Механизмы ядерных реакций. Прямые реакции. Составное ядро.

Размер: px
Начинать показ со страницы:

Download "Механизмы ядерных реакций. Прямые реакции. Составное ядро."

Транскрипт

1 Московский государственный университет имени М.В.Ломоносова Физический факультет РЕФЕРАТ по дисциплине: Физика ядра и частиц Механизмы ядерных реакций. Прямые реакции. Составное ядро. Банниковой Ирины группа 209 «Москва 2016»

2 Введение Развитие ядерной физики в большой степени определяется исследованиями в области ядерных реакций. Любой процесс столкновения элементарной частицы с ядром или ядра с ядром будем называть ядерной реакцией. a+ A b+b или A(a,b)B Благодаря действию ядерных сил две частицы (два ядра или ядро и нуклон) при сближении до расстояний порядка 10 ( 13) см вступают между собой в интенсивное ядерное взаимодействие, приводящее к преобразованию ядра. Этот процесс называется ядерной реакцией. Во время ядерной реакции происходит перераспределение энергии и импульса обеих частиц, которое приводит к образованию нескольких других частиц, вылетающих из места взаимодействия. При столкновении налетающей частицы с атомным ядром между ними происходит обмен энергией и импульсом, в результате чего могут образовываться несколько частиц, вылетающих в различных направлениях из области взаимодействия. Первая ядерная реакция осуществлена Э. Резерфордом в 1919: 4 14 He+ N O+ p или N (α, p) 17 O. Источником α -частиц являлся α- радиоактивный препарат. Радиоактивные α -препараты в то время были единственными источниками заряженных частиц. Первый ускоритель, специально созданный для изучения ядерных реакций был построен Кокрофтом и Уолтоном в На этом ускорителе впервые был получен пучок ускоренных 7 протонов и осуществлена реакция p+ Li α+α. Ядерные реакции основной метод изучения структуры и свойств атомных ядер. В ядерных реакциях изучаются механизмы взаимодействия частиц с атомными ядрами, механизмы взаимодействия между атомными ядрами. В результате ядерных реакций получаются новые не встречающиеся в естественных условиях изотопы и химические элементы. Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается

3 только перераспределением кинетической энергии и импульса частицы и ядрамишени и называется потенциальным рассеянием. Следствием взаимодействия бомбардирующих частиц (ядер) с ядрами мишени может быть: 1) Упругое рассеяние, при котором ни состав, ни внутренняя энергия не меняются, а происходит лишь перераспределение кинетической энергии в соответствии с законом внутреннего удара. 2) Неупругое рассеяние, при котором состав взаимодействующих ядер не меняется, но часть кинетической энергии бомбардирующего ядра расходуется на возбуждение ядра мишени. 3) Собственно ядерная реакция, в результате которой меняются внутренние свойства и состав взаимодействующих ядер. В ядерных реакциях проявляются сильные, электромагнитные и слабые взаимодействия. Обычно более легкая частица называется снарядом, более тяжелая мишенью. Механизмы ядерных реакций. По механизму взаимодействия ядерные реакции делятся на два вида: реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ). прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при очень больших энергиях бомбардирующих частиц. При классификации ядерных реакций по времени протекания в качестве временного масштаба используют ядерное время время пролёта частицы через ядро: τ я = 2R ν c 1. Если время реакции t p =τ я, то это прямая реакция. Налетающая частица α передаёт энергию одному-двум нуклонам ядра, не затрагивая остальных, и они сразу покидают ядро, не успев обменяться энергией с остальными нуклонами. Например, реакция (p, n) может произойти в результате столкновения протона с одним нейтроном ядра. К прямым процессам относятся реакции срыва (d,р), (d,n) и реакции подхвата (р,d), (n,d), реакции фрагментации, при которых нуклон высокой энергии, сталкиваясь с ядром, выбивает из него фрагмент, состоящий из нескольких нуклонов. 2. Если t p τ я, то реакция идёт через составное ядро. Налетающая частица α и нуклон, которому она передала энергию, «запутываются» в ядре. Энергия распределяется среди многих нуклонов, и у каждого нуклона энергия недостаточна для вылета из ядра. Лишь через сравнительно большое время в результате случайных перераспределений она концентрируется на одном из

4 нуклонов или нескольких связанных нуклонах, и они покидают ядро. Механизм составного ядра предложен Н. Бором в Модель составного ядра. Составное ядро теоретическая модель ядерной реакции при захвате ядром атома нейтрона, которая была разработана Нильсом Бором в 1936 году на основании исследований Энрико Ферми искусственной радиоактивностии легла в основу предложенной Яковом Френкелем капельной модели ядра. В своей революционной работе «Захват нейтрона и строение ядра» Бор написал: «Явления захвата нейтронов тем самым заставляют нас предполагать, что столкновение между быстрым нейтроном и тяжёлым ядром должно вести прежде всего к образованию сложной системы, характеризующейся замечательной устойчивостью. Возможный последующий распад этой промежуточной системы с вылетом материальной частицы или переход к конечному устойчивому состоянию с эмиссией кванта лучистой энергии следует рассматривать как самостоятельные процессы, не имеющие непосредственной связи с первой фазой соударения.» Эта теория дала одно из основных теоретических объяснений экспериментальных исследований ядерных превращений, она удовлетворительно объясняет их при энергиях бомбардирующих частиц примерно до 50 МэВ и лежит в основе современных представлений о большой части ядерных реакций. Согласно этой модели ядерная реакция протекает в два этапа. На первом этапе частица a и ядро мишень А образуют связанную систему составное (компаунд) ядро С, которое на втором этапе распадается на ядро В и частицу b: a+ A C b+b В основе модели лежит предположение, что частица а, попадая в ядро А, сильно взаимодействует с нуклонами ядра. В модели составного ядра предполагается, что длина свободного пробега налетающей частицы много меньше размеров ядра, вследствие чего каждая частица, попадающая в ядро, захватывается им. В результате взаимодействия налетающей частицы и нуклонов ядра энергия возбуждения ядра равная ε a +B a (где ε a - кинетическая энергия налетающей частицы а, B a - энергия связи частицы а в ядре С) равномерно распределяется между нуклонами ядра, при этом средняя энергия возбуждения, приходящаяся на нуклон, равна (εa+ba). Если А (εa+ba) B А N, где B N - энергия связи нуклона в составном ядре С, то должно пройти

