от друга переменных ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 1. Основные понятия. Если каждой паре независимых друг от друга переменных, из некоторого множества D ставится в соответствие переменная величина, то называется функцией двух

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Производная сложной и неявно заданной функции нескольких переменных Касательная плоскость и нормаль к поверхности Пусть f ( где (t (t причём функции f ( (t (t дифференцируемы Тогда

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

Элементарная поверхность. Гладкая поверхность. Кривые на поверхности. Касательная плоскость. поверхности

Элементарная поверхность. Гладкая поверхность. Кривые на поверхности. Касательная плоскость. поверхности МОДУЛЬ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ Структурно логическая схема модуля Явное задание Способы задания Элементарная поверхность Квадратичные формы Векторная параметризация Параметризация Регулярная

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

Дифференциальное исчисление функций многих переменных

Дифференциальное исчисление функций многих переменных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им НИ Лобачевского Дифференциальное исчисление функций многих переменных Курс лекций СЮ Галкина ОЕ Галкин

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

ξ i; i высота. Тогда площадь каждой полоски

ξ i; i высота. Тогда площадь каждой полоски Тема КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ Лекция КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ ПЕРВОГО РОДА Задачи приводящие к понятию криволинейного интеграла первого рода Определение и свойства криволинейного интеграла первого рода Вычисление

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Семинар 5. Частные производные

Семинар 5. Частные производные Семинар 5 Частные производные О. Пусть M 0 (x 1,, x m ) внутренняя точка D(f). Частной производной (ч.п.) функции f(x 1,, x m ) по переменной x k в точке M 0 называется предел f xk (M 0 ) = f (M x 0 )

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Лекция 2.7. Производные и дифференциалы высших порядков

Лекция 2.7. Производные и дифференциалы высших порядков 1 Лекция 7 Производные и дифференциалы высших порядков Аннотация: Вводится понятие дифференцируемой функции, дается геометрическая интерпретация первого дифференциала и доказывается его инвариантность

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

k g k k (3.2) = = g i i i k ζ ζ ζ ζ r r ζ ζ ζ ζ ζ ζ (3.3) = = = i i k i k k

k g k k (3.2) = = g i i i k ζ ζ ζ ζ r r ζ ζ ζ ζ ζ ζ (3.3) = = = i i k i k k 3. Элементы тензорного анализа 3.1. Ковариантная производная Зададимся вопросом, как определить производные от вектора. Можно ли считать, что для вектора w w g справедливо: w w g? (3.1) Оказывается, что,

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению.

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению. ЛЕКЦИЯ N. Скалярное поле. Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности. Экстремумы функции многих переменных. Условный экстремум.. Скалярное поле. Производная по

Подробнее

Глава 9. Частные производные

Глава 9. Частные производные Глава 9 Частные производные 9 Частные производные, градиент и дифференциал Пусть M, ) внутренняя точка области определения функции f, Частной производной функции f, по переменной называется предел f, )

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

Производная и дифференциал. Лекция 4-5

Производная и дифференциал. Лекция 4-5 Производная и дифференциал Лекция 4-5 Приращения функции и аргумента Пусть функция y f ( x) определена в некоторой окрестности U( x) точки x и x U( x) произвольная точка из этой окрестности. Разность x

Подробнее

Лекция 36. Частные производные и дифференциалы функций нескольких переменных

Лекция 36. Частные производные и дифференциалы функций нескольких переменных Каф. ВМ Функции многих переменных 3. Производные и дифференциалы 1 Лекция 36. Частные производные и дифференциалы функций нескольких переменных перенести понятия и результаты по теме: «Производная и дифференциал»

Подробнее

уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим

уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим Уравнения плоскости. Общее уравнение плоскости. Неполные уравнения плоскости. Уравнение плоскости в отрезках Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей. Уравнение

Подробнее

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение.

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение. Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

n = или k = k n называется единичным вектором

n = или k = k n называется единичным вектором Лекция 5 Тема: Кривизна и кручение кривой Репер Френе План лекции Кривизна кривой Кручение кривой Репер Френе Формулы Френе Натуральные уравнения кривой Кривизна кривой Соприкасающаяся плоскость Пусть

Подробнее

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее

Лекция 8. Группы Ли, алгебры Ли.

