Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Размер: px
Начинать показ со страницы:

Download "Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины."

Транскрипт

1 Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j - неизвестные величины Решением системы линейных уравнений называется такая совокупность чисел k, k, k при подстановке которых, каждое уравнение обращается в верное равенство где В матричной форме система уравнений записывается следующим образом: m неизвестных:, m свободных членов m X B матрица системы, составленная из коэффициентов при X - матрица столбец неизвестных, Рассмотрим три способа решения системы линейных уравнений B - матрица-столбец m Метод Гаусса Этот метод заключается в последовательном исключении переменных из системы уравнений Рассмотрим его на конкретном примере ПРИМЕР Решить систему уравнений методом Гаусса: ) Решение:

2 Запишем матрицу системы: Добавим в эту матрицу столбец свободных членов Получится расширенная матрица системы: Чтобы исключить переменную из второго и третьего уравнений, умножим первую строку на -) и -) и полученные строки прибавим ко второй и третьей строке соответственно: ) ) Чтобы исключить переменную из второго уравнения, умножим третью строку на ) и полученную строку прибавим ко второй строке: ) Получили систему уравнений, равносильную исходной системе, в которой первое уравнение содержит три переменных, второе одну, а третье две переменных: Отсюда последовательно находим: 6 Таким образом, решение системы: Проверяем полученное решение, подставляя найденные значения в исходную систему: Каждое уравнение стало верным равенством, следовательно, решение системы найдено верно Метод Крамера Пусть дана система уравнений ) зачем?) Рассмотрим частный случай, когда число неизвестных равно числу уравнений m = ) Найдем определитель матрицы системы:

3 Пусть Δj определитель матрицы, полученной из матрицы А заменой j го столбца столбцом свободных членов:,, и так далее Тогда, если определитель матрицы системы не равен, то система уравнений ) имеет единственное решение, которое определяется по формулам: j j j, ) - формулы Крамера ПРИМЕР Решить систему уравнений ) методом Крамера: Решение: Составляем матрицу А, состоящую из коэффициентов при переменных и матрицустолбец, состоящую из свободных членов системы уравнений:, Вычисляем определитель матрицы А: 9 ) ) ) Находим определители,,, получающиеся из исходного определителя заменой соответственно первого, второго, а затем третьего столбцов столбцом свободных членов: 6) 6) ) ) 6) ) ) ) 6 )

4 Используя формулы Крамера:, находим корни системы уравнений: Метод обратной матрицы Пусть дана система ) Снова рассмотрим случай, когда число неизвестных равно числу уравнений В матричной форме система имеет вид: АХ=В Пусть существует обратная матрица к матрице системы А Тогда решением матричного уравнения будет матрица-столбец Х, который находится по правилу: X B ПРИМЕР Решить систему уравнений ) методом обратной матрицы: ) Решение: Запишем матрицу системы А и матрицу-столбец свободных членов В:, B Определитель матрицы А был найден ранее: Найдем матрицу, обратную к матрице А Для этого составляем матрицу из алгебраических дополнений элементов определителя матрицы А и транспонируем ее: ) 6 ) )

5 ) ) ) ) ) 6 ) 6 6 T Полученную матрицу обратную матрицу : 6 T делим на определитель исходной матрицы и записываем Решением исходной системы уравнений будет матрица-столбец X, найденная как произведение обратной матрицы на матрицу-столбец свободных членов: 6 X B ) ) ) Таким образом, решением системы уравнений ) являются:,, Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Решить систему уравнений тремя способами

6 Решение: способ: метод Гаусса Составляем расширенную матрицу системы, в которую входят коэффициенты при переменных и свободные члены: Чтобы исключить переменную из второго и третьего уравнений, умножим первую строку на -) и -) и полученные строки прибавим ко второй и третьей строке соответственно: ) ) Чтобы исключить переменную из третьего уравнения, умножим вторую строку на -) и полученную строку прибавим к третьей строке: ) Получили систему уравнений, равносильную исходной системе, в которой первое уравнение содержит три переменных, второе две, а третье одну переменную: Отсюда последовательно находим: Таким образом, решение системы: Проверяем полученное решение, подставляя найденные значения в исходную систему: Получили тождественные равенства, следовательно система решена правильно Второй способ: метод Крамера