5 сравнительно большое время по сравнению со временем пролета частицы через 2R ядро, равным, где v - скорость частицы, прежде чем на каком либо v нуклоне ядра сосредоточится энергия, достаточная для того чтобы он вылетел из ядра. За время существования составного ядра энергия налетающей частицы распределяется между нуклонами ядра, при этом составное ядро "забывает" о способе своего образования. Это означает, что распад составного ядра не зависит от способа его образования. Поэтому сечение ядерной реакции в модели составного ядра факторизуется (гипотеза независимости Бора) и определяется соотношением σ ab =σ ac W b где σ ac - сечение образования составного ядра, а W b - вероятность распада составного ядра по каналу b+b. Вероятность распада по данному каналу определяется конкуренцией различных, открытых при данной энергии, каналов реакций W b = Γ b i Γ i где Г i - парциальные ширины распадов. Процесс испускания частицы b подобен процессу испарения молекулы из кипящей жидкости, так как вероятность вылета молекулы из кипящей жидкости также определяется вероятностью концентрации на этой молекуле энергии, большей ее энергии связи в жидкости. Таким образом, форма энергетического спектра частиц b для реакций, идущих через составное ядро, будет описываться максвелловским распределением. Такие спектры частиц получили название испарительных спектров. Резонансные ядерные реакции. Формула Брейта - Вигнера. При попадании частицы в ядро образуется составное ядро, если энергия частицы E 0 совпадает с энергетическим уровнем составного ядра Е, и происходит резонансная реакция. Это большой класс реакций. а + А С b + В. Резонансная реакция описывается в квантовой механике формулой Брейта-Вигнера: Чем меньше Г, тем острее резонанс. Сечение образования составного ядра

6 Тогда Г b /Г вероятность распада составного ядра по каналу "b", т.е. σ ab = σ ac (Г b /Г); σ ab сечение образования частицы "b" от частицы "а", σ ac сечение образования составного ядра С, Г = Г i суммарная вероятность всех каналов реакции, Г i парциальные ширины каналов (например, Г а, Г b,...). Если другая реакция идет с образованием того же составного ядра С, то вероятность реакции b' + В' С b + В будет σ b ' b =σ b ' C ( Г b Г ) и σ ab = σ b ' b. σ ab ' σ b ' b ' При высоких энергиях этот механизм не работает, т.к. составное ядро не успевает образоваться, но теория Брейта-Вигнера используется для описания рождения частиц через резонансные состояния R при высоких энергиях (см. рис. 86). В приведенных выше формулах роль составного ядра С играет резонансное состояние R. Рис. 86: Фейнмановская диаграмма, иллюстрирующая образование частиц через резонансное состояние R. Прямая ядерная реакция.

7 Наряду с механизмом ядерной реакции, идущей через составное ядро, когда в процесс взаимодействия вовлекается все ядро, возможен и другой механизм, когда налетающая частица взаимодействует лишь с небольшим числом нуклонов ядра. Это так называемые прямые ядерные реакции. Время их протекания существенно меньше времени протекания реакций, идущих через составное ядро и сравнимо с характерным ядерным временем (временем пролета нуклона через ядро). Для нуклонов с энергиями ~10 МэВ это время порядка с. В прямых реакциях можно ожидать заметную асимметрию в угловых распределениях, например, вылета частиц преимущественно в переднюю полусферу в с.ц.и., так как импульс вперед налетающей частицы больше среднего импульса назад, приходящегося на участвующие во взаимодействии частицы ядра-мишени. То обстоятельство, что частицы взаимодействуют не свободно, а в поле тяжелого кора ядра, которому передают часть своего импульса, может несколько усложнить эту картину и в некоторых случаях привести к появлению максимумов под задними углами и привести к симметричному относительно 90 0 угловому распределению. Наличие асимметрии вперед-назад в угловых распределениях является четким свидетельством о том, что реакция идет через прямой механизм. Прямые процессы преобладают в тех случаях, когда ядру передается относительно небольшая энергия налетающей частицы. Прямые процессы при не слишком высокой энергии идут преимущественно на поверхности ядра. Поверхностный характер прямых реакций ведет к появлению дифракционной картины в угловых распределениях вылетающих частиц. Прямые ядерные реакции с выбиванием из ядер р, n, d, 3 Не, α... показывают, что эти частицы могут находиться в ядрах в сформировавшемся состоянии. Оптическая модель ядра. Нерезонансные ядерные реакции описываются на основе модельных представлении о ядре. Так, при высоких энергиях используется оптическая модель ядра. При изучении взаимодействий частиц высоких энергий с ядрами широкое распространение получили статистические и гидродинамические модели взаимодействия частиц. Оптическая модель хорошо описывает упругое рассеяние и дифракционное рождение частиц на ядре. Дифракционное рождение частиц происходит при обмене виртуальной частицей помероном IР, который имеет нулевые квантовые числа. При таком обмене квантовые числа системы частиц до и после реакции совпадают (рис. 87а).

8 Ядро представляет собой "серую" полупрозрачную сферу с определенными коэффициентами преломления и поглощения. При попадании на такую сферу упавшая частица (волна) испытывает все виды взаимодействия, характерные для распространения света в полупрозрачной оптической среде: отражение, преломление, поглощение. Усредненный потенциал в таком ядре имеет вид U(r) = V + iw, т.е. содержит мнимую часть, учитывающую поглощение падающей волны. В разных вариантах оптической модели потенциал U(r) представляют в виде прямоугольной ямы. Модель позволяет вычислять упругое рассеяние, суммарное сечение всех неупругих процессов, а также угловые характеристики рассеянных ядром частиц. Действительную часть оптического потенциала обычно выбирают в виде потенциала Вудса-Саксона. Мнимая часть потенциала выбирается пропорциональной объемному или поверхностному поглощению. Модель требует подбора параметров для каждого ядра и для каждой энергии упавшего адрона. Вид оптического потенциала для рассеяния адронов на ядрах зависит от параметров удара и может определяться либо кулоновским взаимодействием при больших параметрах удара, либо процессами сильного взаимодействия при меньших параметрах удара. При параметрах удара меньших радиуса ядра доминирует поглощение. При этом картина рассеяния выглядит как интерференция кулоновского рассеяния и дифракционного рассеяния адрона на черной сфере. Вывод 1) По механизму взаимодействия ядерные реакции делятся на два вида: реакции с образованием составного ядра прямые ядерные реакции 2)Составное ядро теоретическая модель ядерной реакции при захвате ядром атома нейтрона. Согласно этой модели ядерная реакция протекает в два этапа. На первом этапе частица a и ядро мишень А образуют связанную систему

