10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями)

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями)"

Транскрипт

1 10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Представьте выражение в виде многочлена стандартного вида и найдите его значение при заданных значениях переменных: a+ b 9a ab + b 4 b 6 при a = 0,1, b= 4 Разложите на множители: ( b ) + 1 Найдите числа A, B, C, при которых справедливо равенство: 1 1 = A + B C x x x x x x+ 4 Упростите выражение и вычислите его при заданных значениях параметров: m n : ( + ) + : + m m n m n m n m mn при m = 190, n= 1 5 Решите уравнение: х + x = 11 6 Решите неравенства: а) х 1 x + ; б) х + 1 > x Если двузначное число разделить на произведение его цифр, то в частном получится, а в остатке 9 Если же из квадрата суммы цифр этого числа вычесть произведение его цифр, то получится данное число Найти это число 8 Определите вид треугольника (остроугольный, прямоугольный или тупоугольный) и найдите косинус наибольшего угла, если стороны треугольника равны ; 5 и 4

2 Методические указания к выполнению Задания 1 (Решения задач демонстрационного варианта) 1 Представьте выражение в виде многочлена стандартного вида и найдите его значение при заданных значениях переменных: a+ b 9a ab + b 4 b 6 при a = 0,1, b= 4 Решение Если выражение в первых скобках принять за сумму оснований, то во вторых скобках будет неполный квадрат разности этих оснований; тогда произведение этих скобок даст сумму кубов, то есть ( ) ( ) a+ b 9a ab + b b = a + b b = 7a + b b = 7 a a (и любом b) имеем: a ( ) При = 0,1 Ответ:,4 7 = 7 0,1 = 7 0,1 =,4 Разложите на множители: ( b ) + 1 Решение Данное выражение можно рассматривать как сумму кубов и разложить на множители следующим образом: ( ) ( b ) ( b ) ( b ) ( b ) + 1= = ( b )( 4b 1b 9 b 1) ( b 1)( 4b 14b 1) = = + (убедитесь сами, что дискриминант квадратного трехчлена отрицателен, так что этот трехчлен разложить на линейные множители нельзя) Ответ: ( b )( b b+ ) Найдите числа A, B, C, при которых справедливо равенство: 1 1 = A + B C x x x x x x+ Решение Преобразуем правую часть равенства: = x x 1 x+ ( )( + ) + ( + ) + ( ) x( x 1)( x+ ) ( 1)( + ) + ( + ) + ( 1) 1 A B C A x x Bx x Cx x = + + = = x x 1 x+ x x 1 x+ A x 1 x Bx x Cx x 1 Известно, что две дроби с одинаковыми знаменателями равны, если равны их числители Поэтому при всех значениях х из области определения должно выполняться тождество A x 1 x+ + Bx x+ + Cx x 1 1 ( ) ( )

3 Раскроем скобки в левой части и приведем подобные члены: A+ B+ C x + A+ B C x A 1 Это тождество будет выполнено, если ( ) ( ) коэффициенты при x и х будут равны нулю, а свободный член будет равен 1, то есть если имеют место следующие равенства (мы объединим их в систему уравнений): A+ B+ C = 0, A + B C = 0, A = 1 Из последнего уравнения найдем 1 = ; A дальше после подстановки этого значения в первые два уравнения будем иметь систему относительно неизвестных В и С, самостоятельно решив которую, вы сможете получить Ответ: A= ; B = ; C = B = ; C = Остается выписать ответ 6 4 Упростите выражение и вычислите его при заданных значениях параметров: m n m : ( m+ n) + m : n m n m mn при m = 190, n= 1 Решение Преобразования должны быть понятны и без подробных объяснений: m n m m n 1 m n mn : ( m+ n) + m : = + m = n m n m mn mn m + n mn 1+ m m n m mn mn m( m+ 1) n( m+ 1) = + = = m n mn mn 1+ m 1+ m При заданных значениях m n = = 177 Ответ: 177 Линейные задачи с модулями Это общий заголовок для следующих нескольких заданий Приведем некоторые определения и факты, касающиеся модуля числа и модуля функции А Модуль числа и модуль функции Модуль (абсолютная величина) числа а определяется соотношением: a, если a 0 a = a, если a < 0 Модуль функции f ( x ) вводится аналогично:

4 4 f ( x) ( ) если ( ) ( ) если ( ) f x, f x 0 = f x, f x < 0 Б Простейшие свойства модуля 1) a 0 ) a = a ) a геометрически означает расстояние от точки а до нуля (на соответствующей числовой прямой) 4) b a расстояние между точками b и a 5) a+ b a + b (неравенство треугольника) 6) a b a b 7) a b = a b a b a 0 8) = ( b ) b Вернемся к решению задач 5 Решите уравнение: х + x = 11 Решение Перепишем уравнение в виде х = 11 x Общий вид таких уравнений: f ( х) = g ( х) Приведем метод решения, основанный на свойствах модуля: так как f ( х) 0, то и g ( х) должно быть неотрицательно: g ( х) 0 Тогда равенство будет выполняться, если f ( х) = g ( х) или если f ( х) = g ( х) Таким образом, исходное уравнение приводится к совокупности двух смешанных систем (то есть систем, содержащих и уравнения, и неравенства) Объединение решений этих систем и будет решением исходной задачи На практике просто рассматривают два соответствующих случая Для нашего уравнения: 1) 11 x 0, х = 11 x Отсюда x 11, 1 х = 4 11 x 0, ) В этом случае х = 11 + x 9 1 Ответ: х1 =, х= 4 6 Решите неравенства: и этот случай дает а) х 1 x + ; б) х + 1 > x + 4 х = х =, и неравенство выполняется

