Линейные системы со специальной правой частью

Размер: px
Начинать показ со страницы:

Download "Линейные системы со специальной правой частью"

Транскрипт

1 Линейные системы со специальной правой частью А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В этой лекции мы рассмотрим неоднородные линейные уравнения, однородная часть которых автономна. Такие уравнения всегда интегрируются. В общем случае это делается методом вариации постоянных, который будет изложен в следующей лекции. Метод вариации постоянных дает ответ в виде интеграла, и поведение найденного решения бывает трудно исследовать, пока интеграл не взят. Мы рассмотрим здесь частный случай, когда неоднородный член равен сумме квазимногочленов. В этом случае решение можно найти методом неопределенных коэффициентов, причем поведение решения легко исследовать до того, как эти коэффициенты найдены. 1 Векторные квазимногочлены. Определение 1. Квазимногочленом называется функция одного переменного произведение многочлена на экспоненту: f(t) = e λt P (t). Показателем квазимногочлена называется показатель экспоненты λ, а его степенью степень многочлена. deg f := deg P. Определение 2. Векторным квазимногочленом называется произведение скалярной экспоненты на векторный многочлен: f(t) = e λt P (t), λ R или λ C, (1) где P (t) = n a k t k, a k R n или a k C n. k=0 В первом семестре (лемма 17 параграфа 15) доказывалась Теорема 3. Квазимногочлены, имеющие попарно различные показатели, линейно независимы. Доказательство. Предположим противное. Тогда существует линейная комбинация квазимногочленов с разными показателями, тождественно равная нулю; обозначим ее F. Мы применим очень полезный метод деления с дифференцированием. Доказательство проводится индукцией по числу слагаемых; пусть N это число слагаемых. База индукции: N = 1, F = e λt P (t). Разделим это равенство на e λt. Теперь утверждение следует из линейной независимости мономов 1, t,..., t m. Шаг индукции. Пусть F = e λ1t P 1 (t) + + e λ N t P N (t) 0. Положим G = F e λ N t. Тогда G 0, и G сумма N квазимногочленов, один из которых просто многочлен, или квазимногочлен с нулевым показателем. Заметим, что производная квазимногочлена с ненулевым показателем квазимногочлен той же степени с тем же показателем: d ( e λt P (t) ) = e λt (λ + d dt dt )P (t) = eλt (λp (t) + P (t)). 1

2 Напротив, степень многочлена при дифференцировании падает на 1. Пусть deg P N = k. Тогда G (k+1) сумма (N 1) ненулевых квазимногочленов, тождественно равная нулю. Это противоречит предположению индукции. 2 Системы со специальной правой частью нерезонансный случай. Начнем с замечания, которое справедливо для любых линейных неоднородных уравнений и систем: алгебраических, дифференциальных и других. Общее решение линейной неоднородной системы это сумма общего решения однородной системы и частного решения неоднородной. Поэтому для решения системы ẋ = Ax + f(t), x R n, (2) в которой f квазимногочлен, достаточно найти одно частное решение этой системы (см. параграф первого семестра, в частности, предложение 1.9.3). Определение 4. Уравнение (2) называется резонансным, если показатель квазимногочлена f является собственным значением оператора A, и нерезонансным в противном случае. Теорема 5. Нерезонансное уравнение (2) имеет частное решение, которое является квазимногочленом той же степени и с тем же показателем, что и квазимногочлен f в правой части. Эта теорема позволяет искать частное решение уравнения (2) с неопределенными коэффициентами. Но раньше, чем они найдены, можно уже много сказать о поведении решения (см. пример 8 в конце лекции). Доказательство. Пусть λ показатель квазимногочлена f, а m его степень. На пространстве квазимногочленов с показателем λ рассмотрим отображение L, заданное формулой: L: h d dt h Ah. Образ квазимногочлена с показателем λ снова квазимногочлен с тем же показателем. Решение неоднородного уравнения (2) это прообраз квазимногочлена f под действием L; нам надо доказать, что такой прообраз существует. Вместо этого мы сразу докажем, что L изоморфизм. Пусть h = e λt P, deg P = m. Тогда Lh = e λt ( P + λp AP ). Определим отображение L на пространстве векторных многочленов степени m: LP = P + λp AP. (3) Отображения L и L являются или не являются изоморфизмами одновременно. Отображение L линейно и отображает пространство векторных многочленов степени m в себя. Чтобы доказать, что L изоморфизм, достаточно доказать, что ядро L равно нулю. Это следует из предложения: Предложение 6. Отображение L сохранят степень векторного многочлена. Из предложения немедленно получаем, что Ker L = 0 (ненулевой многочлен сохраняет степень и, следовательно, не может перейти в ноль). Отсюда следует, что L изоморфизм. Доказательство предложения. Пусть P многочлен, at m его старший член с векторным коэффициентом a. Имеем L(at m ) = amt m 1 + bt m, где b = (λe A)a. Отображение L не повышает степень, поэтому младшие члены P не дадут монома степени m. Значит, если мы докажем, что b 0, получится, что у LP старший моном равен bt m. Число λ не является собственным значением оператора A, и так как a 0, то b = (λe A)a 0. Ker(λE A) = 0, 2