9 составное (компаунд) ядро С, которое на втором этапе распадается на ядро В и частицу b: a+ A C b+b Процесс испускания частицы b подобен процессу испарения молекулы из кипящей жидкости, так как вероятность вылета молекулы из кипящей жидкости также определяется вероятностью концентрации на этой молекуле энергии, большей ее энергии связи в жидкости. Таким образом, форма энергетического спектра частиц b для реакций, идущих через составное ядро, будет описываться максвелловским распределением. Такие спектры частиц получили название испарительных спектров. 3) Резонансная реакция описывается в квантовой механике формулой Брейта-Вигнера: При высоких энергиях этот механизм не работает, т.к. составное ядро не успевает образоваться, но теория Брейта-Вигнера используется для описания рождения частиц через резонансные состояния R при высоких энергиях. 4) Наряду с механизмом ядерной реакции, идущей через составное ядро, когда в процесс взаимодействия вовлекается все ядро, возможен и другой механизм, когда налетающая частица взаимодействует лишь с небольшим числом нуклонов ядра. Это так называемые прямые ядерные реакции. Время их протекания существенно меньше времени протекания реакций, идущих через составное ядро и сравнимо с характерным ядерным временем (временем пролета нуклона через ядро). Для нуклонов с энергиями ~10 МэВ это время порядка с. 5) Нерезонансные ядерные реакции описываются на основе модельных представлении о ядре. Так, при высоких энергиях используется оптическая модель ядра. При изучении взаимодействий частиц высоких энергий с ядрами широкое распространение получили статистические и гидродинамические модели взаимодействия частиц.

10 Список используемой литературы. 1) Капитонов И.М. Введение в физику ядра и частиц. (2002 г) 2) 3) a) Валантэн Л. Субатомная физика: ядра и частицы. -М.: Мир, b) Физика элементарных частиц и атомного ядра, т. 34, 1, 2003, с c) Никитин Ю.П., Розенталь И.Л. Ядерная физика высоких энергий. -М.: Атомиздат, ) 5) a) Л. Валантэн. Субатомная физика: ядра и частицы, т1-т2 М.: Мир, 1986 b) О. Бор, Б. Моттельсон. Структура атомного ядра М.: Мир, 1971 c) О.Ф. Немец, К.О. Теренецкий. Ядерные реакции Киев: Вища школа, ) 7) a) Широков Ю.М., Юдин Н.П. Ядерная физика. -М.: Наука, b) Капитонов И.М. Введение в физику ядра и частиц. -М.: УППС, ) 9) 10)


РЕФЕРАТ «Механизмы ядерных реакций. Прямые реакции. Составное ядро» Выполнил студент 214 группы: Егоренков Михаил Викторович.

РЕФЕРАТ «Механизмы ядерных реакций. Прямые реакции. Составное ядро» Выполнил студент 214 группы: Егоренков Михаил Викторович. ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА» ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ РЕФЕРАТ «Механизмы ядерных реакций.

Подробнее

Ядерные реакции. Лекция

Ядерные реакции. Лекция Ядерные реакции Лекция 1 04.09.2015 Ядерные реакции Ядерные реакции происходят при столкновениях частиц с ядрами или ядер с ядрами, в результате которых происходит изменение внутреннего состояния частиц

Подробнее

ядро-мишень ядро частица-снаряд частица Лабораторная система координат ЛСК Система центра инерции СЦИ

ядро-мишень ядро частица-снаряд частица Лабораторная система координат ЛСК Система центра инерции СЦИ Любой процесс столкновения элементарной частицы с ядром или ядра с ядром будем называть ядерной реакцией. Наряду с радиоактивным распадом ядерные реакции основной источник сведений об атомных ядрах. ядро-мишень

Подробнее

Ядерные реакции. e 1/2. p n n

Ядерные реакции. e 1/2. p n n Ядерные реакции 197 Au 197 79 79 14 N 17 7 8 O 9 Be 1 4 6 C 7 Al 30 13 15 30 P e 30 15 T.5мин 14 1/ P p n n Si Au Ядерные реакции ВХОДНОЙ И ВЫХОДНОЙ КАНАЛЫ РЕАКЦИИ Сечение реакции и число событий N dn(,

Подробнее

моменты количества движения. Если налетающей частицей является фотон (

моменты количества движения. Если налетающей частицей является фотон ( ЛЕКЦИЯ 9. ЯДЕРНЫЕ РЕАКЦИИ 1. Законы сохранения в ядерных реакциях В физике ядерных реакций, как и в физике частиц, выполняются одни и те же законы сохранения. Они накладывают ограничения, или, как их называют,

Подробнее

Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ 2018 Введение Основные понятия и определения Взаимодействие тяжелых заряженных частиц с веществом

Подробнее

Введение в ядерную физику

Введение в ядерную физику Национальный исследовательский ядерный университет «МИФИ» Институт ядерной физики и технологий Лаборатория экспериментальной ядерной физики http://enpl.mephi.ru/ А.И. Болоздыня Введение в ядерную физику

Подробнее

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ Продолжаем изучать атомные ядра. 1. Диаграмма стабильности ядер. Долина стабильности На рис. 11.1 показана диаграмма стабильности ядер. Если сдвинуться из этой долины, то тогда

Подробнее

13. Теория Хаузера-Фешбаха.

13. Теория Хаузера-Фешбаха. 3. Теория Хаузера-Фешбаха.. Следуя Хаузеру и Фешбаху выразим сечения компаунд-процессов через средние значения ширин. Будем исходить из формализма Брейта-Вигнера. Для элемента S-матрицы при наличии прямого

Подробнее

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 Задача 1. 1. Покоившееся ядро радона 220 Rn выбросило α чаcтицу со скоростью υ = 16 Мм/с. В какое ядро превратилось ядро радона? Какую скорость υ 1 получило оно вследствие

Подробнее

Радиоактивность. 2. Объяснение α распада с помощью туннельного эффекта. 5. Искусственная радиоактивность. Ядерные реакции.