5 5 Решение Простейшие теоремы об эквивалентных переходах для линейных неравенств с модулями выглядят так: Теорема 1 f ( х) g ( х) g ( х) f ( х) g ( х) Теорема f ( х) g ( х) ( ) > ( ), ( ) < ( ) f х g х > f х g х совокупность неравенств) Покажем, как использовать эти теоремы для наших конкретных задач а) (Здесь квадратная скобка обозначает х x +, х 1 x + ( x + ) ( х 1) x + х x х, 0 х х 0 ( ) ( ) х + 1 > x + 4 x+ > x + 4 x > б) х + 1 > x + 4 х 1 x 4 x x 4 + < + < x < Ответ: а) 0 х ; б) x < ; x > 7 Если двузначное число разделить на произведение его цифр, то в частном получится, а в остатке 9 Если же из квадрата суммы цифр этого числа вычесть произведение его цифр, то получится данное число Найти это число Решение Пусть в искомом числе будет x десятков и у единиц Тогда это число можно записать в виде 10x + y Если при делении числа А на число В в частном получается С, а в остатке R, то число А представляется в виде: A = BC + R Тогда, пользуясь условиями задачи, мы можем составить два уравнения Так как при делении данного числа на произведение его цифр получаем и в остатке 9, мы можем записать его в виде x y xy 10 + = + 9 Вычитая из квадрата суммы цифр этого числа произведение его цифр, получаем само это число, те ( x + y) xy = 10x+ y Теперь решим систему, составленную из этих двух уравнений 10x+ y= xy+ 9, 10 x + y= ( x+ y) xy Приравнивая правые части, после несложных преобразований получим ( x y ) = 9, откуда появляются два случая: x y = или x y = Пусть сначала x y = Тогда мы можем выразить у через х и получить квадратное уравнение x x + 6= 0, которое, очевидно, не имеет решений

6 6 Если же x y =, то есть = +, = + + 9, x y то приходим к уравнению ( y ) y y( y ) или y y 1= 0 У этого уравнения есть отрицательный корень, который не годится по смыслу задачи, а положительный равен Тогда x = 6, а искомое число 6 Ответ: 6 8 Определите вид треугольника (остроугольный, прямоугольный или тупоугольный) и найдите косинус наибольшего угла, если стороны треугольника равны ; 5 и 4 Решение Мы решим эту задачу наоборот: сначала найдем косинус наибольшего угла, а уже потом определим вид треугольника Пусть С наибольший угол Тогда против него лежит бóльшая сторона, для численной величины которой мы можем записать теорему косинусов: выражается так: следовательно, а треугольник тупоугольный cos = 5 4 = cos C, откуда косинус С C Выражение в числителе оказывается равным ( ), 1 cosc = 0 5 = 575 < Отсюда, в частности, следует, что угол С тупой, Ответ: треугольник тупоугольный, а косинус наибольшего угла равен 1 575

11 класс, базовый уровень. Задание 1. Вариант 0 (демонстрационный, с решениями)

11 класс, базовый уровень. Задание 1. Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Разложите на множители: 3 11 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) b 3 + 1 Найдите числа A, B, C, при которых справедливо

Подробнее

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА Пензенский государственный университет Физико-математический факультет «Очно-заочная физико-математическая школа» МАТЕМАТИКА Тождественные преобразования. Решение уравнений. Треугольники Задание 1 для

Подробнее

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ Указания, решения, ответы УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ. Уравнение с одной неизвестной.. Решение. Подставим в уравнение. Получим равенство ( 4a b 4) (a b 8) 0. Равенство A B 0, где А и В целые, выполняется,

Подробнее

Решение типового варианта «Комплексные числа. Многочлены и рациональные дроби» (результат запишите в тригонометрической форме),

Решение типового варианта «Комплексные числа. Многочлены и рациональные дроби» (результат запишите в тригонометрической форме), типового варианта «Комплексные числа Многочлены и рациональные дроби» Задание Даны два комплексных числа и cos sn Найдите и результат запишите в алгебраической форме результат запишите в тригонометрической

Подробнее

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде:

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде: Уравнения В алгебре рассматривают два вида равенств тождества и уравнения Тождество это равенство которое выполняется при всех допустимых) значениях входящих в него букв Для тождества используют знаки

Подробнее

(a 1)(a + 2) (a + 4)(a 3) = (a 2 + a 2) (a 2 + a 6).

(a 1)(a + 2) (a + 4)(a 3) = (a 2 + a 2) (a 2 + a 6). 3.. Методы решения рациональных неравенств 3..1. Числовые неравенства Сначала определим, что мы понимаем под утверждением a > b. Определение 3..1. Число a больше числа b, если разность между ними положительна.

Подробнее

МОДУЛЬ 7 «Показательная и логарифмическая функции»

МОДУЛЬ 7 «Показательная и логарифмическая функции» МОДУЛЬ 7 «Показательная и логарифмическая функции». Обобщение понятия степени. Корень й степени и его свойства.. Иррациональные уравнения.. Степень с рациональным показателем.. Показательная функция..