3 3 Резонансный случай. В резонансном случае частное решение является квазимногочленом с тем же показателем, что и квазимногочлен в правой части, но степень его может быть выше. Теорема 7. Резонансное уравнение (2) имеет частное решение, которое является квазимногочленом с тем же показателем λ, что и квазимногочлен f в правой части. Степень частного решения не превосходит deg f + k, где k размер максимальной жордановой клетки оператора A с собственным значением λ. Доказательство. Пусть L тот же оператор (3), что и выше. Нам нужно доказать, что для любого векторного линейного многочлена Q степени m уравнение LP = Q (4) имеет решение степени не выше deg Q + k, где k определено в условии теоремы 7. Для решения уравнения (4) выберем в пространстве R n в качестве базиса жорданов базис оператора A (если A имеет комплексный жорданов базис, будем работать в пространстве C n ). Тогда уравнение LP P + (λe A)P = Q (5) распадается на подсистемы, соответствующие жордановым клеткам оператора A. Мы будем смотреть только на самую большую клетку клетку размера k k; из рассуждения будет видно, что в других подсистемах степень P будет еще ниже. Возьмем инвариантное подпространство Λ оператора A, соответствующее клетке k k, и пусть e 1,..., e k базис, в котором ограничение A на это подпространство имеет матрицу λ 1 0 J = λ λ, Заметим, что в базисе e 1,..., e k оператор A λe имеет вид: J λe = 0 1, Поэтому на подпространстве Λ уравнение (5) примет вид: 1 = P 2 + Q 1 2 = P 3 + Q 2... k = Q k где Q 1,..., Q k компоненты Q в базисе e 1, e 2,..., e k, а P 1,..., P k компоненты P в этом же базисе. Такая система решается интегрированием, начиная с последней строки. Каждый раз интегрируется многочлен, и степень при интегрировании повышается на 1: deg P k deg Q k + 1 m + 1 deg P k 1 deg(p k + Q k 1 ) + 1 m + 2,... deg P 1 m + k. Это доказывает теорему. 3