Лекция 8. Группы Ли, алгебры Ли. МФТИ-НМУ, 018г. Введение в теорию групп Лекция 8. Группы Ли, алгебры Ли. Обсудим еще раз группу SO() ( на которой мы) закончили прошлую лекцию. Она состоит их элементо вид g(α) =. Матрицы g(α) удовлетворяют

Подробнее

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1,

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1, Глава Экстремумы функции двух переменных Экстремум функции двух переменных При решении многих экономических задач приходится вычислять наибольшее и наименьшее значения В качестве примера рассмотрим задачу

Подробнее

Математический анализ Модуль 4. Функции нескольких переменных Текст 4.2

Математический анализ Модуль 4. Функции нескольких переменных Текст 4.2 Математический анализ Модуль 4. Функции нескольких переменных Текст 4.2 Аннотация Неявные функции, системы неявных функций и их производные. Касательная плоскость и нормаль к поверхности. Производная по

Подробнее

ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА

ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА Рис. 2.1 Имеется неподвижная система координат OXY Z. Обозначим её как S Рассмотрим твёрдое тело, имеющее жёстко привязанные

Подробнее

Функции нескольких переменных.

Функции нескольких переменных. Московский Государственный Технический Университет имени НЭ Баумана Дубограй ИВ Скуднева ОВ Левина А И Функции нескольких переменных методические указания для подготовки к аттестации Москва Издательство

Подробнее

Дифференциальное исчисление функций одной переменной

Дифференциальное исчисление функций одной переменной Дифференциальное исчисление функций одной переменной Тема: Производная функции Лекция Правила нахождения производной Производная основных элементарных функций СОДЕРЖАНИЕ: Правила дифференцирования Производная

Подробнее

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения.

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения. Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения Цель: сформировать умение находить производные функций, заданных в явном, логарифмическом и параметрическом

Подробнее

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Веб- страница кафедры http://kvm.gubkin.ru 1 Функции многих переменных 2 Определение

Подробнее

Уравнение прямой в пространстве

Уравнение прямой в пространстве Уравнение прямой в пространстве 1 Прямая как пересечение двух плоскостей. Система двух линейных уравнений с тремя неизвестными. Прямую в пространстве можно задать как пересечение двух плоскостей. Пусть

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ РАЗДЕЛА

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет,

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению плоскости. Излагаемый в ней материал

Подробнее

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е.

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е. Приложение. Определение первообразной функции Определение. Дифференцируемая функция F() называется первообразной для функции f() на заданном промежутке, если для всех из этого промежутка. справедливо равенство

Подробнее

19. Скалярное поле. Поведение скалярного поля характеризуют 1) производная по направлению; 2) градиент.

19. Скалярное поле. Поведение скалярного поля характеризуют 1) производная по направлению; 2) градиент. 19. Скалярное поле ОПРЕДЕЛЕНИЕ. Пусть G некоторая область в пространстве Oz [на плоскости O]. Говорят что на G задано скалярное поле если в каждой точке G определена функция 3-х переменных u = [функция

Подробнее

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ Вектором называется количественная характеристика, имеющая не только числовую величину, но и направление Иногда говорят, что вектор это направленный отрезок Векторная система

Подробнее

ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ

ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ 1. Скобки Пуассона На прошлой лекции вводилось понятие скобки Лагранжа. Это выражение было составлено из частных производных

Подробнее

ГЛАВА Скобки Пуассона Скобки Пуассона. Пусть даны две динамические величины, две функции канонических

ГЛАВА Скобки Пуассона Скобки Пуассона. Пусть даны две динамические величины, две функции канонических ГЛАВА 6 Формализм скобок Пуассона в классической механике 61 Скобки Пуассона Скобки Пуассона Пусть даны две динамические величины две функции канонических переменных и времени t : ( и ( Скобкой Пуассона

Подробнее

Математический анализ Модуль 4. Функции нескольких переменных Лекция 4.1

Математический анализ Модуль 4. Функции нескольких переменных Лекция 4.1 Математический анализ Модуль 4 Функции нескольких переменных Лекция 41 Аннотация Понятие функции нескольких переменных Предел и непрерывность Частные производные первого порядка Дифференцируемость 1 Функция

