Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно.

Размер: px
Начинать показ со страницы:

Download "Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно."

Транскрипт

1 ЛЕКЦИЯ 5 МЕТОД ГАУССА Мы разобрали выше два различных способа задания линейных подпространств F n 2 при помощи образующих и как множество решений системы линейных уравнений Для различных приложений нам совершенно необходимы оба описания, которые можно рассматривать как двойственные Используя оба подхода, мы хотим дать, по возможности, более простое описание подпространства, найти его размерность, базис и простейшую систему уравнений, которые его задают Начнем исследование с описания подпространств, порожденных векторами, те с задачи, которая появилась в пункте 3 из Приложения в Лекции 4 Лемма Гаусса Пусть = v 1,, v m подпространство в F n 2, порожденное m векторами v 1,, v m F n 2 Подпространство не меняется при следующих преобразованиях: 1) при любой перестановке векторов v 1, v m ; 2) при замене вектора v 2 на вектор v 2 +v 1 (или, после перестановок, при замене v j на вектор v j + v i, i j) Преобразования типа 1) и 2) называются элементарными Иными словами, пусть i 1,, i m перестановка индексов 1,, m Тогда 1) v 1,, v m = v i1,, v im ; 2) v 1, v 2, v 3,, v m = v 1, v 2 + v 1, v 3,, v m Доказательство Свойствo 1) вернo, тк сложение векторов коммутативно Включение v 1, v 2,, v m v 1, v 2 + v 1,, v m справедливо, тк v 2 + v 1 v 1, v 2,, v m Имеем v 2 = (v 2 + v 1 ) + v 2, поэтому v 1, v 2 + v 1,, v m v 1, v 2,, v m Основная идея метода Гаусса состоит в том, чтобы упростить систему образующих подпространства v 1, v 2,, v m, последовательно применяя элементарные преобразования к координатной матрице образующих Пусть = v 1,, v m F n 2, и известны координаты векторов v i = (a i1, a i2,, a in ) F n 2 в каноническом базисе Построим координатную матрицу размера m на n, состоящую из m строк-координат всех векторов v i (1 i m) a 11 a 12 a 1n A = a 21 a 22 a 2n a m1 a m2 a mn 20

2 К какой форме координатной матрицы мы будем стремиться, выполняя элементарные преобразования? Пример 1 Пусть даны три вектора u 1, u 2, u 3 F 3 2 с координатной матрицей верхне-треугольной формы u 1 1 a b u 2 = 0 1 c u Заметим, что сама форма координатной матрицы показывает, что вектора u 1, u 2, u 3 линейно независимы Действительно, рассмотрим произвольную линейную комбинацию t 1 u 1 + t 2 u 2 + t 3 u 3 данных векторов, где t i F 2 : t 1 u 1 t 1 (1, a, b) + t 2 u 2 = + t 2 (0, 1, c) t 3 u 3 t 3 (0, 0, 1) t 1 u 1 + t 2 u 2 + t 3 u 3 = (t 1, t 2 + at 1, t 3 + t 2 c + t 1 b) Если t 1 u 1 + t 2 u 2 + t 3 u 3 = 0 = (0, 0, 0), то из формулы справа получаем (t 1 = 0) (t 2 = 0) (t 3 = 0) Рассмотрим теперь Метод Гаусса на примере, в котором применяя элементарные преобразования к координатной матрице образующих, мы найдем размерность подпространства, его базис и уравнения, задающие это подпространство Пример 2 Пусть = u 1, u 2, u 3, u 4 F 5 2 Координаты образующих u i заданы строчками следующей матрицы A размера 4 на 5 (на матрицу после вертикальной черты пока внимания не обращаем) A = Напомним, что первую (слева) ненулевую координату вектора-строчки v называем осевым элементом или осью вектора (см Предложениe 31 из Лекции 3) Будем заключать его в квадрат Используя ось первой строчки, мы можем обнулить все элементы первого столбца Для матрицы A это можно сделать элементарными преобразованиями u 2 + u 1, u 3 + u 1 и u 4 + u 1 Чтобы запомнить эти преобразования, мы добавим справа к матрице A квадратную матрицу порядка 4 (по числу строк!) с единицами на главной диагонали, единичную матрицу порядка 4, и будем выполнять с ее строчками соответствующие линейные операции, 21