4 4 Метод комплексных амплитуд. Если оператор A вещественный, а f является вещественной частью квазимногочлена g, то частное решение уравнения ẋ = Ax + Re g можно найти следующим образом. Сначала решается уравнение ż = Az + g, и находится частное решение z част в виде комплексного квазимногочлена. Затем берется Пример 8. Рассмотрим уравнение x част = Re z част. ż = iz + e iλt, где λ R \ 1} (6) По теореме 5, при λ 1 частное решение имеет вид z част = ce iλt. То есть частное решение ограничено и периодично с тем же периодом, что и неоднородный член e iλt. Этот вывод мы сделали, не находя коэффициент c. Теперь найдем его. Подставляя это в уравнение (6), получаем: Тем самым, учитывая, что i = e i π 2, получаем c(iλ i) = 1, откуда c = i λ 1. (7) z част = ei(λt+ π 2 ) 1 λ. (8) Константа c называется комплексной амплитудой частного решения (8). Ее модуль 1 λ 1 задает амплитуду колебаний (8), а ее аргумент π 2 определяет сдвиг по фазе между частным решением и неоднородностью в правой части. Отсюда происходит название метод комплексных амплитуд. В нашем примере амплитуда частного решения стремится к бесконечности при λ 1. При λ = 1 система взрывается (см. следующий пример). Пример 9. Рассмотрим уравнение (6) при λ = 1: ż = iz + e it. (9) По теореме 7, частное решение надо искать в виде z част = e it (at + b). При этом z одн = be it - решение однородного уравнения. Заметим, что все решения однородного уравнения ограничены; значит, все решения неоднородного z одн + e it at неограничены. Этот вывод сделан до того, как неопределенные коэффициенты точно найдены. Теперь найдем их. Подстановка в уравнение дает: a + i(at + b) = i(at + b) + 1, откуда a = 1. Следовательно, Общее решение имеет вид: z част = te it. z(t) = Ce it + te it, C C. Пример 10. Овеществим примеры 8 и 9: ẋ = y + cos λt ẏ = x + sin λt (10) (λ 1 соответствует примеру 8, а λ = 1 примеру 9). Примеры 8 и 9 дают полное исследование системы (10). 4

5 Упражнение 1. Написать частные решения системы (10) как вещественные вектор-функции. Упражнение 2. Найти частные решения систем ẋ = y + cos t ẏ = x ẋ = y ẏ = x + sin λt. 5


Системы однородных линейных уравнений

Системы однородных линейных уравнений Системы однородных линейных уравнений А И Буфетов, Н Б Гончарук, Ю С Ильяшенко 10 февраля 2015 г В этом параграфе мы займёмся самым простым типом многомерных дифференциальных уравнений линейными уравнениями

Подробнее

Линейные неавтономные системы

Линейные неавтономные системы Линейные неавтономные системы А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В предыдущих лекциях исследовались линейные автономные системы. Они допускают точные решения, которые выражаются

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

1. Интегрирование системы дифференциальных уравнений методом исключения переменных

1. Интегрирование системы дифференциальных уравнений методом исключения переменных Интегрирование системы дифференциальных уравнений методом исключения переменных Один из основных методов интегрирования системы дифференциальных уравнений заключается в следующем: из уравнений нормальной

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

Интегралы и дифференциальные уравнения. Лекции 20-21

Интегралы и дифференциальные уравнения. Лекции 20-21 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 20-21 Линейные

Подробнее

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. КОНСПЕКТ ЧАСТИ КУРСА АЛГЕБРЫ (ФКТИ, 3-Й СЕМЕСТР)

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. КОНСПЕКТ ЧАСТИ КУРСА АЛГЕБРЫ (ФКТИ, 3-Й СЕМЕСТР) ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. КОНСПЕКТ ЧАСТИ КУРСА АЛГЕБРЫ (ФКТИ, 3-Й СЕМЕСТР) А.В.СТЕПАНОВ Введение Эти заметки не заменяют курс лекций, но для сильных студентов могут

Подробнее

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1)

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1) ЛЕКЦИИ ПО КУРСУ «Линейная алгебра, системы ДУ с устойчивостью» 2 курс, 2 семестр Лекторы: Мельников Ю.Б., Мельникова Н.В. Оглавление 1. Системы линейных дифференциальных уравнений 4 1.1. Определения................................