Радиоактивность. 2. Объяснение α распада с помощью туннельного эффекта. 5. Искусственная радиоактивность. Ядерные реакции. Радиоактивность 1. Естественная радиоактивность. Излучение. Общая характеристика. Закон радиоактивного распада. 2. Объяснение α распада с помощью туннельного эффекта. 3. β распад. Нейтрино. Возбужденное

Подробнее

ПРИКЛАДНАЯ ЯДЕРНАЯ ФИЗИКА

ПРИКЛАДНАЯ ЯДЕРНАЯ ФИЗИКА ПРИКЛАДНАЯ ЯДЕРНАЯ ФИЗИКА Сегодня: пятница, 20 июня 2014 г. Список литературы Основная литература. 1. Основы теории и методы расчета ядерных энергетических реакторов: Г.Г. Бартоломей, Г.А. Бать. М.: Энергоатомиздат,

Подробнее

Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР

Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Атомные ядра условно принято делить на стабильные и радиоактивные. Условность состоит в том что, в сущности, все ядра подвергаются радиоактивному распаду, но

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 16 Общие закономерности ядерных

Подробнее

Физический факультет. Реферат на тему: «Свойства нуклон-нуклонного взаимодействия»

Физический факультет. Реферат на тему: «Свойства нуклон-нуклонного взаимодействия» Московский государственный университет имени М.В.Ломоносова Физический факультет Реферат на тему: «Свойства нуклон-нуклонного взаимодействия» Работа выполнена студентом 209 группы Сухановым Андреем Евгеньевичем

Подробнее

Лекция 23 Атомное ядро

Лекция 23 Атомное ядро Сегодня: воскресенье, 8 декабря 2013 г. Лекция 23 Атомное ядро Содержание лекции: Состав и характеристики атомного ядра Дефект массы и энергия связи ядра Ядерные силы Радиоактивность Ядерные реакции Деление

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 23 Нуклон-нуклонные взаимодействия

Подробнее

Семинар 11. Ядерные реакции

Семинар 11. Ядерные реакции Семинар 11. Ядерные реакции Ядерные реакции являются не только эффективным методом изучения свойств атомных ядер, но и способом, с помощью которого было получено большинство радиоактивных изотопов. 11.1.

Подробнее

ЛЕКЦИЯ 2 ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ

ЛЕКЦИЯ 2 ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ ЛЕКЦИЯ ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ.1. Ионизирующее излучение (ИИ). ИИ поток частиц заряженных или нейтральных и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации или

Подробнее

Ядерные реакции под действием нейтронов

Ядерные реакции под действием нейтронов Ядерные реакции под действием нейтронов Упругое рассеяние n ( A, Z) n ( A, Z) Непругое рассеяние n ( A, Z) n ( A, Z) Радиационный захват n ( A, Z) ( A 1, Z) ( n, p) - реакция n ( A, Z) p ( A, Z 1) ( n,

Подробнее

И протон, и нейтрон обладают полуцелым спином

И протон, и нейтрон обладают полуцелым спином Конспект лекций по курсу общей физики. Часть III Оптика. Квантовые представления о свете. Атомная физика и физика ядра Лекция 1 9. СТРОЕНИЕ ЯДРА 9.1. Состав атомного ядра Теперь мы должны обратить наше

Подробнее

Министерство образования и науки Российской Федерации. НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

Министерство образования и науки Российской Федерации. НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им РЕАЛЕКСЕЕВА

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 3 Модели ядра 2016 1 Лекция 3 Модели

Подробнее

ЛЕКЦИЯ 15 ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

ЛЕКЦИЯ 15 ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ ЛЕКЦИЯ 15 ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ 1. Типы частиц В первой половине 20-го века были известны только следующие частицы: n, p, e, e +, μ, ν, π ±. Вышеперечисленные частицы живут относительно долго. Например,

Подробнее

10. Нуклонные резонансы

10. Нуклонные резонансы 10. Нуклонные резонансы В 50-х годах XX века физики научились получать пучки пионов и направляли их на водородные и ядерные мишени. При этом при определенных энергиях налетающих частиц наблюдались яркие

Подробнее

Нуклон-нуклонные взаимодействия

Нуклон-нуклонные взаимодействия Национальный исследовательский ядерный университет «МИФИ» Институт ядерной физики и технологий Лаборатория экспериментальной ядерной физики http://enpl.mephi.ru/ А.И. Болоздыня Экспериментальная ядерная

Подробнее

наименьшей постоянной решетки

наименьшей постоянной решетки Оптика и квантовая физика 59) Имеются 4 решетки с различными постоянными d, освещаемые одним и тем же монохроматическим излучением различной интенсивности. Какой рисунок иллюстрирует положение главных

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 16 Общие закономерности ядерных

Подробнее

Реферат на тему: Состав и размер ядра. Опыт Резерфорда.

Реферат на тему: Состав и размер ядра. Опыт Резерфорда. Московский государственный университет им. М. В. Ломоносова Физический факультет Реферат на тему: Состав и размер ядра. Опыт Резерфорда. Работу выполнила студентка 209 группы Минаева Евгения. «Москва,

Подробнее

Ядро атома. Ядерные силы. Структура атомного ядра

Ядро атома. Ядерные силы. Структура атомного ядра Ядро атома. Ядерные силы. Структура атомного ядра На основе опытов Резерфорда была предложена планетарная модель атома: r атома = 10-10 м, r ядра = 10-15 м. В 1932 г. Иваненко и Гейзенберг обосновали протон-нейтронную

Подробнее

Ядерная физика и Человек

Ядерная физика и Человек Ядерная физика и Человек Модели атомных ядер Rядра (1, 2 1,3) A 1/3 M Zm Nm E ядра p n связи ядер Модель жидкой капли 3 W( A, Z) А А 2 Z( Z 1) 1 3 A 15.6 МэВ, 17.2 МэВ, 0.72 МэВ, 23.6 МэВ 2 A 2Z 4 А 3.

Подробнее

8 Ядерная физика. Основные формулы и определения. В физике известно четыре вида фундаментальных взаимодействий тел:

8 Ядерная физика. Основные формулы и определения. В физике известно четыре вида фундаментальных взаимодействий тел: 8 Ядерная физика Основные формулы и определения В физике известно четыре вида фундаментальных взаимодействий тел: 1) сильное или ядерное взаимодействие обусловливает связь между нуклонами атомного ядра.

Подробнее

Приложение 4. Взаимодействие частиц с веществом

Приложение 4. Взаимодействие частиц с веществом Приложение 4. Взаимодействие частиц с веществом Взаимодействие частиц с веществом зависит от их типа, заряда, массы и энергии. Заряженные частицы ионизуют атомы вещества, взаимодействуя с атомными электронами.

Подробнее

Альфа-распад. Кулоновский и центробежный барьеры.