Подробнее

Учебный центр «Резольвента»

Учебный центр «Резольвента» ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 509-8-0 Учебный центр «Резольвента» К. Л. САМАРОВ, С.С. САМАРОВА ТРИГОНОМЕТРИЯ В ЕГЭ ПО МАТЕМАТИКЕ Учебно-методическое пособие для подготовки

Подробнее

b a b 5 Замечание. Можно было сначала найти синус угла с помощью формулы sin cos 1, а затем, тангенс угла с помощью формулы sin

b a b 5 Замечание. Можно было сначала найти синус угла с помощью формулы sin cos 1, а затем, тангенс угла с помощью формулы sin Так как то правильный ответ Система требует выполнения двух и более условий причем мы ищем те значения неизвестной величины которые удовлетворяют сразу всем условиям Изобразим решение каждого из неравенств

Подробнее

Е. Н. ФИЛАТОВ АЛГЕБРА

Е. Н. ФИЛАТОВ АЛГЕБРА Заочный физико-математический лицей «Авангард» Е. Н. ФИЛАТОВ АЛГЕБРА 8 Экспериментальный учебник Часть МОСКВА 06 Заочный физико-математический лицей «Авангард» Е. Н. Филатов АЛГЕБРА 8 Экспериментальный

Подробнее

4. Решение и исследование квадратных уравнений

4. Решение и исследование квадратных уравнений КВАДРАТНЫЕ УРАВНЕНИЯ Оглавление КВАДРАТНЫЕ УРАВНЕНИЯ... 4. и исследование квадратных уравнений... 4.. Квадратное уравнение с числовыми коэффициентами... 4.. Решить и исследовать квадратные уравнения относительно

Подробнее

Иррациональные уравнения и неравенства 2

Иррациональные уравнения и неравенства 2 Иррациональные уравнения и неравенства Оглавление Иррациональные уравнения Метод возведения обеих частей уравнения в одну и ту же степень Задание Задание Задание Замена иррационального уравнения смешанной

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее

Параметры и квадратный трёхчлен. 1

Параметры и квадратный трёхчлен. 1 И. В. Яковлев Материалы по математике MathUs.ru Параметры и квадратный трёхчлен. 1 Мы начинаем с рассмотрения уравнений вида ax + bx + c = 0. 1 Если a 0, то уравнение 1 является квадратным. Не забываем,

Подробнее

Квадратные уравнения

Квадратные уравнения И. В. Яковлев Материалы по математике MathUs.ru Содержание Квадратные уравнения 1 Неполные квадратные уравнения............................ 1 2 Выделение полного квадрата...............................

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее

Электронное методическое пособие для выполнения домашнего задания

Электронное методическое пособие для выполнения домашнего задания Действия с дробями: Электронное методическое пособие для выполнения домашнего задания Домашнее задание. «Преобразования степенны и иррациональны выражений. Вычисление значений числовы выражений» Формулы

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Минимаксные задачи. 2 cos x + 1 = 3.

И. В. Яковлев Материалы по математике MathUs.ru. Минимаксные задачи. 2 cos x + 1 = 3. И. В. Яковлев Материалы по математике MthUs.ru Минимаксные задачи Начнём с примера. Пусть требуется решить уравнение 3 x +1 = cos x + 1. 1) Одновременное присутствие показательной и тригонометрической

Подробнее

Решения для 9 класса подготовительного варианта

Решения для 9 класса подготовительного варианта Решения для 9 класса подготовительного варианта. Тема Действия с дробями 7 4 0,5 :, 5 : 5 7 Выполните действия:.,5 :8 4 Решение. Выполним действия в следующем порядке: 5 4 ) 0,5 :,5 : :. 4 4 5 5 7 4 7

Подробнее

Решение уравнений в целых числах

Решение уравнений в целых числах Решение уравнений в целых числах Линейные уравнения. Метод прямого перебора Пример. В клетке сидят кролики и фазаны. Всего у них 8 ног. Узнать сколько в клетке тех и других. Укажите все решения. Решение.

Подробнее

Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ"

Государственное образовательное учреждение высшего профессионального образования ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ" В. В. Гарбарук, В. И. Родин, И. М. Соловьева, М. А. Шварц МАТЕМАТИКА

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

Системы уравнений. Общий вид системы двух уравнений с двумя переменными:

Системы уравнений. Общий вид системы двух уравнений с двумя переменными: Системы уравнений Пусть даны два уравнения с двумя неизвестными f(x, y)=0 и g(x, y)=0, где f(x, y), g(x, y) некоторые выражения с переменными х и у. Если ставится задача найти все общие решения данных

Подробнее

Учебный центр «Резольвента»

Учебный центр «Резольвента» ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 59-8- Учебный центр «Резольвента» Кандидат физико-математических наук, доцент С. С. САМАРОВА РЕШЕНИЕ ЛОГАРИФМИЧЕСКИХ НЕРАВЕНСТВ Учебно-методическое

Подробнее

Дробно-рациональные выражения

Дробно-рациональные выражения Дробно-рациональные выражения Выражения содержащие деление на выражение с переменными называются дробными (дробно-рациональными) выражениями Дробные выражения при некоторых значениях переменных не имеют

Подробнее

Квадратные уравнения и неравенства с параметрами. 1

Квадратные уравнения и неравенства с параметрами. 1 И. В. Яковлев Материалы по математике MathUs.ru Квадратные уравнения и неравенства с параметрами. 1 Мы приступаем к изучению уравнений вида ax + bx + c = 0. (1) Если a 0, то уравнение (1) является квадратным.