Подробнее

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами По условию теоремы L [ ] B ( m Тогда в силу линейности оператора L имеем: m m m L L ] B [ Системы линейных дифференциальных уравнений с постоянными коэффициентами Собственные значения и собственные векторы

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: НЕМНОГО ТЕОРИИ И РЕШЕНИЯ ЗАДАЧ. Балакина Е.Ю.

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: НЕМНОГО ТЕОРИИ И РЕШЕНИЯ ЗАДАЧ. Балакина Е.Ю. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский национальный исследовательский государственный университет» СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения Обыкновенные дифференциальные уравнения Лекторы: В. А. Кондратьев, Ю. С. Ильяшенко III IV семестры, программа экзамена 2003 2004 г, варианты 2001 2009 г. 1. Программа экзамена 1.1. Первый семестр Введение.

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

Линейные уравнения с постоянными коэффициентами

Линейные уравнения с постоянными коэффициентами Линейные уравнения с постоянными коэффициентами Лекция 7 В. Н. Задорожный, В. Ф. Зальмеж, А. Ю. Трифонов, А. В. Шаповалов Курс: Дифференциальные уравнения Семестр 3, 2009 год portal.tpu.ru Линейным дифференциальным

Подробнее

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные Основные типы ДУ 1. Уравнения с разделенными переменными ДУ (3) всегда можно записать в виде M (, d N(, d 0 (иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные

Подробнее

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Кафедра высшей математики (ВМ) Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ Практическое

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

Интегралы и дифференциальные уравнения. Лекция 24

Интегралы и дифференциальные уравнения. Лекция 24 кафедра «Математическое моделирование» проф П Л Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекция 4 Однородные системы

Подробнее

УНИТАРНЫЕ ПРЕДСТАВЛЕНИЯ

УНИТАРНЫЕ ПРЕДСТАВЛЕНИЯ ЛЕКЦИЯ 18 УНИТАРНЫЕ ПРЕДСТАВЛЕНИЯ ТЕОРЕМА МАШКЕ ЛЕММА ШУРА 1 УНИТАРНЫЕ ПРЕДСТАВЛЕНИЯ Определение 1. Квадратная комплексная матрица A называется унитарной, если AA = E, где A = A T. Представление φ : G

Подробнее

12. Линейные операторы на векторных пространствах (продолжение)

12. Линейные операторы на векторных пространствах (продолжение) 12. Линейные операторы на векторных пространствах (продолжение) Единственность жордановой нормальной формы F алгебраически замкнутое поле Теорема 9. τ Пусть A M n (F), A J и A J где J, J жордановы матрицы.

Подробнее

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков.

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков. ЛЕКЦИЯ 3 Линейные дифференциальные уравнения высших порядков Линейные неоднородные и однородные дифференциальные уравнения второго порядка Интегрирование ЛОДУ и ЛНДУ второго порядка с постоянными коэффициентами

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов ВВ 1 Геометрическое строение линейных операторов 11 Введение Мы знаем, что линейное преобразование ϕ : R n R n (линейный оператор) в каноническом базисе E пространства

Подробнее

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение.

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение. Т е м а : «Л и н е й н а я з а в и с и м о с т ь с и с т е м ы в е к т о р о в» ( т и п о в ы е п р и м е р ы с р е ш е н и я м и ) Пример. Путем приведения элементарными преобразованиями исходной матрицы

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

12. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

12. ЛИНЕЙНЫЕ ПРОСТРАНСТВА ЛИНЕЙНЫЕ ПРОСТРАНСТВА ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ЛИНЕЙНЫХ ПРОСТРАНСТВ Аксиомы линейного пространства Линейным векторным пространством называется множество V произвольных элементов, называемых векторами, в котором

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем Г л а в а 2 ВЕКТОРНЫЕ ПРОСТРАНСТВА 9 Векторное пространство над полем 91 Аксиоматика Пусть задано поле P, элементы которого будем называть скалярами и некоторое множество V, элементы которого будем называть

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

' A (e i,e j )=(e i, Ae j )=(e i, X k. a kj e k )=a ij.