7 Составляем матрицу системы: Вычисляем определитель этой матрицы: 9 Находим определители,,, получающиеся из исходного определителя заменой соответственно первого, второго и третьего столбцов столбцом свободных членов: Теперь используя формулы Крамера системы:, находим решение 6 Третий способ: метод обратной матрицы Запишем матрицу системы и матрицу-столбец свободных членов B Определитель матрицы А был найден ранее: Найдем матрицу, обратную к матрице А Для этого составляем матрицу из алгебраических дополнений элементов определителя матрицы А и транспонируем ее: ) )

8 ) ) ) ) ) ) ) 6 T Полученную матрицу делим на определитель исходной матрицы и записываем обратную матрицу: Решением исходной системы уравнений будет матрица-столбец X, найденная как произведение обратной матрицы на матрицу-столбец свободных членов: B X Таким образом:

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

Контрольная по алгебре с решением

Контрольная по алгебре с решением Контрольная по алгебре с решением Линейная алгебра 1-10 Каждый вариант этого раздела содержит четыре пункта, задания к которым соответствуют номеру пункта 1 Вычислить определитель 4-го порядка двумя способами:

Подробнее

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1. Найдите произведение матриц ABC: Решение типового варианта: Так как произведение матриц не перестановочно, то найти данное произведение можно двумя способами: Для определенности воспользуемся вторым

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

Параллельные вычисления в. Библиотеки решения систем линейных уравнений. Параллельная реализация CPU / GPU

Параллельные вычисления в. Библиотеки решения систем линейных уравнений. Параллельная реализация CPU / GPU Параллельные вычисления в томографии Библиотеки решения систем линейных уравнений Параллельная реализация CPU / GPU Решение системы линейных алгебраических уравнений методом Гаусса Дана система из s линейных

Подробнее

2. Решение произвольных систем линейных алгебраических уравнений

2. Решение произвольных систем линейных алгебраических уравнений Решение произвольных систем линейных алгебраических уравнений Выше рассматривались в основном квадратные системы линейных уравнений число неизвестных в которых совпадает с числом уравнений В настоящем

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров.

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров. Лекция 2. Определители Миноры и алгебраические дополнения. Рекуррентное определение определителя n-го порядка. Соответствие между общим определением и правилом Саррюса при n=3. Основные свойства определителей.

Подробнее

Определители. Определители второго порядка и их свойства.

Определители. Определители второго порядка и их свойства. Определители Определители второго порядка и их свойства Рассмотрим матрицу Определение Определителем (или детерминантом) второго порядка, называется число, определяемое по формуле: det Пример Вычислить

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

Определители. Решение систем линейных алгебраических уравнений методом Крамера

Определители. Решение систем линейных алгебраических уравнений методом Крамера Занятие Определители. Решение систем линейных алгебраических уравнений методом Крамера.. Определители. Пусть дана квадратная таблица чисел А, т.е. матрица из двух строк и двух столбцов. Заметим сразу,

Подробнее

Образец решения. получаем элемент матрицы AB, стоящий в 1-ой строке и 2-ом столбце (элемент C 12

Образец решения. получаем элемент матрицы AB, стоящий в 1-ой строке и 2-ом столбце (элемент C 12 1. Даны матрицы: Образец решения 1 2 1 1 0 2 3 0 2 1 1 0 A, B 1 1 0 2 1 1 2 1 1 0 1 1 Найти матрицу и выяснить, имеет ли она обратную матрицу. Решение. Найдѐм матрицу Найдѐм транспонированную матрицу Найдѐм