Подробнее

РАЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

РАЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ РАЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ Оглавление РАЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ I Рациональные алгебраические уравнения Равносильность уравнений Равносильность уравнений на множестве Равносильность

Подробнее

Иррациональные неравенства

Иррациональные неравенства Иррациональные неравенства Неравенства, в которых переменная содержится под знаком корня, называются иррациональными Основным методом решения иррациональных неравенств является метод сведения исходного

Подробнее

( ) n ( ) ( ) ( ) ( x) ( ) ( ) ( ) Лекция 2. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ

( ) n ( ) ( ) ( ) ( x) ( ) ( ) ( ) Лекция 2. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Лекция ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Рациональные дроби Интегрирование простейших рациональных дробей Разложение рациональной дроби на простейшие дроби Интегрирование рациональных дробей Рациональные

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ АГЕНТСТВО ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ КРАСНОЯРСКОГО КРАЯ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЗАОЧНАЯ ЕСТЕСТВЕННО-НАУЧНАЯ ШКОЛА при КрасГУ ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ

Подробнее

Для интегрирования рациональной функции

Для интегрирования рациональной функции Интегрирование рациональных функций Для интегрирования рациональной функции последовательность шагов:, где P(x) и Q(x) - полиномы, используется следующая 1. Если дробь неправильная (т.е. степень P(x) степени

Подробнее

Уравнения высших порядков

Уравнения высших порядков И. В. Яковлев Материалы по математике MathUs.ru Содержание Уравнения высших порядков 1 Непосредственная группировка............................. 1 2 Подбор корня........................................

Подробнее

Тема 1. Действительные числа и действия над ними

Тема 1. Действительные числа и действия над ними Тема 1 Действительные числа и действия над ними 4 часа 11 Развитие понятия о числе 1 Первоначально под числами понимали лишь натуральные числа, которых достаточно для счета отдельных предметов Множество

Подробнее

Тема 5 Рациональные системы уравнений

Тема 5 Рациональные системы уравнений Тема 5 Рациональные системы уравнений F ( x, x,..., ) 0, F ( x, x,..., ) 0, Система уравнений вида где... Fk ( x, x,..., ) 0, F i( x, x,..., ), i,..., k, некоторые многочлены, называется системой рациональных

Подробнее

+ представляется в виде произведения линейных множителей следующим образом:

+ представляется в виде произведения линейных множителей следующим образом: Лекция. Элементы теории многочленов. Многочлен (некоторые сведения справочного характера) Функция вида: 1 P ( x) a0x a1x... a 1x a = + + + + (1) где натуральное число a i ( i = 01... ) постоянные коэффициенты

Подробнее

Класс 7.3, 7.5 Учебник: Алгебра (Макарычев Н.В.) Тема модуля «Уравнения. Разложение многочленов на множители. Формулы

Класс 7.3, 7.5 Учебник: Алгебра (Макарычев Н.В.) Тема модуля «Уравнения. Разложение многочленов на множители. Формулы Класс 7.3, 7.5 Учебник: Алгебра (Макарычев Н.В.) Тема модуля «Уравнения. Разложение многочленов на множители. Формулы сокращенного умножения» В тесте проверяются теоретическая и практическая части. ТЕМА

Подробнее

Задачи заочного тура по математике для 9 класса 2014/2015 уч. год, первый уровень сложности. Задача 4

Задачи заочного тура по математике для 9 класса 2014/2015 уч. год, первый уровень сложности. Задача 4 Задачи заочного тура по математике для 9 класса 2014/2015 уч. год, первый уровень сложности Задача 1 Решить уравнение: (x+3) 63 + (x+3) 62 (x-1) + (x+3) 61 (x-1) 2 + + (x-1) 63 = 0 Ответ: -1 Задача 2 Сумма

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение дополнительного образования детей «Заочная физико-техническая школа Московского физико-технического

Подробнее

Математика 8 класс Многочлены

Математика 8 класс Многочлены МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 8 класс Многочлены Новосибирск Многочлены Рациональными

Подробнее

Тождественные преобразования алгебраических выражений

Тождественные преобразования алгебраических выражений Тождественные преобразования алгебраических выражений Алгебраические выражения выражения, содержащие числа и буквы, связанные алгебраическими действиями: сложением, вычитанием, умножением, делением и возведением

Подробнее

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Рациональные Рациональное уравнение с неизвестным x - это уравнение, левая и правая части которого есть рациональные выражения относительно переменной x. Пример. Целое

Подробнее

3x x 2 + x = 0.

3x x 2 + x = 0. 4.. Метод замены переменной при решении алгебраических уравнений. В предыдущем пункте метод замены переменной был использован для разложения многочлена на множители. Данный метод широко применяется для

Подробнее

Показательные уравнения. Методы решения. Дубова Мария Игоревна

Показательные уравнения. Методы решения. Дубова Мария Игоревна Показательные уравнения. Методы решения. Дубова Мария Игоревна 7 78-57 Показательным называется уравнение, содержащее переменную только в показателе степени. Рассмотрим несколько типов показательных уравнений,

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

То из них, которое расположено левее всех, и является наименьшим. Это число 4. Ответ: 5.