' A (e i,e j )=(e i, Ae j )=(e i, X k. a kj e k )=a ij. 8 Е. Ю. Смирнов 8. Восьмая лекция, 26февраля 2014 г. В этой лекции через V будет обозначаться n-мерное эрмитово пространство, т.е. комплексное векторное пространство, на котором задана положительно определенная

Подробнее

УСТОЙЧИВОСТЬ И СТАБИЛИЗАЦИЯ КОЛЕБАНИЙ В МОДЕЛИ, СОДЕРЖАЩЕЙ ТРИ СВЯЗАННЫЕ ПОДСИСТЕМЫ

УСТОЙЧИВОСТЬ И СТАБИЛИЗАЦИЯ КОЛЕБАНИЙ В МОДЕЛИ, СОДЕРЖАЩЕЙ ТРИ СВЯЗАННЫЕ ПОДСИСТЕМЫ 248 УДК 519.71 УСТОЙЧИВОСТЬ И СТАБИЛИЗАЦИЯ КОЛЕБАНИЙ В МОДЕЛИ, СОДЕРЖАЩЕЙ ТРИ СВЯЗАННЫЕ ПОДСИСТЕМЫ И.Н. Барабанов Институт проблем управления им. В.А. Трапезникова РАН Россия, 117997, Москва, Профсоюзная

Подробнее

Сферические функции.

Сферические функции. Сферические функции. Р.В.Константинов, rkonst@gmail.com 1. Сферические координаты в пространстве R 3 : x r cos ϕ sin θ, y r sin ϕ sin θ, z r cos θ, r, ϕ [, 2π], θ [, π]. Единичная сфера в R 3 : S x, y,

Подробнее

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли Математический анализ Раздел: Дифференциальные уравнения Тема: Однородные уравнения Линейные уравнения Уравнения Бернулли Лектор Рожкова СВ 07 год 8 Однородные уравнения Функция M, называется однородной

Подробнее

Некоторые решения задач из лекции 8.

Некоторые решения задач из лекции 8. кафедра Проблемы теор. физики, II курс Введение в теорию групп Некоторые решения задач из лекции 8. Задача 4. а) Алгебра Ли so(3, R) изоморфна алгебре векторов R 3. б) Обозначим через SU(2) группу унитарных

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

Операционное исчисление. Преобразование Лапласа

Операционное исчисление. Преобразование Лапласа Лекция 6 Операционное исчисление Преобразование Лапласа Образы простых функций Основные свойства преобразования Лапласа Изображение производной оригинала Операционное исчисление Преобразование Лапласа

Подробнее

2. Перечислить все линейные подпространства трехмерного векторного пространства.

2. Перечислить все линейные подпространства трехмерного векторного пространства. Тема Комплексные числа и многочлены cosϕ + i siϕ Упростить cosψ i siψ ( i 3 ( cosϕ + Вычислить i siϕ ( i( cosϕ i siϕ 3 3 Найти z, если z = ( i 4 Найти комплексные числа, сопряженные своим квадратам 5 Найти

Подробнее

Умножим (2.1) на λ k и вычтем из (2.2):

Умножим (2.1) на λ k и вычтем из (2.2): Билет 1.1. Инвариантные подпространства. Индуцированный оператор Определение 1.1 Линейное подпространство L V линейного пространства называется инвариантным относительно оператора A, если x L Ax L. Теорема

Подробнее

В курсе линейной алгебры мы уже сталкивались с многочленами от матриц. В различных областях математики встречаются и другие, более сложные функции.