Альфа-распад. Кулоновский и центробежный барьеры. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ Альфа-распад. Кулоновский и центробежный барьеры. Реферат по курсу предмета «Физика ядра и частиц» студента 3-го курса

Подробнее

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 для студентов 2 курса медико-биологического факультета. Тема 1. Законы теплового излучения. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ:

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 для студентов 2 курса медико-биологического факультета. Тема 1. Законы теплового излучения. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ: МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 Тема 1. Законы теплового излучения. 1. Равновесное тепловое излучение. 2. Энергетическая светимость. Испускательная и поглощательная способности. Абсолютно черное тело. 3. Закон

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 21 Ядерные реакции под действием

Подробнее

Дейтрон связанное состояние нейтрона и протона.

Дейтрон связанное состояние нейтрона и протона. Министерство образования и науки Российской Федерации Московский государственный университет имени М.В.Ломоносова Физический факультет РЕФЕРАТ по дисциплине: физика атомного ядра и частиц Дейтрон связанное

Подробнее

Нейтронная радиоактивность

Нейтронная радиоактивность Нейтронная радиоактивность Ю. Ю. Овчаров По существующим оценкам возможное число атомных ядер, существующих в природе, составляет около 6500. Однако в настоящее время известно лишь около 3500 атомных ядер.

Подробнее

Профессор И.Н.Бекман ЯДЕРНАЯ ФИЗИКА

Профессор И.Н.Бекман ЯДЕРНАЯ ФИЗИКА Профессор И.Н.Бекман ЯДЕРНАЯ ФИЗИКА Лекция 16. ЯДЕРНЫЕ ВЗАИМОДЕЙСТВИЯ Развитие ядерной физики в большой степени определяется исследованиями в области ядерных реакций. В данной лекции мы рассмотрим современную

Подробнее

некоторых лёгких элементов. одинаковые осколки; 3) ядра атомов гелия (альфа-частицы), протоны, нейтроны и ядра

некоторых лёгких элементов. одинаковые осколки; 3) ядра атомов гелия (альфа-частицы), протоны, нейтроны и ядра Радиоактивность это испускание атомными ядрами излучения вследствие перехода ядер из одного энергетического состояния в другое или превращения одного ядра в другое. Атомные ядра испускают: 1)электромагнитные

Подробнее

Т15. Строение ядра (элементы физики ядра и элементарных частиц)

Т15. Строение ядра (элементы физики ядра и элементарных частиц) Т5. Строение ядра (элементы физики ядра и элементарных частиц). Строение ядра. Протоны и нейтроны. Понятие о ядерных циклах. Энергия связи, дефект массы.. Естественная радиоактивность. Радиоактивность.

Подробнее

Физический факультет

Физический факультет Московский Государственный Университет им. М.В. Ломоносова Физический факультет Кафедра Общей ядерной физики Москва 005 г. Взаимодействие гамма-излучения с веществом Аспирант Руководитель : Чжо Чжо Тун

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 23 Ядерные силы в нуклон-нуклонных

Подробнее

E γ + E e = E e; (4) m e v. m e c 2 1 v2 /c 2 ; p e = E e = E γ = m e c 2 1. c = m eβc 1 = m e c 2 = 1

E γ + E e = E e; (4) m e v. m e c 2 1 v2 /c 2 ; p e = E e = E γ = m e c 2 1. c = m eβc 1 = m e c 2 = 1 Изучение взаимодействия гамма-излучения с веществом Составители: к. ф.-м. н. В. В. Добротворский, асс. О. В. Журенков Рецензенты: к. ф.-м. н. В. А. Литвинов, д. ф.-м. н. А. В. Пляшешников Цель работы:

Подробнее

Человек в мире атомных ядер

Человек в мире атомных ядер Человек в мире атомных ядер ЯДЕРНЫЕ РЕАКЦИИ 2 1919 г. Э. Резерфорд осуществил первую искусственную ядерную реакцию 14 N(α,p) 17 O и доказал наличие в атомном ядре протонов. 3 Любой процесс столкновения

Подробнее

После изучения курса «Деление атомных ядер» студент сможет применять полученные

После изучения курса «Деление атомных ядер» студент сможет применять полученные Аннотация рабочей программы дисциплины «Деление атомных ядер» Направление подготовки: 03.04.02 - «Физика» (Магистерская программа - «Физика ядра и элементарных частиц») 1. Цели и задачи дисциплины Основной

Подробнее

Введение в ядерную физику

Введение в ядерную физику Национальный исследовательский ядерный университет «МИФИ» Институт ядерной физики и технологий Лаборатория экспериментальной ядерной физики http://enpl.mephi.ru/ А.И.Болоздыня Введение в ядерную физику

Подробнее

Введение в ядерную физику

Введение в ядерную физику 1. Предмет «Ядерная физика». 2. Основные свойства атомных ядер. 3. Модели атомных ядер. 4. Радиоактивность. 5. Взаимодействие излучения с веществом. 1 6. Ядерные реакции. Законы сохранения в ядерных реакциях.

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Нанотехнологии и перспективные

Подробнее

Реферат. На тему «Формула Вайцзеккера» Выполнила студентка 209 группы Зюзина Нина

Реферат. На тему «Формула Вайцзеккера» Выполнила студентка 209 группы Зюзина Нина Московский Государственный Университет имени М.В. Ломоносова Физический факультет Реферат На тему «Формула Вайцзеккера» Выполнила студентка 209 группы Зюзина Нина Москва, 2016 Оглавление Введение или немного

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 21 Ядерные реакции под действием

Подробнее

N-Z диаграмма атомных ядер

N-Z диаграмма атомных ядер РАДИОАКТИВНОСТЬ N-Z диаграмма атомных ядер Радиоактивность Радиоактивность свойство атомных ядер самопроизвольно изменять свой состав в результате испускания частиц или ядерных фрагментов. Радиоактивный

Подробнее

Глава 6.Поверхность потенциальной энергии.