То из них, которое расположено левее всех, и является наименьшим. Это число 4. Ответ: 5. Решения А Изобразим все данные числа на числовой оси То из них которое расположено левее всех и является наименьшим Это число 4 Ответ: 5 А Проанализируем неравенство На числовой оси множество чисел удовлетворяющих

Подробнее

Интегрирование рациональных функций (продолжение)

Интегрирование рациональных функций (продолжение) Занятие 4 Интегрирование рациональных функций (продолжение) Рациональной функцией (или, по-просту, дробью) называется отношение двух многочленов, то есть функция вида R() = f() g() = a 0 m + a m +...+

Подробнее

Иррациональные уравнения и неравенства 3

Иррациональные уравнения и неравенства 3 Иррациональные уравнения и неравенства Оглавление 4 Метод исключения радикалов в иррациональном уравнении умножением на сопряженный множитель Задание 7 4 5 Выделение полного квадрата (квадрата двучлена)

Подробнее

8 К Л А С С. 4. У Маши есть 45 гирек, веса которых все натуральные числа от 1 до 45.

8 К Л А С С. 4. У Маши есть 45 гирек, веса которых все натуральные числа от 1 до 45. ОЛИМПИАДА «ПУТЬ К ОЛИМПУ», 8 К Л А С С 1. К чётному числу n прибавили его наибольший делитель, отличный от n. Может ли полученная сумма равняться 018?. Собранный мёд заполняет несколько 50-литровых бидонов.

Подробнее

Многочлены Многочленом с одной переменной старшим коэффициентом значением многочлена корнем

Многочлены Многочленом с одной переменной старшим коэффициентом значением многочлена корнем Многочлены Многочленом с одной переменной х степени n называют выражение вида, где - любые числа, называемые коэффициентами многочлена, причем называют старшим коэффициентом многочлена Если вместо переменной

Подробнее

3 Формула включения-исключения. Взаимно однозначное соответствие

3 Формула включения-исключения. Взаимно однозначное соответствие 2.22. Вынесите за скобки общий множитель (n натуральное число): 1) x n + 3 + x n ; 3) z 3n - z n ; 2) y n + 2 - y n - 2, n > 2; 4) 5 n + 4 + 2 5 n + 2-3 5 n + 1. 2.23. Каждому числу поставили в соответствие

Подробнее

4 Разложите рациональную дробь на простейшие дроби

4 Разложите рациональную дробь на простейшие дроби Разложите рациональную дробь на простейшие дроби Выполните упражнение согласно выбранным вариантам. Сравните результат с ОТВЕТОМ. Протокол работы поместите в отчет. Рациональная дробь 7 6 67 87 7 ) ( )

Подробнее

M середина AD 1, N середина BC 1. Проведем перпендикуляр NH из точки N. C1 Решите уравнение (2sinx 1)( cosx + 1) = 0. Решение:

M середина AD 1, N середина BC 1. Проведем перпендикуляр NH из точки N. C1 Решите уравнение (2sinx 1)( cosx + 1) = 0. Решение: Математика класс Варианты,, 9, (без логарифмов) Критерии оценивания заданий с развёрнутым ответом C Решите уравнение (sin )( cos + ) Левая часть уравнения имеет смысл при cos Выражение cos + положительно

Подробнее

Муниципальный этап. 8 класс. Условия задач 1

Муниципальный этап. 8 класс. Условия задач 1 Условия задач 1 Муниципальный этап 8 класс 1. На доске написаны два числа. Одно из них увеличили в 6 раз, а другое уменьшили на 2015, при этом сумма чисел не изменилась. Найдите хотя бы одну пару таких

Подробнее

M середина AD 1, N середина BC 1. Проведем перпендикуляр NH из точки N. C1 Решите уравнение (2sinx 1)( cosx + 1) = 0. Решение:

M середина AD 1, N середина BC 1. Проведем перпендикуляр NH из точки N. C1 Решите уравнение (2sinx 1)( cosx + 1) = 0. Решение: Математика класс Варианты,, 9, (без логарифмов) Критерии оценивания заданий с развёрнутым ответом C Решите уравнение (sinx )( cosx + ) Левая часть уравнения имеет смысл при cosx Выражение cosx + положительно

Подробнее

Квадратные уравнения

Квадратные уравнения И. В. Яковлев Материалы по математике MathUs.ru Содержание Квадратные уравнения 1 Неполные квадратные уравнения............................ 1 2 Выделение полного квадрата...............................

Подробнее

Тема: Интегрирование рациональных дробей

Тема: Интегрирование рациональных дробей Математический анализ Раздел: Неопределенный интеграл Тема: Интегрирование рациональных дробей Лектор Пахомова Е.Г. 0 г. 5. Интегрирование рациональных дробей ОПРЕДЕЛЕНИЕ. Рациональной дробью называется

Подробнее

МАТЕМАТИКА. Задание 1 для 9-х классов учебный год

МАТЕМАТИКА. Задание 1 для 9-х классов учебный год МАТЕМАТИКА Рациональные уравнения Системы уравнений Уравнения, содержащие модуль Задание для 9- классов 0-04 учебный год Составитель: кпн, доцент Марина ЕВ Пенза, 0 Введение Вспомним некоторые понятия

Подробнее

Математика АРИФМЕТИКА. Действия с натуральными числами и обыкновенными дробями. 4. Техника обращения неправильной дроби в смешанное число