В курсе линейной алгебры мы уже сталкивались с многочленами от матриц. В различных областях математики встречаются и другие, более сложные функции. Функции от матриц Совместный бакалавриат ВШЭ-РЭШ. 2011-2012 учебный год. Общее замечание. В этом листочке мы рассматриваем матицы над полем комплексных чисел, хотя условие задач везде вещественно. Следите

Подробнее

1. Что такое обыкновенные дифференциальные уравнения и системы. Понятие решения. Автономные и неавтономные уравнения. Уравнения и системы порядка

1. Что такое обыкновенные дифференциальные уравнения и системы. Понятие решения. Автономные и неавтономные уравнения. Уравнения и системы порядка 1. Что такое обыкновенные дифференциальные уравнения и системы. Понятие решения. Автономные и неавтономные уравнения. Уравнения и системы порядка выше первого и их сведение к системам первого порядка.

Подробнее

4. Существование собственного значения вполне непрерывного самосопряженного оператора.

4. Существование собственного значения вполне непрерывного самосопряженного оператора. Лекция 4 Существование собственного значения вполне непрерывного самосопряженного оператора Пусть линейный оператор действует в линейном пространстве L Число называется собственным значением оператора,

Подробнее

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно.

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно. ЛЕКЦИЯ 5 МЕТОД ГАУССА Мы разобрали выше два различных способа задания линейных подпространств F n 2 при помощи образующих и как множество решений системы линейных уравнений Для различных приложений нам

Подробнее

1 Экспонента линейного оператора.

1 Экспонента линейного оператора. 134 1. ЭКСПОНЕНТА ЛИНЕЙНОГО ОПЕРАТОРА. 1 Экспонента линейного оператора. 1.1 Напоминание: геометрическая формулировка основной задачи ОДУ. Напомним, что векторное поле это отображение, которое каждой точке

Подробнее

10. Линейные операторы

10. Линейные операторы 35 0 Линейные операторы До сих пор мы рассматривали в линейном пространстве L скалярные функции векторного аргумента - линейные комбинации векторов Теперь мы сосредоточимся на рассмотрении векторных функций

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

6. ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

6. ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 6 ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное неоднородное дифференциальное уравнение -го порядка с постоянными коэффициентами ) ) ) L [] f ) 9) где i постоянные Так

Подробнее

Лекции 15, Гамма-функция Эйлера

Лекции 15, Гамма-функция Эйлера Лекции 15,16-19. Гамма-функция Эйлера Здесь описываются свойства одной из самых важных неэлементарных функций анализа. Обычно ее название пишется так: Γ-функция. 1 Определение Γ-функции. Γ-функция определяется

Подробнее

Тема 2-4: Подпространства

Тема 2-4: Подпространства Тема 2-4: Подпространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

Лекция 2.3 Устойчивость равновесия и движения системы. При рассмотрении установившихся движений уравнения возмущенного движения запишем в виде ( )

Лекция 2.3 Устойчивость равновесия и движения системы. При рассмотрении установившихся движений уравнения возмущенного движения запишем в виде ( ) Лекция 3 Устойчивость равновесия и движения системы При рассмотрении установившихся движений уравнения возмущенного движения запишем в виде d dt A Y где вектор-столбец квадратная матрица постоянных коэффициентов

Подробнее

2 Экспонента и фазовый поток

2 Экспонента и фазовый поток 140 2. ЭКСПОНЕНТА И ФАЗОВЫЙ ПОТОК 2 Экспонента и фазовый поток 2.1 Абстрактный фазовый поток. В разделе 8 главы 1, «Фазовые потоки», мы определили фазовый поток векторного поля. Здесь мы дадим определение

Подробнее

3 Линейные уравнения в C n

3 Линейные уравнения в C n 145 3 Линейные уравнения в C n Определение экспоненты и результаты, полученные в разделах 1 «Экспонента линейного оператора» и 2 «Экспонента и фазовый поток», можно перенести на случай уравнений в C n.

Подробнее

1 Билинейная и квадратичная формы.