3 кодирующие выполняемые элементарные операции Назовем эту дополнительную матрицу матрицей линейных комбинаций После первых преобразований u 2 u 2 + u 1, u 3 u 3 + u 1 и u 4 u 4 + u 1 получаем матрицы В силу Леммы Гаусса четыре строчки новой матрицы u 1, u 2, u 3 и u 4 порождают исходное подпространство Следующим осевым элементом будет третий элемент второй строчки Продолжим элементарные преобразования и сделаем нулями элементы под вторым осевым элементом u 3 u 3 + u 2 ) Следующим осевым элементом будет последний элемент третьей строчки Выполним преобразование u 4 u 4 + u 3 = 0, получим A (2) = В матрице A (2) нет других осевых элементов Переменные x 1, x 3 и x 5 называем осевыми, а x 2 x 4 неосевыми Следовательно, используя элементарные преобразования, мы привели матрицу A к ступенчатой матрице A (2) В силу полной аналогии с Примером 1, можете показать, что три строчки этой матрицы линейно независимые Первые выводы 1) Базис и размерность У последней матрицы три осевых элемента Они указывают на три линейно независимые строчки v 1 = ( 1, 1, 1, 0, 1), v 2 = (0, 0, 1, 1, 1), v 3 = (0, 0, 0, 0, 1 ) и три линейно независимые столбца с номерами 1, 3 и 5 В силу Леммы Гаусса = u 1, u 2, u 3, u 4 = v 1, v 2, v 3, 0 = v 1, v 2, v 3 и dim = 3 22

4 Линейно независимые векторы v 1, v 2, v 3 образуют базис исходного подпространствa F 5 2 2) Линейные соотношения между образующими Кроме того, мы нашли линейное соотношение между исходными образующими = u 1, u 2, u 3, u 4, которое соответствует последней нулевой строчке матрицы A (2) Соответствующие коэффициенты стоят в последней строчке матрицы линейных комбинаций u 1 + u 2 + u 3 + u 4 = 0 3) Расширение базиса до базиса F 5 2 У ступенчатой матрицы A (2) имеются три осевых элемента, отвечающих первой, третьей и пятой координатам Чтобы достроить базис до базиса F n 2 достаточно добавить вектора e 2 = (0, 1, 0, 0, 0) и e 4 = (0, 0, 0, 1, 0) соответствующие неосевым координатам x 2 и x Можно ли продолжить Метод Гаусса и найти более простую систему образующих подпространства? Да, мы можем продолжить элементарные преобразования, начиная с последнего осевого элемента, и добиться того, чтобы все элементы координатной матрицы над осевыми элементами были равны 0 Используем последний столбец и получим матрицу В дополнительной матрице линейных соотношений указаны соответствующие преобразования со строками Потом упрощаем третий столбец A (3) = Получилась матрица A (3), у которой ниже и выше всех осевых элементов стоят нули Стрoки A (3) содержат новый базис (w 1, w 2, w 3 ) исходного подпространства Правая дополнительная матрица дает выражения этих векторов через исходные образующие w 1 = (1, 1, 0, 1, 0), w 2 = (0, 0, 1, 1, 0), w 3 = (0, 0, 0, 0, 1), 23