Математика АРИФМЕТИКА. Действия с натуральными числами и обыкновенными дробями. 4. Техника обращения неправильной дроби в смешанное число АРИФМЕТИКА Действия с натуральными числами и обыкновенными дробями. Порядок действий ) Если нет скобок, то сначала выполняются действия -й степени (возведение в натуральную степень), затем -й степени (умножение

Подробнее

УРАВНЕНИЯ И НЕРАВЕНСТВА С МОДУЛЯМИ

УРАВНЕНИЯ И НЕРАВЕНСТВА С МОДУЛЯМИ УРАВНЕНИЯ И НЕРАВЕНСТВА С МОДУЛЯМИ Гущин Д. Д. www.mathnet.spb.ru 1 0. Простейшие уравнения. К простейшим (не обязательно простым) уравнениям мы будем относить уравнения, решаемые одним из нижеприведенных

Подробнее

МАТЕМАТИКА. Многочлены. Уравнения и системы. Задание 4 для 9-х классов. ( учебный год)

МАТЕМАТИКА. Многочлены. Уравнения и системы. Задание 4 для 9-х классов. ( учебный год) Федеральное агентство по образованию Федеральная заочная физико-техническая школа при Московском физико техническом институте (государственном университете) МАТЕМАТИКА Многочлены. Уравнения и системы.

Подробнее

Ответ. Вопрос. Что такое классы и разряды в записи чисел? Как называют числа при сложении?

Ответ. Вопрос. Что такое классы и разряды в записи чисел? Как называют числа при сложении? Вопрос Какие числа называют натуральными? Ответ Натуральными называют числа, которые используют при счете Что такое классы и разряды в записи чисел? Как называют числа при сложении? Сформулируйте сочетательный

Подробнее

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений».

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений». Тема 14 «Алгебраические уравнения и системы нелинейных уравнений» Многочленом степени n называется многочлен вида P n () a 0 n + a 1 n-1 + + a n-1 + a n, где a 0, a 1,, a n-1, a n заданные числа, a 0,

Подробнее

Аналитическое решение алгебраических уравнений степеней 3 и 4

Аналитическое решение алгебраических уравнений степеней 3 и 4 Аналитическое решение алгебраических уравнений степеней 3 и 4 Содержание 1 Введение 1 2 Уравнения третьей степени 3 3 Уравнения четвертой степени 7 1 Введение В данном манускрипте приводятся формулы для

Подробнее

201. Арифметическая прогрессия. Примеры решения задач. ТЕСТ Арифметическая и геометрическая прогрессии. ТЕСТ 2.

201. Арифметическая прогрессия. Примеры решения задач. ТЕСТ Арифметическая и геометрическая прогрессии. ТЕСТ 2. Арифметическая прогрессия Примеры решения задач ТЕСТ Найти сумму всех натуральных чисел, каждое из которых кратно и не превосходит по величине ) ) 8 ) 9 ) 8 Найти сумму всех двузначных натуральных чисел,

Подробнее

МАТЕМАТИКА. Квадратные уравнения. Задание 5 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Квадратные уравнения. Задание 5 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Квадратные уравнения Задание для 8-х

Подробнее

Тема 12 «Системы двух уравнений с двумя неизвестными».

Тема 12 «Системы двух уравнений с двумя неизвестными». Тема 1 «Системы двух уравнений с двумя неизвестными». Системой уравнений называется некоторое количество уравнений, которые должны выполняться одновременно. Решением системы уравнений с двумя переменными

Подробнее

= 2. 3x + 2y + z, если x : y : z = 2 : 1 : 3. 2x 3y z

= 2. 3x + 2y + z, если x : y : z = 2 : 1 : 3. 2x 3y z В1 В2 В3 В4 В5 В6 В7 В8 С1 С2 С3 С4 Сумма ШИФР Заполняет сотрудник ОКО Вступительная работа по математике для поступающих в 10 физико-химический и химико-биологический классы СУНЦ УрФУ 1 мая 2017 года

Подробнее

1. Рекуррентный способ Выпишите первые десять членов последовательности, заданной рекуррентно. 10) а 1 = 2, 7) а 1 = 1, a = a + 1

1. Рекуррентный способ Выпишите первые десять членов последовательности, заданной рекуррентно. 10) а 1 = 2, 7) а 1 = 1, a = a + 1 Глава 0 ПОСЛЕДОВАТЕЛЬНОСТИ Алгоритмы А- Задание числовых последовательностей А- Арифметическая прогрессия А- Геометрическая прогрессия А- Суммирование А-5 Бесконечно убывающая геометрическая прогрессия

Подробнее

МАТЕМАТИКА НЕРАВЕНСТВА

МАТЕМАТИКА НЕРАВЕНСТВА Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Неравенства Модуль для 0 класса Учебно-методическая

Подробнее

Тема 3. ПРЕДЕЛЫ ФУНКЦИЙ

Тема 3. ПРЕДЕЛЫ ФУНКЦИЙ Тема ПРЕДЕЛЫ ФУНКЦИЙ Число А называется пределом функции у=f), при х стремящемся к бесконечности, если для любого, сколь угодно малого числа ε>, найдется такое положительное числоs, что при всех >S, выполняется

Подробнее

Знаки линейной функции

Знаки линейной функции И. В. Яковлев Материалы по математике MathUs.ru Метод интервалов Метод интервалов это метод решения так называемых рациональных неравенств. Общее понятие рационального неравенства мы обсудим позже, а сейчас

Подробнее

Вступительный экзамен по математике для поступающих в 9 фм, фх и ми классы СУНЦ УрФУ май 2017 года Вариант 1. Часть B