Подробнее

ЛЕКЦИЯ 23 КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ. ТЕОРЕМА ЛИУВИЛЛЯ О СОХРАНЕНИИ ФАЗОВОГО ОБЪЁМА. ПРОИЗВОДЯЩАЯ ФУНКЦИЯ СВОБОДНОГО ПРЕОБРАЗОВАНИЯ

ЛЕКЦИЯ 23 КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ. ТЕОРЕМА ЛИУВИЛЛЯ О СОХРАНЕНИИ ФАЗОВОГО ОБЪЁМА. ПРОИЗВОДЯЩАЯ ФУНКЦИЯ СВОБОДНОГО ПРЕОБРАЗОВАНИЯ ЛЕКЦИЯ 23 КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ. ТЕОРЕМА ЛИУВИЛЛЯ О СОХРАНЕНИИ ФАЗОВОГО ОБЪЁМА. ПРОИЗВОДЯЩАЯ ФУНКЦИЯ СВОБОДНОГО ПРЕОБРАЗОВАНИЯ Продолжим изучать канонические преобразования. Сначала напомним основные

Подробнее

1.Понятие дифференциала.

1.Понятие дифференциала. ЛЕКЦИЯ N4. Дифференциал функции первого и высших порядков. Инвариантность формы дифференциала. Производные высших порядков. Применение дифференциала в приближенных вычислениях. 1.Понятие дифференциала....

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

ЛЕКЦИЯ N47. Криволинейные интегралы первого и второго рода.

ЛЕКЦИЯ N47. Криволинейные интегралы первого и второго рода. ЛЕКЦИЯ N47. Криволинейные интегралы первого и второго рода. d A(P) T B.Интеграл по длине линии.... τ(p).свойства, вычисление криволинейного интеграла I рода.... P 3.Криволинейный интеграл по координатам....

Подробнее

ЛЕКЦИЯ 7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. 1. Понятие производной функции

ЛЕКЦИЯ 7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. 1. Понятие производной функции ЛЕКЦИЯ 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 1 Понятие производной функции Рассмотрим функцию у=f(), определенную на интервале (а;в) Возьмем любое значение х (а;в) и зададим аргументу

Подробнее

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления»

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления» 4 Методические указания к выполнению контрольной работы «Производная и ее приложения Приложения дифференциального исчисления» Производная Приложения дифференциального исчисления Производной функции f (

Подробнее

1.Дивергенция векторного поля.

1.Дивергенция векторного поля. ЛЕКЦИЯ N Дивергенция векторного поля Циркуляция Ротор отенциальные соленоидальные гармонические поля Операторы Лапласа и Гамильтона Дивергенция векторного поля Соленоидальные поля Циркуляция 4Формула Стокса

Подробнее

Лекция 8. Группы Ли, алгебры Ли.

Лекция 8. Группы Ли, алгебры Ли. МФТИ-НМУ, 017г. Введение в теорию групп Лекция 8. Группы Ли, алгебры Ли. Обсудим еще раз группу SO() ( на которой мы) закончили прошлую лекцию. Она состоит их элементо вид g(α) =. Матрицы g(α) удовлетворяют

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

МАТЕМАТИКА. Часть 4. Функции нескольких переменных

МАТЕМАТИКА. Часть 4. Функции нескольких переменных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» ОГ Павловская ЕС Плюснина МАТЕМАТИКА Часть Функции нескольких переменных Методические указания

Подробнее

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. 1 1. Уравнение поверхности и уравнения линии в пространстве. Геометрический смысл уравнений В аналитической геометрии всякую поверхность рассматривают как совокупность

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Симметрии и первые интегралы дифференциальных уравнений классической механики

Симметрии и первые интегралы дифференциальных уравнений классической механики Симметрии и первые интегралы дифференциальных уравнений классической механики А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В классической механике часто возникают дифференциальные

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 4

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 4 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 4 ОБОБЩЁННЫЕ КООРДИНАТЫ И СИЛЫ УРАВНЕНИЯ РАВНОВЕСИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ ВИРТУАЛЬНЫЙ ДИФФЕРЕНЦИАЛ ПОТЕНЦИАЛЬНЫЕ СИЛЫ Лектор: Батяев Евгений Александрович

Подробнее