Глава 6.Поверхность потенциальной энергии. Глава 6.Поверхность потенциальной энергии. Таким образом, для расчета величины константы скорости реакции необходимо знать молекулярные свойства исходных веществ и образуемого ими АК комплекса, ведущего

Подробнее

Московский Государственный Университет Имени М. В. Ломоносова

Московский Государственный Университет Имени М. В. Ломоносова Московский Государственный Университет Имени М. В. Ломоносова Физический Факультет Мезонная теория ядерных сил. Реферат Широков Илья Группа 210 Москва 2013 Введение Согласно современным представлениям

Подробнее

Физические основы производства радионуклидов. Р.А. Алиев, НИИ Ядерной физики МГУ

Физические основы производства радионуклидов. Р.А. Алиев, НИИ Ядерной физики МГУ Физические основы производства радионуклидов Р.А. Алиев, НИИ Ядерной физики МГУ Ядерные реакции Резерфорд, 1911: 14 N+ 4 He 17 O+ 1 H сокращенная запись 14 N(α,p) 17 O Ф. и И. Жолио-Кюри, 1934: 27 Al+

Подробнее

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА по дисциплине: Ядерные реакции по направлению: 010900 «Прикладные математика и физика» магистерская программа: 010935, Физика фундаментальных взаимодействий' факультеты: ФПФЭ

Подробнее

«Свойства нуклон-нуклонного взаимодействия

«Свойства нуклон-нуклонного взаимодействия Московский государственный университет имени М. В. Ломоносова Физический факультет Реферат на тему: «Свойства нуклон-нуклонного взаимодействия Выполнил: студент 214 группы Припеченков Илья Москва 2016

Подробнее

Индивидуальное задание 1 к курсу «Прикладная физика»

Индивидуальное задание 1 к курсу «Прикладная физика» Индивидуальное задание 1 к курсу «Прикладная физика» Вариант 1 1 В широкой части горизонтально расположенной трубы нефть течет со скоростью v 1 = м/с. Определить скорость v нефти в узкой части трубы, если

Подробнее

ЛЕКЦИЯ 10 ЯДЕРНЫЕ МОДЕЛИ. РАДИОАКТИВНОСТЬ

ЛЕКЦИЯ 10 ЯДЕРНЫЕ МОДЕЛИ. РАДИОАКТИВНОСТЬ ЛЕКЦИЯ 10 ЯДЕРНЫЕ МОДЕЛИ. РАДИОАКТИВНОСТЬ В прошлый раз мы начали изучать квантовую систему «ядро». В нем работает протоннейтронная модель ядра. Плотность этого вещества 10 1 г/см 3. Спин протонов и нейтронов

Подробнее

ПОЛНОЕ РАЗРУШЕНИЕ ЛЕГКИХ И ТЯЖЕЛЫХ ЯДЕР ПРИ ЭНЕРГИЯХ (3,7 158) А ГЭВ

ПОЛНОЕ РАЗРУШЕНИЕ ЛЕГКИХ И ТЯЖЕЛЫХ ЯДЕР ПРИ ЭНЕРГИЯХ (3,7 158) А ГЭВ ПОЛНОЕ РАЗРУШЕНИЕ ЛЕГКИХ И ТЯЖЕЛЫХ ЯДЕР ПРИ ЭНЕРГИЯХ (3,7 158) А ГЭВ Андреева Н.П., Гайтинов А.Ш., Скоробогатова В.И., Филиппова Л.Н., Шайхиева Д.Б. Физико-технический институт МОН РК, Алматы Введение

Подробнее

Большая российская энциклопедия

Большая российская энциклопедия Большая российская энциклопедия АЛЬФА-РАСПАД Авторы: А. А. Оглоблин АЛЬФА-РАСПАД (α-распад), испускание атомным ядром альфа-частицы (ядра 4 He). А.-р. из основного (невозбуждённого) состояния ядра называют

Подробнее

ВЗАИМОДЕЙСТВИЕ α-излучения, n-излучения И γ-квантов С ВЕЩЕСТВОМ

ВЗАИМОДЕЙСТВИЕ α-излучения, n-излучения И γ-квантов С ВЕЩЕСТВОМ (Computer Simulation) CS-01-011 В.В. Дьячков и др. ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПО ЯДЕРНОЙ ФИЗИКЕ КОМПЬЮТЕРНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ «Некоторые вопросы физики управляемого термоядерного синтеза. Часть 1» ВЗАИМОДЕЙСТВИЕ

Подробнее

Министерство образования и науки Российской Федерации МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ ПРИРОДЫ, ОБЩЕСТВА И ЧЕЛОВЕКА «ДУБНА»

Министерство образования и науки Российской Федерации МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ ПРИРОДЫ, ОБЩЕСТВА И ЧЕЛОВЕКА «ДУБНА» Министерство образования и науки Российской Федерации МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ ПРИРОДЫ, ОБЩЕСТВА И ЧЕЛОВЕКА «ДУБНА» УТВЕРЖДАЮ Проректор Ю.С.Сахаров 2006 г. ПРОГРАММА ДИСЦИПЛИНЫ Экспериментальная физика

Подробнее

Вариант 1 1. Какую скорость должно иметь движущееся тело, чтобы его продольные размеры уменьшились в 2 раза?

Вариант 1 1. Какую скорость должно иметь движущееся тело, чтобы его продольные размеры уменьшились в 2 раза? Вариант 1 1. Какую скорость должно иметь движущееся тело, чтобы его продольные размеры уменьшились в 2 раза? 2. Найти изменение энергии W, соответствующее изменению массы на m = 1 а.е.м. 3. За время t

Подробнее

РЕФЕРАТ. Электромагнитные взаимодействия. Структура нуклона. Московский государственный университет им. М.В.Ломоносова

РЕФЕРАТ. Электромагнитные взаимодействия. Структура нуклона. Московский государственный университет им. М.В.Ломоносова Московский государственный университет им. М.В.Ломоносова Физический факультет РЕФЕРАТ По дисциплине физика атомного ядра и частиц На тему: Электромагнитные взаимодействия. Структура нуклона. Работу выполнила:

Подробнее

ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ. Инжечик Лев Владиславович. Кафедра общей физики Лекция 19

ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ. Инжечик Лев Владиславович. Кафедра общей физики Лекция 19 ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ Инжечик Лев Владиславович Кафедра общей физики inzhechik@stream.ru Иллюстрация процесса деления на основе капельной модели ядра Учитываются поверхностное натяжение

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Ядерные реакции

И. В. Яковлев Материалы по физике MathUs.ru. Ядерные реакции И. В. Яковлев Материалы по физике MathUs.ru Ядерные реакции Энергетический выход ядерной реакции это разность Q кинетической энергии продуктов реакции и кинетической энергии исходных частиц. Если Q > 0,

Подробнее

t а) No = N. e -λt ; б) N = No ln(λt); в) N = No. е -λt ; г) No/2 = No. е -λt ; д) N = No dt. A 0 A A 0 A ~

t а) No = N. e -λt ; б) N = No ln(λt); в) N = No. е -λt ; г) No/2 = No. е -λt ; д) N = No dt. A 0 A A 0 A ~ 136 РАДИОАКТИВНОСТЬ Задание 1. Укажите правильный ответ: 1. Радиоактивностью называется... а) самопроизвольное превращение ядер с испусканием α-частиц; б) спонтанное деление ядер; в) внутриядерное превращение

Подробнее

Нейтронные ядерные реакции

Нейтронные ядерные реакции Нейтронные ядерные реакции Нейтронные ядерные реакции Ядерная реакция это процесс и результат взаимодействия ядер с различными ядерными частицами (альфа-, бета-частицами, протонами, нейтронами, гамма-квантами

Подробнее

Вариант 8 1. Волновая функция, описывающая основное состояние электрона в атоме., где (боровский радиус).

Вариант 8 1. Волновая функция, описывающая основное состояние электрона в атоме., где (боровский радиус). Вариант 1 1. Частица находится в четвертом возбужденном состоянии в потенциальном ящике шириной L. Определить, в каких точках интервала 0 X 3L/4 вероятность нахождения частицы минимальна. 2. В потенциальном

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ

ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ 1. ЦЕЛЬ РАБОТЫ Целью работы является изучение нергетических характеристик альфа( )-частиц и механизмов их взаимодействия

Подробнее

α е = 75 г/см 2 г/см 2.

α е = 75 г/см 2 г/см 2. Современное представление о нестабильном нейтроне сформировалось на основе интерпретаций опытных данных с позиций законов механики, электродинамики и квантовой теории. Анализ показывает, что записи этих

Подробнее

4. ДОЗА ОТ НЕЙТРОНОВ 4.1. Преобразование энергии нейтронов в веществе

4. ДОЗА ОТ НЕЙТРОНОВ 4.1. Преобразование энергии нейтронов в веществе 4. ДОЗА ОТ НЕЙТРОНОВ Как было показано выше, в случае γ-излучения одинаковым поглощенным дозам соответствуют практически одинаковые эффекты в широком диапазоне энергий γ-квантов. Для нейтронов это не так.

Подробнее

Тестирование по дисциплине «ядерная физика»

Тестирование по дисциплине «ядерная физика» Тестирование по дисциплине «ядерная физика» Основные разделы: 1. Свойства атомных ядер; 2. Нуклон-нуклонные взаимодействия; 3. Радиоактивность, ядерные реакции; 4. Частицы и взаимодействия; 5. Дискретные

Подробнее

Семинар 12. Деление атомных ядер

Семинар 12. Деление атомных ядер Семинар 1. Деление атомных ядер На устойчивость атомного ядра влияют два типа сил: короткодействующие силы притяжения между нуклонами, дальнодействующие электромагнитные силы отталкивания между протонами.

Подробнее

Физика атомного ядра и элементарных частиц (наименование дисциплины) Направление подготовки физика

Физика атомного ядра и элементарных частиц (наименование дисциплины) Направление подготовки физика Аннотация рабочей программы дисциплины Физика атомного ядра и элементарных частиц (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика», «Физика атомного

Подробнее

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)!

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)! 4.Метод парциальных амплитуд.. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: ( +! m ( +! ( + φ ( V ( φ ( (.6 и соответствующее ему граничное условие :!! e! φ ( { e + f (

Подробнее

Министерство образования Российской Федерации Санкт-Петербургский государственный университет Физический факультет

Министерство образования Российской Федерации Санкт-Петербургский государственный университет Физический факультет Рассмотрено и рекомендовано на заседании кафедры квантовой механики протокол 16 от 22 марта 2004 г. Заведующий кафедрой Министерство образования Российской Федерации Санкт-Петербургский государственный

Подробнее

Физика 11 класс (повышенный уровень)

Физика 11 класс (повышенный уровень) Физика 11 класс (повышенный уровень) (4 часа в неделю, всего 140 часов) Используемые учебные пособия: 1. Жилко, В. В. Физика : учеб. пособие для 11 класса учреждений общ. сред. образования / В. В. Жилко,

Подробнее

Туннельный эффект. Осциллятор. Строение атома. 1. Туннельный эффект.

Туннельный эффект. Осциллятор. Строение атома. 1. Туннельный эффект. Лекция 9 (сем. 3) Туннельный эффект. Осциллятор. 1. Туннельный эффект. Строение атома План лекции: 2. Линейный гармонический осциллятор. Нулевая энергия осциллятора. 3. Линейный гармонический осциллятор.

Подробнее

1. ЯДЕРНЫЕ РЕАКЦИИ Ядерные реакции Ядерные реакции 1.1 Механизмы ядерных реакций

1. ЯДЕРНЫЕ РЕАКЦИИ Ядерные реакции Ядерные реакции 1.1 Механизмы ядерных реакций 1. ЯДЕРНЫЕ РЕАКЦИИ Ядерные реакции - процессы, идущие при столкновении ядер или элементарных частиц с др. ядрами, в результате которых изменяются квантовое состояние и нуклонный состав исходного ядра,

Подробнее

Моделирование методом Монте-Карло взаимодействия атомных частиц с конденсированной средой в приближении последовательных парных соударений

Моделирование методом Монте-Карло взаимодействия атомных частиц с конденсированной средой в приближении последовательных парных соударений Моделирование методом Монте-Карло взаимодействия атомных частиц с конденсированной средой в приближении последовательных парных соударений В.А.Курнаев Н.Н.Трифонов (Московский государственный инженерно-физический

Подробнее

Свойства атомных ядер. N Z диаграмма атомных ядер

Свойства атомных ядер. N Z диаграмма атомных ядер Лабораторная работа 1 Свойства атомных ядер Цель работы: научиться пользоваться современными базами данных в научно-исследовательской работе, получить более углубленное представление о материале, изучаемом

Подробнее

Тест по ядерной физике система подготовки к тестам Gee Test. oldkyx.com

Тест по ядерной физике система подготовки к тестам Gee Test. oldkyx.com Тест по ядерной физике система подготовки к тестам Gee Test oldkyx.com Список вопросов по ядерной физике 1. С какой скоростью должен лететь протон, чтобы его масса равнялась массе покоя α-частицы mα =4

Подробнее

СЕМИНАР 2. Электрон. Это релятивистский случай. Используем релятивистскую формулу:

СЕМИНАР 2. Электрон. Это релятивистский случай. Используем релятивистскую формулу: СЕМИНАР. Вычислить дебройлевскую длину волны α-частицы и электрона с кинетическими энергиями 5 МэВ. Решение: α-частица. Это нерелятивистский случай, так как m α c = 377, 38 МэВ 4000 МэВ. Поэтому используем

Подробнее

ЭФФЕКТИВНОСТЬ РЕГИСТРАЦИИ ГАММА-КВАНТОВ С ЭНЕРГИЕЙ ОТ 0.5 ДО 3.0 МЭВ ДЕТЕКТОРОМ ИЗ СВЕРХЧИСТОГО ГЕРМАНИЯ CANBERRA GC3019.

ЭФФЕКТИВНОСТЬ РЕГИСТРАЦИИ ГАММА-КВАНТОВ С ЭНЕРГИЕЙ ОТ 0.5 ДО 3.0 МЭВ ДЕТЕКТОРОМ ИЗ СВЕРХЧИСТОГО ГЕРМАНИЯ CANBERRA GC3019. ЭФФЕКТИВНОСТЬ РЕГИСТРАЦИИ ГАММА-КВАНТОВ С ЭНЕРГИЕЙ ОТ 0.5 ДО 3.0 МЭВ ДЕТЕКТОРОМ ИЗ СВЕРХЧИСТОГО ГЕРМАНИЯ CANBERRA GC3019. С.Ю. Трощиев Научно-исследовательский институт ядерной физики МГУ E-mail: sergey.troschiev@googlemail.com

Подробнее

Форма промежуточной аттестации аспиранта по дисциплине зачет. Структура дисциплины:

Форма промежуточной аттестации аспиранта по дисциплине зачет. Структура дисциплины: Аннотация Рабочей программы дисциплины «Взаимодействие излучений с веществом» по направлению подготовки 12.06.01 Фотоника, приборостроение, оптические и биотехнические системы и технологии (уровень подготовки

Подробнее

Презентационные материалы онлайн-курса «Основные технологические процессы Upstream-ceктopa нефтегазового комплекса»

Презентационные материалы онлайн-курса «Основные технологические процессы Upstream-ceктopa нефтегазового комплекса» ПАО «Газпром» Российский государственный университет нефти и газа имени И. М. Губкина (Национальный исследовательский университет) Презентационные материалы онлайн-курса «Основные технологические процессы

Подробнее

Атом водорода. Теория атома водорода по Бору. Лекция Постникова Екатерина Ивановна, доцент кафедры экспериментальной физики

Атом водорода. Теория атома водорода по Бору. Лекция Постникова Екатерина Ивановна, доцент кафедры экспериментальной физики Атом водорода. Теория атома водорода по Бору Лекция 3-4 Постникова Екатерина Ивановна, доцент кафедры экспериментальной физики Итак, что же такое атом? Атом наименьшая частица химического элемента. «атомос»

Подробнее

Тема 1.4: Взаимодействие гаммаквантов

Тема 1.4: Взаимодействие гаммаквантов «Защита от ионизирующих излучений» Тема 1.4: Взаимодействие гаммаквантов с веществом Энергетический факультет 2015/2016 учебный год Источники гамма-квантов -излучение коротковолновое электромагнитное излучение

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов 1 ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ Варианты домашнего задания по физике для студентов II курса IV семестра всех факультетов Вариант Номера задач 1 1 13 5 37

Подробнее

1.Цель и задачи дисциплины. 2. Требования к уровню освоения содержания дисциплины

1.Цель и задачи дисциплины. 2. Требования к уровню освоения содержания дисциплины 1.Цель и задачи дисциплины Цель дисциплины формирование у студентов целостного представления о строении вещества с учетом наиболее важных достижений физики высоких энергий последних десятилетий. Задачи

Подробнее

Лекция 7 МОДЕЛИ АТОМНЫХ ЯДЕР

Лекция 7 МОДЕЛИ АТОМНЫХ ЯДЕР Лекция 7 МОДЕЛИ АТОМНЫХ ЯДЕР Вводные замечания Одной из нерешенных проблем ядерной физики является создание теории атомного ядра. Существует две основных трудности: Чрезвычайная громоздкость квантовой

Подробнее

4. ТЕОРИИ СТРОЕНИЯ АТОМНОГО ЯДРА

4. ТЕОРИИ СТРОЕНИЯ АТОМНОГО ЯДРА 4. ТЕОРИИ СТРОЕНИЯ АТОМНОГО ЯДРА Ядерные модели приближённые методы описания некоторых свойств ядер, основанные на отожествлении ядра с какой-либо другой физической системой, свойства которой либо хорошо

Подробнее

Атом водорода. Теория атома водорода по Бору

Атом водорода. Теория атома водорода по Бору Атом водорода Теория атома водорода по Бору Атом наименьшая частица химического элемента. Атом водорода простейшая атомная система, содержащая 1 электрон. Водородоподобные ионы содержат 1 электрон: He

Подробнее

γ =, c скорость света.

γ =, c скорость света. 6. Антипротон Первой обнаруженной античастицей был позитрон. Открытие позитрона, частицы по своим характеристикам идентичной электрону, но с противоположным (положительным) электрическим зарядом, было

Подробнее

ФИО. Ответ Вопрос Базовый билет Настройки 1 1) 2) 3) 4)

ФИО. Ответ Вопрос Базовый билет Настройки 1 1) 2) 3) 4) Центр обеспечения качества образования Институт Группа ФИО МОДУЛЬ: ФИЗИКА (КВАНТОВАЯ МЕХАНИКА + КЛАССИЧЕСКИЕ И СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О СТРОЕНИИ И ОПТИЧЕСКИХ СВОЙСТВАХ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ

Подробнее

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ. Окунев Дмитрий Олегович Кафедра физики, 216н

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ. Окунев Дмитрий Олегович Кафедра физики, 216н РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ Окунев Дмитрий Олегович Кафедра физики, 216н Н.А. ОПАРИНА, О.Н. ПЕТРОВИЧ РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ КОНСПЕКТ ЛЕКЦИЙ для студентов технических специальностей, Новополоцк 2003 1.

Подробнее

Физика 11 класс (базовый уровень) (2 часа в неделю, всего 70 часов)

Физика 11 класс (базовый уровень) (2 часа в неделю, всего 70 часов) Физика 11 класс (базовый уровень) (2 часа в неделю, всего 70 часов) Используемые учебные пособия: 1. Жилко, В. В. Физика : учеб. пособие для 11 класса учреждений общ. сред. образования / В. В. Жилко, Л.

Подробнее

Введение в ядерную физику

Введение в ядерную физику Национальный исследовательский ядерный университет «МИФИ» Институт ядерной физики и технологий Лаборатория экспериментальной ядерной физики А.И. Болоздыня Введение в ядерную физику Лекция 2 Тема 3. Модели

Подробнее