Вступительный экзамен по математике для поступающих в 9 фм, фх и ми классы СУНЦ УрФУ май 2017 года Вариант 1. Часть B Вступительный экзамен по математике для поступающих в 9 фм, фх и ми классы СУНЦ УрФУ май 2017 года Вариант 1 Часть B B1. Пароход проходит по реке путь от Астрахани до Казани за 6 суток, а от Казани до

Подробнее

4. Алгебраические уравнения 1.Квадратные уравнения. В школьном курсе алгебры рассматривались квадратные уравнения 2

4. Алгебраические уравнения 1.Квадратные уравнения. В школьном курсе алгебры рассматривались квадратные уравнения 2 6-7 уч год 6, кл Математика Комплексные числа 4 Алгебраические уравнения Квадратные уравнения В школьном курсе алгебры рассматривались квадратные уравнения ax bx c =, a, () с действительными коэффициентами

Подробнее

ПО МАТЕМАТИКЕ. 8 класс Десятичная система счисления. Римская нумерация.

ПО МАТЕМАТИКЕ. 8 класс Десятичная система счисления. Римская нумерация. ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ В АКАДЕМИЧЕСКУЮ ГИМНАЗИЮ САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА НА ПРОГРАММЫ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО МАТЕМАТИКЕ Вступительные испытания по математике

Подробнее

= - (2mn) 12 ( 2mn) 22 ( 2mn) ( 2mn) ( 2mn) 2

= - (2mn) 12 ( 2mn) 22 ( 2mn) ( 2mn) ( 2mn) 2 Автор: Фильчев Э.Г. Адрес:Россия.188760.Ленинградская область г.приозерск.ул.привокзальная 5. кв.60. кубического уравнения в системе mn параметров кубического уравнения на основе современных методов не

Подробнее

Тригонометрические уравнения. 2

Тригонометрические уравнения. 2 И. В. Яковлев Материалы по математике MathUs.ru Тригонометрические уравнения. В статье «Тригонометрические уравнения. 1» мы рассмотрели стандартные методы решения весьма простых тригонометрических уравнений.

Подробнее

Авторы: М. И. Шабунин, М. В. Ткачёва, Н. Е. Фёдорова, О. Н. Доброва

Авторы: М. И. Шабунин, М. В. Ткачёва, Н. Е. Фёдорова, О. Н. Доброва УДК 7.8:[ + 7] ББК 7.6. А Авторы: М. И. Шабунин, М. В. Ткачёва, Н. Е. Фёдорова, О. Н. Доброва А Алгебра и начала математического анализа. Дидактические материалы. 0 класс : углубл. уровень / [М. И. Шабунин,

Подробнее

Минимаксные задачи в тригонометрии

Минимаксные задачи в тригонометрии И. В. Яковлев Материалы по математике MathUs.ru Минимаксные задачи в тригонометрии В настоящем листке рассматриваются уравнения, для решения которых используются оценки правой и левой частей. Чтобы стало

Подробнее

Глава 6. Неопределенный интеграл

Глава 6. Неопределенный интеграл Глава Неопределенный интеграл Непосредственное интегрирование Функцию F() называют первообразной для функции f(), если выполняется равенство F'() f() Совокупность всех первообразных данной функции f()

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Р Е Ш Е Н И Е З А Д А Ч Р Е А Л Ь Н О Г О В А Р И А Н Т А Е Г Э П О М А Т Е М А Т И К Е

Р Е Ш Е Н И Е З А Д А Ч Р Е А Л Ь Н О Г О В А Р И А Н Т А Е Г Э П О М А Т Е М А Т И К Е Р Е Ш Е Н И Е З А Д А Ч Р Е А Л Ь Н О Г О В А Р И А Н Т А Е Г Э - 2001 П О М А Т Е М А Т И К Е Часть 1 А1. Найдите значение выражения. 1. 15 2. 10 3. 5 4. Решение. Ответ: 1. А2. Упростите выражение. 1.

Подробнее

6. Интегральное исчисление Первообразная и неопределенный интеграл

6. Интегральное исчисление Первообразная и неопределенный интеграл Интегральное исчисление Первообразная и неопределенный интеграл Занимаясь дифференцированием функций, мы по данной функции находили ее производную Сейчас перейдем к обратной задаче: найти функцию, зная

Подробнее

Тема 15 «Уравнения и неравенства с модулем».

Тема 15 «Уравнения и неравенства с модулем». Тема 15 «Уравнения и неравенства с модулем». Модуль действительного числа это абсолютная величина этого числа. Проще говоря, при взятии модуля нужно отбросить от числа его знак. Обозначается a. Например,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАШИНОСТРОЕНИЯ ИИ Поспелов,

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

А.С Крутицких и Н.С Крутицких. Подготовка к ЕГЭ по математике. Сайт «Решение простейших тригонометрических уравнений»

А.С Крутицких и Н.С Крутицких. Подготовка к ЕГЭ по математике. Сайт  «Решение простейших тригонометрических уравнений» А.С Крутицких и Н.С Крутицких. Подготовка к ЕГЭ по математике. Сайт http://matematikalegko.ru «Решение простейших тригонометрических уравнений» Решение простейших тригонометрических уравнений (в итоге

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ЛЕКЦИЯ N11. Методы интегрирования.

ЛЕКЦИЯ N11. Методы интегрирования. ЛЕКЦИЯ. Методы интегрирования..интегрирование по частям..рациональные дроби. Разложение правильной дроби на простейшие...интегрирование рациональных дробей..интегрирование по частям. Пусть u и v две непрерывные

Подробнее

Задачи о касательных к параболам

Задачи о касательных к параболам potential_print09qxp 09007 :49 Page Потенциал 09 () 09007 Мирошин Владимир Васильевич Учитель гимназии 5 г Москва, старший преподаватель кафедры математического анализа Московского городского педагогического

Подробнее

7 класс Решение г. Задание 4. Задача 1. Решение

7 класс Решение г. Задание 4. Задача 1. Решение 7 класс 060-07 г. Задание 4 Задача Число единиц двузначного числа в раза меньше числа десятков. Если цифры этого числа переставить, то полученное число будет меньше данного на 6. Найдите данное число.

Подробнее

Городская олимпиада по математике г. Хабаровск, 1997 год 9 КЛАСС. (x + 2) 4 + x 4 = 82. (1) (y + 1) 4 + (y 1) 4 = 82.

Городская олимпиада по математике г. Хабаровск, 1997 год 9 КЛАСС. (x + 2) 4 + x 4 = 82. (1) (y + 1) 4 + (y 1) 4 = 82. Городская олимпиада по математике г. Хабаровск, 1997 год Задача 1. Найти решения уравнения 9 КЛАСС (x + 2) 4 + x 4 = 82. (1) Решение. После замены переменной x = y 1 уравнение (1) можно записать в виде

Подробнее

МАТЕМАТИКА ЕГЭ Задания С6. УРАВНЕНИЯ И НЕРАВЕНСТВА В ЦЕЛЫХ ЧИСЛАХ (от учебных задач до олимпиадных задач)

МАТЕМАТИКА ЕГЭ Задания С6. УРАВНЕНИЯ И НЕРАВЕНСТВА В ЦЕЛЫХ ЧИСЛАХ (от учебных задач до олимпиадных задач) МАТЕМАТИКА ЕГЭ 00 Корянов А.Г. Задания С г. Брянск Замечания и пожелания направляйте по адресу: akoryanov@mail.ru УРАВНЕНИЯ И НЕРАВЕНСТВА В ЦЕЛЫХ ЧИСЛАХ (от учебных задач до олимпиадных задач) Линейные

Подробнее

Сайт олимпиады 11 класс. Вариант 1

Сайт олимпиады  11 класс. Вариант 1 .0.06 Сайт олимпиады http://v-olymp.ru класс Вариант. Найдите какое-нибудь натуральное число, сумма всех делителей которого (включая и само это число) равна 06. Решение: Сумма делителей числа n p p p равна

Подробнее

Тест по алгебре система подготовки к тестам Gee Test. oldkyx.com

Тест по алгебре система подготовки к тестам Gee Test. oldkyx.com Тест по алгебре система подготовки к тестам Gee Test oldkyx.com Список вопросов по алгебре 1. При каком, выраженном через а и b, значении m выражение будет полным квадратом? 1) [-]4/9a 2 b 2 2) [-]±3/2ab

Подробнее

Олимпиада «Будущие исследователи будущее науки» Математика. Отборочный тур

Олимпиада «Будущие исследователи будущее науки» Математика. Отборочный тур Олимпиада «Будущие исследователи будущее науки» Математика. Отборочный тур 4.0.0 ЗАДАЧИ И РЕШЕНИЯ 8 9 класс 8-9.. Какое число больше: 0 0 0 0 или 0 0 0 0? Ответ. Первое число больше второго. Решение. Обозначим

Подробнее

Рабочая программа Заочной математической школы. 10 класс (набор 2009 года) Базовый уровень. Занятие 1.

Рабочая программа Заочной математической школы. 10 класс (набор 2009 года) Базовый уровень. Занятие 1. Рабочая программа Заочной математической школы 10 класс (набор 2009 года) Базовый уровень Занятие 1. Алгебраические преобразования. Рациональные дроби 1. Формулы сокращенного умножения. 2. Разложение многочленов

Подробнее

Иррациональные уравнения

Иррациональные уравнения Иррациональные уравнения Уравнения, в которых переменная содержится под знаком корня, называются иррациональными. Решение иррациональных уравнений сводится к переходу от иррационального к рациональному

Подробнее

Рассмотрим интегрирование простейшей рациональной дроби четвертого типа. M x p + + = + N. dt =

Рассмотрим интегрирование простейшей рациональной дроби четвертого типа. M x p + + = + N. dt = 57 Рассмотрим интегрирование простейшей рациональной дроби четвертого типа ( M N ) d ( ) p q p Сделаем замену переменной, положив d. где a p q. Тогда Интеграл M N d p p p q q a, M p N Mp q d M ( p q) p

Подробнее

Единый государственный экзамен по математике, 2007 год демонстрационная версия. Часть 1

Единый государственный экзамен по математике, 2007 год демонстрационная версия. Часть 1 Единый государственный экзамен по математике, 7 год демонстрационная версия Часть A Найдите значение выражения 6p p при p = Решение Используем свойство степени: Подставим в полученное выражение Правильный

Подробнее

Системы алгебраических уравнений

Системы алгебраических уравнений Содержание И. В. Яковлев Материалы по математике MathUs.ru Системы алгебраических уравнений Двойная замена...................................... Симметрические системы.................................

Подробнее