Подробнее

Аналитическая геометрия. Лекция 1.3

Аналитическая геометрия. Лекция 1.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений ЗАНЯТИЕ Метод Крамера и матричный метод решения систем линейных уравнений Сведения из теории Уравнение называется линейным, если оно содержит неизвестные только в первой степени и не содержит произведений

Подробнее

1. Линейная алгебра. a21x1 a12 x2 a13 x3 b2

1. Линейная алгебра. a21x1 a12 x2 a13 x3 b2 1. Линейная алгебра 1.1. В 1 представлены задачи на решение линейных алгебраических крамеровских систем с определителем, отличным от нуля, вычисление определителей и действий с матрицами. Линейные алгебраические

Подробнее

1. При каких значениях ранг матрицы. Решение:

1. При каких значениях ранг матрицы. Решение: . При каких значениях ранг матрицы равен двум? Решение: Ранг матрицы равен порядку базисного минора. Поскольку требуется, чтобы ранг матрицы был равен двум, то базисным должен быть какой-либо минор второго

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

Требуется найти неизвестные величины x 1, x2,...,

Требуется найти неизвестные величины x 1, x2,..., . Решение систем линейных алгебраических уравнений (СЛАУ).. Метод Гаусса Цель: формирование практических навыков нахождения корней система линейных алгебраических уравнений (СЛАУ) методом Гаусса (схема

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

Тема 5 Рациональные системы уравнений

Тема 5 Рациональные системы уравнений Тема 5 Рациональные системы уравнений F ( x, x,..., ) 0, F ( x, x,..., ) 0, Система уравнений вида где... Fk ( x, x,..., ) 0, F i( x, x,..., ), i,..., k, некоторые многочлены, называется системой рациональных

Подробнее

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли Установить совместность и решить систему линейных уравнений 5xx x xx 5x 0 x4x x 0 а) по формулам Крамера, б) матричным способом, в) методом Гаусса Совместность Совместность системы можно установить: а)

Подробнее

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса.

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Ранг матрицы. Рассмотрим прямоугольную матрицу имеющую m строк и столбцов: A. m m m Выделим в этой матрице произвольные строк и столбцов. Элементы

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

Системы линейных уравнений с двумя переменными

Системы линейных уравнений с двумя переменными Системы линейных уравнений с двумя переменными Система уравнений вида называется системой линейных уравнений с двумя переменными. Решением системы уравнений с двумя переменными называется пара значений

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 1 Линейная алгебра Решить матричное уравнение ( ( 3 1 2 1 X + 2 4 2 3 3 ( 1 0 = 3 2 3 Выполним вначале умножение матриц на

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( )

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( ) МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Пусть дана система () m линейных уравнений с неизвестными Для ее решения нужно выполнить следующие действия: Составить расширенную матрицу (7) системы: m

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера

Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера Габриель Крамер (1704 1752) швейцарский математик. Данный метод применим только в случае систем линейных уравнений, где число переменных

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы.

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы. .4. Ранг матрицы. В матрице А выделим k строк и столбцов из элементов, стоящих на их пересечении составим определитель. Будем называть его минором k-того порядка. Если минор k-того порядка отличен от нуля,

Подробнее

... a n1 x 1 + a n2 x a nn x n = b n.

... a n1 x 1 + a n2 x a nn x n = b n. 5. КРАМЕРОВСКИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ В этом параграфе будем рассматривать системы линейных уравнений, у которых количество неизвестных равно числу уравнений. В самом общем виде эта система может

Подробнее

2.1.3 Методы решений системы линейных алгебраических уравнений

2.1.3 Методы решений системы линейных алгебраических уравнений Методы решений системы линейных алгебраических уравнений Метод обратной матрицы Рассмотрим частный случай системы ) когда число уравнений равно числу неизвестных те m Система уравнений имеет вид: ì ) î