5 w 1 = u 2, w 2 = u 1 + u 3, w 3 = u 2 + u 3 4) Задание подпространства уравнениями Матрица A (3) позволяет нам найти уравнения, задающие подпространство В координатной матрице есть три осевые координаты x 1, x 2, x 3 Над осевыми элементами нет ненулевых элементов Мы можем найти неосевые координаты x 2 и x 4 через осевые Чтобы убедиться в этом, рассмотрим все линейные комбинации базиса w 1, w 2, w 3 подпространства t 1 w 1 t 1 ( 1, 1, 0, 1, 0) + t 2 w 2 = + t 2 ( 0, 0, 1, 1, 0) t 3 w 3 t 3 ( 0, 0, 0, 0, 1 ) t 1 w 1 + t 2 w 2 + t 3 w 3 = ( t 1, t 1, t 2, t 1 + t 2, t 3 ) Следовательно, для всех векторов (x 1, x 2, x 3, x 4, x 5 ) выполняется (x 1, x 2, x 3, x 4, x 5 ) = (t 1, t 1, t 2, t 1 + t 2, t 3 ), откуда мы получаем два уравнения, задающие подпространство x 2 = x 1 и x 4 = x 1 + x 3 Другими словами эти два уравнения, задающие подпространство, определяются неосевыми столбцами расширенной матрицы A (2) и , 0 Ã(2) = Системы линейных уравнений и линейные отображения Для развития Метода Гаусса нам потребуются концепция линейных отображений Рассмотрим неоднородную систему из m 1 уравнений с n 1 неизвестными над полем F 2 a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 (A b) = a m1 x 1 + a m2 x a mn x n = b m, где a ij F 2 для 1 i m, 1 j n и b i F 2 для 1 i m 24

6 Заметим, что левая часть i-го уравнения может быть записана с помощью билинейной формы (, ) : F n 2 Fn 2 F 2 a i1 x 1 + a i2 x a in x n = (ā i, x), где ā i = (a i1, a i2,, a in ) и x = (x 1, x 2,, x n ) Тогда левая часть системы уравнений перепишется в форме столбца, зависящего от вектора x, который мы обозначим A x x 1 (ā 1, x) x 2 (ā 2, x) A x = A x n = (ā m, x), где x обозначает вектор-столбец из F n 2 Эта новая операция A x, умножениe матрицы A размера m на n на вектор-столбец x высоты n, линейна по векторному аргументу A (x + x ) = (A x) + (A x ) Это непосредственно следует из линейности спаривания (, ) Мы будем использовать обе модели линейного векторного пространства F n 2 в форме векторов-строк длины n и в форме векторов-столбцов высоты n Иными словами мы рассматриваем эти модели как реализацию одного и того же пространства (Отметим, что спаривание (, ) фиксирует двойственность между этими пространствами Мы обсудим этот вопрос позднее) Итак, левую часть системы линейных уравнений можно рассматривать как линейное отображение A : F n 2 F m 2, A(x) = A x F m 2 В этих функциональных терминах мы можем легко переформулировать вопрос о существовании решения у системы неоднородных линейных уравнений (A b) для любого вектора b F m 2 и описать все такие решения Решение существует тогда и только тогда, когда вектор b лежит в образе линейного отображение A, те b Im(A) Предложение 1 Пусть A F n 2 есть подпространство решений однородной системы линейных уравнений (A 0) c нулевой правой частью Предположим, что существует решение x b F n 2 системы уравнений (A b): A x b = b Тогда множество всех решений системы (A b) совпадает с аффинным подпространством x b + A = {x b + u u A } 25

7 Доказательство 1) Пусть v x b + A, те v = x b + u, где A u = 0 Докажем, что это решение системы (A b) A v = A (x b + v) = A x b + A v = b + 0 = b 2) Пусть v какое-то решение Тогда A v = A x b = b, поэтому A v A x b = A (v x b ) = 0 Следовательно, v x b A и v x b + A В предыдущих лекция мы описали пространство решений A однородной системы уравнений (A 0) Это линейное подпространство в F n 2 размерности n k, где k ранг матрицы коэффициентов A Техника линейных пространств, которую мы изучили, позволяет нам дать качественный ответ на вопрос о существовании решений системы (A b) Теорема 9 Теорема Кронекера-Капелли Неоднородная система линейных уравненений (A b) совместима тогда и только тогда, когда ранг матрицы коэффициентов системы A M m n (F 2 ) равен рангу расширенной матрицы (A b) M m (n+1) (F 2 ) Доказательство Запишем систему уравнений в форме векторного уравнения в пространстве F m 2 (см Лекцию 3) a 11 a 21 a m1 x 1 + a 12 a 22 a m2 x a 1n a 2n a mn b 1 x b 2 n =, где мы используем векторa-столбцы A j высоты m матрицы коэффициентов A и вектор-столбец b A j = a 1j a 2j a mj b 1 b m b m, b = b 2 Fm 2 для j = 1,, n Вектор b представим в виде линейной комбинации столбцов A j тогда и только тогда, когда b A 1, A n F m 2 Это эквивалентно тому, что A 1, A n, b A 1, A n Но второе подпространство является подпространством первого, поэтому включение выполняется тогда и только тогда, когда dim A 1, A n = dim A 1, A n, b 26

8 Это эквивалентно утверждению доказываемой теоремы в силу результата Теоремы 8 о том, что ранг матрицы по строкам равен рангу по столбцам 27


ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы.

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. Основные результаты Лекции 4. 1) Любое подпространство V k F n 2 размерности k задается некоторой системой из n k

Подробнее

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0 ЛЕКЦИЯ 6. Метод ГАУССА и ДВОЙСТВЕННЫЙ БАЗИС. В этой лекции мы опишем алгоритм решения систем линейных уравнений, позволяющий найти и двойственный базис для любого базиса пространства F n 2. В Лекциях 7

Подробнее

U+V. Для любых u U и v V существуют a 1,..., a k, b 1,..., b m F 2 такие, что

U+V. Для любых u U и v V существуют a 1,..., a k, b 1,..., b m F 2 такие, что ЛЕКЦИЯ 2. Операции с подпространствами, число базисов число базисов и число подпространств размерности k. Основные результаты Лекции 2. 1) U V, U + V, dim(u + V ). 2) Подсчет числа плоскостей в F 4 2.

Подробнее

МАТРИЦЫ И ОТОБРАЖЕНИЯ

МАТРИЦЫ И ОТОБРАЖЕНИЯ ЛЕКЦИЯ 7 РАНГ МАТРИЦЫ КРИТЕРИЙ СОВМЕСТНОСТИ МАТРИЦЫ И ОТОБРАЖЕНИЯ 1 РАНГ МАТРИЦЫ В векторном пространстве R m столбцов высоты m рассмотрим n векторов A (j) = [a 1j, a 2j,..., a mj ], j = 1, 2,..., n, и

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса Лекция 6 Методы решения СЛАУ: матричный и Гаусса Аннотация: Доказывается теорема о базисном миноре Кратко излагается суть метода Гаусса Приводятся пример решения системы этим методом Доказывается теорема

Подробнее

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

1 Билинейная и квадратичная формы.

1 Билинейная и квадратичная формы. 1 Билинейная и квадратичная формы. Пусть ϕ(x, y) числовая функция, заданная на линейном пространстве, то есть ϕ : L L R. Если ϕ(x, y) линейна по каждому из своих аргументов, то её называют билинейной формой.

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Аналитическая геометрия. Лекция 1.3

Аналитическая геометрия. Лекция 1.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

Лекция 16: Образ и ядро линейного оператора

Лекция 16: Образ и ядро линейного оператора Лекция 16: Образ и ядро линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( )

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( ) МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Пусть дана система () m линейных уравнений с неизвестными Для ее решения нужно выполнить следующие действия: Составить расширенную матрицу (7) системы: m

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

Тема 2-5: Ранг матрицы

Тема 2-5: Ранг матрицы Тема 2-5: Ранг матрицы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр) В

Подробнее

всевозможные решения заданной системы линейных однородных уравнений:

всевозможные решения заданной системы линейных однородных уравнений: . ЯДРО ЛИНЕЙНОГО ПРЕОБРАЗОВАНИЯ Ранее мы охарактеризовали подпространство конечномерного пространства как линейную оболочку. Но возможны и другие истолкования подпространства. Пусть, e, e2, K, en какой-либо

Подробнее

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса.

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Ранг матрицы. Рассмотрим прямоугольную матрицу имеющую m строк и столбцов: A. m m m Выделим в этой матрице произвольные строк и столбцов. Элементы

Подробнее

Лекция 12: Ранг матрицы

Лекция 12: Ранг матрицы Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции изучается важная числовая характеристика матрицы

Подробнее

Построение базисов в ядре и образе линейного оператора.

Построение базисов в ядре и образе линейного оператора. Построение базисов в ядре и образе линейного оператора 1 Речь пойдёт о построении базисов в ядре и образе линейного оператора Будут рассмотрены два примера: первый пример с пояснениями; второй как образец

Подробнее

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51 Системы линейных уравнений Системы линейных уравнений. Методы решения систем линейных уравнений Линейная алгебра (лекция 5) 06.10.2012 2 / 51 Система m линейных уравнений с n неизвестными имеет вид: Линейная

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ,

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

Тема : Общая теория систем линейных уравнений

Тема : Общая теория систем линейных уравнений Тема : Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида...

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида... Системы линейных алгебраических уравнений Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида a a a, a a a,, a a a Ее можно представить в виде матричного уравнения

Подробнее

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Кафедра высшей математики (ВМ) Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ Практическое

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 5 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ Ранг матрицы Рассмотрим матрицу A K m следующего общего вида: a a a A a 2 a 2 2 a 2 A = = A A 2,A 2,,A =, a m a2 m a m A m где a a a 2 A =,,A a 2

Подробнее

Лекция V. V.1. Системы линейных уравнений. x

Лекция V. V.1. Системы линейных уравнений. x Лекция V V Системы линейных уравнений a x +a ++a n b a x +a ++a n b a m x +a m ++a mn b m () Запишем систему m линейных уравнений с n неизвестными в несколько необычном виде: a a a m x + a a a m ++ a n

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ЛЕКЦИЯ 9 ОБРАТНЫЕ МАТРИЦЫ КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ПРОСТРАНСТВО РЕШЕНИЙ 1 ОБРАТНЫЕ МАТРИЦЫ Для данной матрицы A M n (R) можно попробовать найти такую матрицу A M n

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева МАТЕМАТИКА Методические рекомендации и задания контрольной работы для студентов, обучающихся по заочной форме по направлениям «Менеджмент», «Экономика» Составитель: старший преподаватель Н А Кривошеева

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов ВВ Введение Представляю Вашему вниманию лекционный курс основ линейной алгебры, который впервые был прочитан в 2004 году на бизнес факультете НГТУ для специальности

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

Тема 2-8: Образ и ядро линейного отображения

Тема 2-8: Образ и ядро линейного отображения Тема 2-8: Образ и ядро линейного отображения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

Смысл. 1-й способ исследования системы (через определители)

Смысл. 1-й способ исследования системы (через определители) ) Является ли система векторов линейно зависимой? a ; ; 0 ; a 0 ; ; ; a 3 30 ; ; ; a 4 000 ; ; ; Смысл Векторы линейно независимы, если векторное равенство a a a 3 3 4a 4 0 имеет единственное (нулевое,

Подробнее

Теория систем линейных уравнений

Теория систем линейных уравнений Глава Теория систем линейных уравнений Ранг матрицы Пусть A F m n Рассмотрим столбцы a,,a n матрицы A = (a,,a n ) как векторы пространства F m, а строки ã,,ã m как векторы пространства F n Базу (соответственно

Подробнее

ξ η K некоторое решение системы (1), то суммы K любое решение однородной системы (2), V n над числовым полем Р рассмотрим

ξ η K некоторое решение системы (1), то суммы K любое решение однородной системы (2), V n над числовым полем Р рассмотрим . ЛИНЕЙНОЕ МНОГООБРАЗИЕ (ГИПЕРПЛОСКОСТЬ) Определение: Назовем подмножество векторов пространства линейным многообразием (или гиперплоскостью), полученным путем сдвига подпространства L на вектор х, если

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Основные определения Рассмотрим следующую систему m уравнений относительно n неизвестных в поле K: a x + a 2 + + a nx n b, a 2 x + a 2 2 + + a2 nx

Подробнее

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем Г л а в а 2 ВЕКТОРНЫЕ ПРОСТРАНСТВА 9 Векторное пространство над полем 91 Аксиоматика Пусть задано поле P, элементы которого будем называть скалярами и некоторое множество V, элементы которого будем называть

Подробнее

АЛГЕБРА модуль 3: Квадратичные и билинейные формы

АЛГЕБРА модуль 3: Квадратичные и билинейные формы АЛГЕБРА модуль 3: Квадратичные и билинейные формы 1 Квадратичные формы Мы рассматриваем конечномерные векторные пространства над полем k, где 0. Определение 1.1 Функция f : V k на векторном пространстве

Подробнее

ЛЕКЦИЯ 1. Линейные подпространства в F n 2.

ЛЕКЦИЯ 1. Линейные подпространства в F n 2. КУРС АЛГЕБРЫ-1 в НИУ ВШЭ (осень 2017) Валерий Алексеевич Гриценко ЛЕКЦИЯ 1. Линейные подпространства в F n 2. Основные результаты Лекции 1. Каждое подпространство F n 2 содержит 2k векторов, где 0 k n.

Подробнее

V и λ R ) выполняются равенства

V и λ R ) выполняются равенства Линейные преобразования Определение линейного преобразования Пусть V линейное пространство Если указано правило по которому каждому вектору x из V ставится в соответствие единственный вектор y из V то

Подробнее

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство.

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство. 79 Линейные функции Определение и примеры линейных функций Определение Будем говорить, что на линейном пространстве L задана функция от одного вектора, если каждому вектору x L сопоставлено число ( x)

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами По условию теоремы L [ ] B ( m Тогда в силу линейности оператора L имеем: m m m L L ] B [ Системы линейных дифференциальных уравнений с постоянными коэффициентами Собственные значения и собственные векторы

Подробнее

Тема 2-3: Базис и размерность линейного пространства

Тема 2-3: Базис и размерность линейного пространства Тема 2-3: Базис и размерность линейного пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Тема 2-4: Подпространства

Тема 2-4: Подпространства Тема 2-4: Подпространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения. Кафедра Информатики, вычислительной техники и информационной безопасности. Направление

Подробнее

Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ. 0. План лекции Лекция Теорема о базисном миноре. 1. Две вспомогательные теоремы из теории определителей.

Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ. 0. План лекции Лекция Теорема о базисном миноре. 1. Две вспомогательные теоремы из теории определителей. Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ План лекции Лекция Теорема о базисном миноре Две вспомогательные теоремы из теории определителей НИДУ равенства нулю определителя: det A = ; 2 Явное выражение

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1 Кафедра Математики, физики и информационных технологий 2 Направление подготовки 010302

Подробнее

С.Н. Зиненко. Линейная алгебра. Матрицы и определители. (теория к задачам)

С.Н. Зиненко. Линейная алгебра. Матрицы и определители. (теория к задачам) С.Н. Зиненко Линейная алгебра Матрицы и определители (теория к задачам) 215 1. ЛИНЕЙНОЕ ПРОСТРАНСТВО, ПОДПРОСТРАНСТВО. БАЗИС И РАЗМЕРНОСТЬ 1º Линейным пространством называется множество элементов a, b,

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Глава ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Системы линейных уравнений и их решение методом Гаусса Система, состоящая из m линейных уравнений с n неизвестными или, как будем дальше говорить,

Подробнее

13. Билинейные и квадратичные функции

13. Билинейные и квадратичные функции 95 Билинейные и квадратичные функции Билинейная функция Определение Билинейной функцией (билинейной формой) на линейном пространстве L называется функция от двух векторов из L линейная по каждому из своих

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

2. Решение произвольных систем линейных алгебраических уравнений

2. Решение произвольных систем линейных алгебраических уравнений Решение произвольных систем линейных алгебраических уравнений Выше рассматривались в основном квадратные системы линейных уравнений число неизвестных в которых совпадает с числом уравнений В настоящем

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a Лекция 5 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

Метод Гаусса (метод исключения неизвестных)

Метод Гаусса (метод исключения неизвестных) Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно перейти с помощью элементарных преобразований

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль Матричная алгебра Векторная алгебра Текст (самостоятельное изучение) Аннотация Однородные СЛАУ их совместность Критерий существования ненулевого решения однородной СЛАУ его

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Ax = y. A(x 1 x 2 ) = 0, x 1 x 2 Ker(A).

Ax = y. A(x 1 x 2 ) = 0, x 1 x 2 Ker(A). ГЛАВА 10. ЛИНЕЙНЫЕ УРАВНЕНИЯ 1 1. ОБЩЕЕ РЕШЕНИЕ ЛИНЕЙНОГО УРАВНЕНИЯ Одна из основных задач линейной алгебры задача решения линейного уравнения Ax = y. Здесь A : X n Y m есть линейный оператор, y заданный

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( )

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( ) ЗАДАЧИ для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса x bx + c f x = +, если известны ее значения в трех указанных x точках: Найдите функцию ( ) а) f ( ) f ( ) f (

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n.

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n. Лекция IV IV Линейная зависимость векторов Линейной комбинацией векторов a, a 2,, a n называется сумма произведений этих векторов на произвольные числа: α a +α 2 a 2 ++α n a n Линейная комбинация называется

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Системы линейных уравнений Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр.

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Ранг матрицы Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр. и доп. e-mail:

Подробнее

2.1.3 Методы решений системы линейных алгебраических уравнений

2.1.3 Методы решений системы линейных алгебраических уравнений Методы решений системы линейных алгебраических уравнений Метод обратной матрицы Рассмотрим частный случай системы ) когда число уравнений равно числу неизвестных те m Система уравнений имеет вид: ì ) î

Подробнее

a a b b 1) Даны линейные подпространства U и W, порождённые системами векторов: Найти базисы подпространств U а) Базис подпространства U W.

a a b b 1) Даны линейные подпространства U и W, порождённые системами векторов: Найти базисы подпространств U а) Базис подпространства U W. и ) Даны линейные подпространства U и W, порождённые системами векторов: a ; ; 3; a a b b 3 ; ; ; ; ; ; ; ; ; 3; 3; ; Найти базисы подпространств U а) Базис подпространства U W. W и U W. Множество всех

Подробнее

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методическое пособие по проведению практических

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Аннотация Собственные векторы и собственные значения линейного оператора, их свойства.

Подробнее

1. Системы линейных алгебраических уравнений. Основные понятия. Метод Гаусса

1. Системы линейных алгебраических уравнений. Основные понятия. Метод Гаусса Системы линейных алгебраических уравнений Основные понятия Метод Гаусса Основные понятия Равносильные системы Определение Система линейных алгебраических уравнений (или система линейных уравнений) имеет

Подробнее

ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА

ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА ЛЕКЦИЯ 6 ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА РАНГ СИСТЕМЫ ВЕКТОРОВ 1 ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИНЕЙНАЯ ЗАВИСИМОСТЬ

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

Тема 2-20: Аффинные пространства

Тема 2-20: Аффинные пространства Тема 2-20: Аффинные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2

Подробнее

ТРАНСПОНИРОВАНИЕ МАТРИЦ

ТРАНСПОНИРОВАНИЕ МАТРИЦ матрица Для любой матрицы ТРАНСПОНИРОВАНИЕ МАТРИЦ a a an a a an am am amn a a am a a am, an an amn получающаяся из матрицы заменой строк соответствующими столбцами, а столбцов соответствующими строками,

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны.

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны. Лекция 3 Тема: Уравнение прямой на проективной плоскости Принцип двойственности Теорема Дезарга Проективные отображения и проективные преобразования План лекции 1 Уравнение прямой на проективной плоскости

Подробнее

8. Дать определение ортогональной скалярной проекции вектора на направление.

8. Дать определение ортогональной скалярной проекции вектора на направление. 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения

Подробнее

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение.

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение. Т е м а : «Л и н е й н а я з а в и с и м о с т ь с и с т е м ы в е к т о р о в» ( т и п о в ы е п р и м е р ы с р е ш е н и я м и ) Пример. Путем приведения элементарными преобразованиями исходной матрицы

Подробнее

Глава 2. Системы линейных равнений

Глава 2. Системы линейных равнений Глава истемы линейных равнений Метод Гаусса решения систем линейных алгебраических уравнений истема m линейных алгебраических уравнений (ЛАУ) с неизвестными имеет вид a a a b a a a b () am am am bm Здесь

Подробнее

ЗАДАЧИ И УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

ЗАДАЧИ И УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ КИ Лившиц ЛЮ Сухотина ЗАДАЧИ И УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ Учебно-методическое пособие Томск Издательский Дом Томского государственного университета 6 УДК 7 ББК Л Рецензенты: д-р физ-мат наук профессор

Подробнее