1 Билинейная и квадратичная формы. 1 Билинейная и квадратичная формы. Пусть ϕ(x, y) числовая функция, заданная на линейном пространстве, то есть ϕ : L L R. Если ϕ(x, y) линейна по каждому из своих аргументов, то её называют билинейной формой.

Подробнее

Алгебра в Независимом, третий семестр

Алгебра в Независимом, третий семестр Алгебра в Независимом, третий семестр Е. Ю. Смирнов 1. Первая лекция, 11 сентября 2017 г. Пусть F поле, то есть коммутативное кольцо с единицей, в котором у каждого ненулевого элемента есть обратный по

Подробнее

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор.

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор. ТЕМА Элементы теории линейных операторов Обратный оператор Вполне непрерывный оператор Основные определения и теоремы Оператор A, действующий из линейного пространства L в линейное пространство L, называется

Подробнее

Интегралы и дифференциальные уравнения. Лекция 7

Интегралы и дифференциальные уравнения. Лекция 7 кафедра «Математическое моделирование» проф П Л Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,,6, БМТ, Лекция 7 Определенный интеграл

Подробнее

Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Линейные операторы Раздел электронного учебника для сопровождения лекции Изд. 2-е, испр. и доп.

Подробнее

Дифференциальные уравнения (лекция 10)

Дифференциальные уравнения (лекция 10) Дифференциальные уравнения лекция 0 Линейные неоднородные уравнения высших порядков Лектор Шерстнёва Анна Игоревна 6. Линейные неоднородные уравнения -го порядка. Метод вариации произвольных постоянных

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

Решения задач первой олимпиады

Решения задач первой олимпиады Решения задач первой олимпиады Задача 2006 1 Элементов какого порядка в группе S n больше: четного или нечетного? (Предложил А. Э. Гутерман.) Решение. При n = 2, 3 легко убедиться, что подстановок четного

Подробнее

sin 2x. систему решений и, следовательно, общее решение системы имеет вид + 1. Возможны два случая.

sin 2x. систему решений и, следовательно, общее решение системы имеет вид + 1. Возможны два случая. sin cos R Z cos ImZ cos sin sin Найденные таким образом решения образуют фундаментальную систему решений и следовательно общее решение системы имеет вид или подробнее sin cos cos sin cos cos cos sin sin

Подробнее

Построение базисов в ядре и образе линейного оператора.

Построение базисов в ядре и образе линейного оператора. Построение базисов в ядре и образе линейного оператора 1 Речь пойдёт о построении базисов в ядре и образе линейного оператора Будут рассмотрены два примера: первый пример с пояснениями; второй как образец

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 4 Аннотация Однородные ЛДУ (ОЛДУ) с постоянными коэффициентами Характеристическое уравнение ОЛДУ Построение

Подробнее

Лекция 12 (дополнительная)

Лекция 12 (дополнительная) стр.1 Лекция 12 (дополнительная) СИСТЕМЫ ЛИНЕЙНЫХ НЕОДНОРОДНЫХ ДУ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ (СЛНДУ) Определение. Системой линейных неоднородных дифференциальных уравнений с постоянными коэффициентами

Подробнее

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ГЛАВА III СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 7 Задачи приводящие к понятию систем дифференциальных уравнений Рассмотрим систему уравнений m m m F m m m F 7 LLLLLLLLLLLLLLLLLLLLL L L m m m F где независимая

Подробнее

2. ЛИНЕЙНЫЕ СИСТЕМЫ Основные понятия

2. ЛИНЕЙНЫЕ СИСТЕМЫ Основные понятия ЛИНЕЙНЫЕ СИСТЕМЫ Основные понятия Нормальной линейной однородной системой дифференциальных уравнений с постоянными коэффициентами порядка n называется система вида n dk akj j k n d j () где a cons kj Вводя

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

Алгебраические многочлены.