Подробнее

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51 Системы линейных уравнений Системы линейных уравнений. Методы решения систем линейных уравнений Линейная алгебра (лекция 5) 06.10.2012 2 / 51 Система m линейных уравнений с n неизвестными имеет вид: Линейная

Подробнее

ФГОУ ВПО «Волгоградская академия государственной службы» ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ Специальность «Финансы и кредит»

ФГОУ ВПО «Волгоградская академия государственной службы» ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ Специальность «Финансы и кредит» Образец выполнения контрольной работы ФГОУ ВПО «Волгоградская академия государственной службы» ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ Специальность «Финансы и кредит» Кафедра информационных систем и математического моделирования

Подробнее

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством Пусть дана квадратная матрица второго порядка ( ) a11 a A = 12 a 21 a 22 (1) Определитель второго порядка, соответствующий матрице (1), определяется равенством a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21

Подробнее

Математика (БкПл-100, БкК-100)

Математика (БкПл-100, БкК-100) Математика (БкПл-100, БкК-100) М.П. Харламов 2009/2010 учебный год, 2-й семестр Лекция 7. Определители, системы линейных уравнений и формулы Крамера 1 Тема 1: Определители 1.1. Понятие определителя Определитель

Подробнее

ЛЕКЦИЯ 2. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными

ЛЕКЦИЯ 2. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными ЛЕКЦИЯ. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными ) коэффициенты которого составляют квадратную матрицу второго порядка

Подробнее

Метод Гаусса (метод исключения неизвестных)

Метод Гаусса (метод исключения неизвестных) Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно перейти с помощью элементарных преобразований

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ 1-ой КОНТРОЛЬНОЙ РАБОТЫ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ 1-ой КОНТРОЛЬНОЙ РАБОТЫ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ -ой КОНТРОЛЬНОЙ РАБОТЫ Теоретические положения -ой части контрольной работы (тема: Элементы линейной алгебры) Определителем называется число, задаваемое таблицей

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

Решение систем линейных уравнений

Решение систем линейных уравнений Решение систем линейных уравнений Л. В. Калиновская, Ю. Л. Калиновский Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего образования Московской области

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

ЛЕКЦИЯ N6. Линейная алгебра. Определители. 1.Определители, свойства, вычисление.

ЛЕКЦИЯ N6. Линейная алгебра. Определители. 1.Определители, свойства, вычисление. ЛЕКЦИЯ N6. Линейная алгебра. Определители..Определители, свойства, вычисление. 2.Определители высших порядков... 4 Рассмотрим таблицу вида:.определители, свойства, вычисление. A = Эта таблица, состоящая

Подробнее

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет ОБРАТНАЯ МАТРИЦА ОПРЕДЕЛЕНИЕ, СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ ОБРАТНОЙ МАТРИЦЫ Рассмотрим проблему определения операции, обратной умножению матриц Пусть квадратная матрица порядка n Матрица, удовлетворяющая

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия.

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия. Министерство образования и науки Российской Федерации Казанский государственный архитектурно-строительный университет Кафедра высшей математики Элементы векторной и линейной алгебры. Аналитическая геометрия.

Подробнее

1. Линейные уравнения

1. Линейные уравнения . Линейные уравнения Уравнение вида А х В () где А В выражения зависящие от параметров х неизвестное называется линейным м с параметрами. Решить с параметрами значит для всех значений параметров найти

Подробнее

Семинар 7. Линейная алгебра

Семинар 7. Линейная алгебра 1 Семинар 7. Линейная алгебра Теоретические вопросы для самостоятельного изучения: 1. Определители и их свойства. 2. Матрица. Виды матриц. 3. Действия над матрицами 4. Обратная матрица. Решение матричных

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Электронные методические указания

АЛГЕБРА И ГЕОМЕТРИЯ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Электронные методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

Практическая работа 1 Операции над матрицами Цель: закрепить навыки выполнения действий над матрицами

Практическая работа 1 Операции над матрицами Цель: закрепить навыки выполнения действий над матрицами Практическая работа Операции над матрицами Цель: закрепить навыки выполнения действий над матрицами Содержание работы: Основные понятия Матрицей размерности m x n называется прямоугольная таблица m n чисел

Подробнее

СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЛИЧЕСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ ПРИ РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ РАЗЛИЧНЫМИ МЕТОДАМИ

СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЛИЧЕСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ ПРИ РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ РАЗЛИЧНЫМИ МЕТОДАМИ СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЛИЧЕСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ ПРИ РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ РАЗЛИЧНЫМИ МЕТОДАМИ Протасеня Александр Анатольевич Рогожина Регина Григорьевна Ветохина Валентина Евгеньевна

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений ) Понятие СЛАУ ) Правило Крамера решения СЛАУ ) Метод Гаусса 4) Ранг матрицы, теорема Кронекера-Капелли 5) Решение СЛАУ обращением матриц, понятие обусловленности матриц ) Понятие СЛАУ О. СЛАУ система

Подробнее

Лекция 5 РТУ-МИРЭА. Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ГОРШУНОВА Т.А.

Лекция 5 РТУ-МИРЭА. Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ГОРШУНОВА Т.А. Лекция Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Однородная система линейных алгебраических уравнений Пусть дана однородная система линейных уравнений: или в матричной форме: m m n n A

Подробнее

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А 8 Методические рекомендации по выполнению контрольны работ, курсовы работ К О Н Т Р О Л Ь Н А Я Р А Б О Т А Д и с ц и п л и н а «М а т е м а т и к а» ) Решить систему линейны уравнений методом Гаусса 7

Подробнее

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК ББК Составитель: Н.А. Пинкина КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Линейная алгебра. Решение типовых примеров. Варианты контрольных

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса Лекция 6 Методы решения СЛАУ: матричный и Гаусса Аннотация: Доказывается теорема о базисном миноре Кратко излагается суть метода Гаусса Приводятся пример решения системы этим методом Доказывается теорема

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ После изучения данной темы вы сможете: проводить численное решение задач линейной алгебры. К решению систем линейных уравнений сводятся многочисленные практические задачи, решение

Подробнее

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методическое пособие по проведению практических

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА Типовой расчет по алгебре и геометрии Вариант 7 Задача Для пирамиды с вершинами в точках A, A,, A4 найти: А) длину ребра A A ; Б) угол между ребрами AA и A A4 ; В) уравнение плоскости A A : Г) площадь

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» 1 семестр

ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» 1 семестр ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» семестр. Разложить вектор X по векторам P, Q, R. Систему решить ) методом Крамера, ) матричным методом,

Подробнее

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B:

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B: Лекция 3. Обратная матрица. Определитель произведения квадратных матриц. Обратная матрица, определение, основные свойства. Критерий обратимости матрицы. Элементарные преобразования матриц. Нахождение обратных

Подробнее

A ij (или Ad ij) элемента a ij матрицы A называется

A ij (или Ad ij) элемента a ij матрицы A называется 1) Найти все дополнительные миноры определителя 1 9 11 0 0 0 56 18 2. Пусть дана квадратная матрица порядка n. Дополнительным минором a матрицы называется определитель на единицу меньшего M ij элемента

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ 4. 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту:

ДОМАШНЕЕ ЗАДАНИЕ 4. 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту: ДОМАШНЕЕ ЗАДАНИЕ Для выполнения домашнего задания Вам необходимо, пользуясь табл, заполнить первую строку табл, затем выписать соответствующие Вашему номеру варианта данные из табл Например, Вы учитесь

Подробнее

Лекция 1. Сайт лектора Колыбасовой Валентины Викторовны (конспекты лекций):

Лекция 1. Сайт лектора Колыбасовой Валентины Викторовны (конспекты лекций): Лекция 1 Сайт лектора Колыбасовой Валентины Викторовны (конспекты лекций): http://sites.google.com/site/vkolybasova Группы ВКонтакте, посвящённые обсуждению учебных вопросов: http://vk.com/vvkolybasova

Подробнее

Практикум по линейной алгебре

Практикум по линейной алгебре Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского В.К. Вильданов Практикум по линейной алгебре Учебно-методическое пособие Нижний Новгород Издательство

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a Лекция 5 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

ДИСЦИПЛИНА «ВЫСШАЯ МАТЕМАТИКА» 1 курс, 1 семестр. ТЕМА 1. Матричная алгебра Е =. Заочная форма обучения. Действия над матрицами

ДИСЦИПЛИНА «ВЫСШАЯ МАТЕМАТИКА» 1 курс, 1 семестр. ТЕМА 1. Матричная алгебра Е =. Заочная форма обучения. Действия над матрицами ДИСЦИПЛИНА «ВЫСШАЯ МАТЕМАТИКА» курс, семестр Заочная форма обучения ТЕМА Матричная алгебра При решении экономических задач применяются методы экономико-математического моделирования, использующие решение

Подробнее

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 2010 УДК 511+512 ББК 22 Ч345 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн.

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2 Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Лекция 12 Аннотация Вырожденные и невырожденные матрицы Приведение квадратной невырожденной матрицы к единичной с помощью элементарных

Подробнее

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА ООО «Резольвента», wwwresolventru, resolvent@listru, (95) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En 4 Обратная матрица Понятие обратной матрицы Существование и единственность обратной матрицы Присоединенная матрица Определение 4 Пусть А квадратная матрица порядка п Матрица B называется правой обратной

Подробнее

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ В ТАБЛИЧНОМ ПРОЦЕССОРЕ MICROSOFT EXCEL. РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ В ТАБЛИЧНОМ ПРОЦЕССОРЕ MICROSOFT EXCEL. РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ В ТАБЛИЧНОМ ПРОЦЕССОРЕ MICROSOFT EXCEL. РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ Задача определения решения системы имеет давнюю традицию. Существует много методов

Подробнее

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ДК Агишева СА Зотова ВБ Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Волгоград Тема Матрицы Основные действия над ними Обратная матрица Матричный способ решения систем линейных

Подробнее

sin 2x. систему решений и, следовательно, общее решение системы имеет вид + 1. Возможны два случая.

sin 2x. систему решений и, следовательно, общее решение системы имеет вид + 1. Возможны два случая. sin cos R Z cos ImZ cos sin sin Найденные таким образом решения образуют фундаментальную систему решений и следовательно общее решение системы имеет вид или подробнее sin cos cos sin cos cos cos sin sin

Подробнее

Методические указания к переаттестации по дисциплине «Алгебра и геометрия» Часть 2

Методические указания к переаттестации по дисциплине «Алгебра и геометрия» Часть 2 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Владимирский государственный университет имени Александра Григорьевича

Подробнее

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр лектор Панов АН 1 Наиболее часто задаваемые вопросы Вопрос 11 Что такое перестановка и что такое знак перестановки? Ответ Перестановка это множество

Подробнее

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ КРАМЕРА

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ КРАМЕРА Ревчук И.Н. Пчельник В.К. УО «Гродненский государственный университет имени Янки Купалы» г. Гродно Республика Беларусь ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ

Подробнее

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева МАТЕМАТИКА Методические рекомендации и задания контрольной работы для студентов, обучающихся по заочной форме по направлениям «Менеджмент», «Экономика» Составитель: старший преподаватель Н А Кривошеева

Подробнее

Системы уравнений. Общий вид системы двух уравнений с двумя переменными:

Системы уравнений. Общий вид системы двух уравнений с двумя переменными: Системы уравнений Пусть даны два уравнения с двумя неизвестными f(x, y)=0 и g(x, y)=0, где f(x, y), g(x, y) некоторые выражения с переменными х и у. Если ставится задача найти все общие решения данных

Подробнее