Алгебраические многочлены. Алгебраические многочлены. 1 Алгебраические многочлены степени n над полем K Определение 1.1 Многочленом степени n, n N {0}, от переменной z над числовым полем K называется выражение вида: fz = a n z n

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Системы дифференциальных уравнений. Кольцов С.Н.

Системы дифференциальных уравнений. Кольцов С.Н. Системы дифференциальных уравнений. Кольцов С.Н. www.linis.ru Основные понятия и определения. Нормальные системы Определение. Нормальная система обыкновенных дифференциальных уравнений имеет следующий

Подробнее

ϕ монотонно возрастают при изменении

ϕ монотонно возрастают при изменении ГЛАВА. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ 8 степень со знаком +, из полученного следует, что ( ) π возрастает от до π. Итак, слагаемые ϕ i( ) и k ( ) +, т. е. вектор ( i) ϕ монотонно ϕ монотонно возрастают при

Подробнее

3. Вычислить произведение всех комплексных корней n-ной степени из Вычислить сумму всех комплексных корней n-ной степени из 1.

3. Вычислить произведение всех комплексных корней n-ной степени из Вычислить сумму всех комплексных корней n-ной степени из 1. КОМПЛЕКСНЫЕ ЧИСЛА 1. Пусть ε первообразный корень нечетной степени n из 1. Доказать, что ε первообразный корень степени 2n из 1. 2. Пусть α первообразный корень степени 2n из 1. Вычислить 1+α+...+α n 1.

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Линейные операторы Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр. и доп.

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Контрольная работа по алгебре 2 Вариант матрицы операторов A и A в базисе f 1 = (1, 1, 0), f 2 = (1, 1, 0), f 3 = (0, 0, 1).

Контрольная работа по алгебре 2 Вариант матрицы операторов A и A в базисе f 1 = (1, 1, 0), f 2 = (1, 1, 0), f 3 = (0, 0, 1). Вариант 1 1. В ортонормированном базисе матрица оператора A имеет вид A = 1 0 1 2 1 3 0. Напишите матрицы операторов A и A в базисе f 1 = (1, 1, 0), f 2 = (1, 1, 0), f 3 = (0, 0, 2. Используя процесс ортогонализации,

Подробнее

АЛГЕБРЫ И АЛГЕБРЫ С ДЕЛЕНИЕМ

АЛГЕБРЫ И АЛГЕБРЫ С ДЕЛЕНИЕМ ЛЕКЦИЯ 16 КОНЕЧНЫЕ ПОЛЯ АЛГЕБРЫ И АЛГЕБРЫ С ДЕЛЕНИЕМ АЛГЕБРА КВАТЕРНИОНОВ ТЕОРЕМА ФРОБЕНИУСА 1 КОНЕЧНЫЕ ПОЛЯ Лемма 1. Если поле F состоит из q элементов, то каждый элемент поля F является корнем многочлена

Подробнее

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство.

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство. 79 Линейные функции Определение и примеры линейных функций Определение Будем говорить, что на линейном пространстве L задана функция от одного вектора, если каждому вектору x L сопоставлено число ( x)

Подробнее

16. Формула Тейлора (продолжение)

16. Формула Тейлора (продолжение) 6. Формула Тейлора (продолжение Докажем единственность представления из теоремы 5.7. Предложение 6.. Пусть f : (p; q R функция класса C n, и пусть a (p; q. Предположим, что f(x = c 0 + c (x a + : : : +

Подробнее

Список задач с решениями по функциональному анализу.

Список задач с решениями по функциональному анализу. Список задач с решениями по функциональному анализу Пусть линейное нормированное пространство Доказать, что для любых элементов выполняется неравенство из аксиом нормы:, тогда: Можно ли в пространстве

Подробнее

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M Лекция 8 Тема: Деление отрезка в данном отношении Ориентация плоскости Угол между векторами на ориентированной плоскости План лекции Деление отрезка в данном отношении Ориентация плоскости 3 Угол между

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Федеральное агентство по образованию

Федеральное агентство по образованию Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее