Семинар 1. Однородные СЛАУ (ОСЛАУ)

Размер: px
Начинать показ со страницы:

Download "Семинар 1. Однородные СЛАУ (ОСЛАУ)"

Транскрипт

1 Семинар Однородные СЛАУ ОСЛАУ) Рассмотрим систему, состоящую из m однородных линейных уравнений с n неизвестными: a x + a x + + a n x n =, a { x + a x + + a n x n =, a m x + a m x + + a mn x n =. Введём обозначения: a a a n x a a a n x A = ), X = ), θ = ). a m a m a mn x n Тогда ОСЛАУ можно записать в матричном виде: AX = θ. ) Система ) всегда имеет по крайней мере одно решение: X = ) тривиальное решение но это решение может быть не единственным). Если система ) имеет не только тривиальное решение, то общее решение ОР) системы ) имеет вид n r X = C k X k, k= где r = rang A, C k произвольные числа; X, X,, X n r ЛНЗ решения системы ), они называются ФСР фундаментальной совокупностью решений). Общий способ решения ОСЛАУ метод Гаусса Жордана. Он состоит в приведении матрицы A к упрощённому виду с помощью ЭПС: ) перестановка строк, ) умножение строки на ненулевое число, ) прибавление к одной строке другой строки, умноженной на любое число; 4) вычёркивание нулевой строки. Матрица упрощённого вида имеет r базисных столбцов, которые являются последовательными столбцами единичной матрицы порядка r, а остальные её столбцы являются линейными комбинациями ЛК) базисных столбцов. При этом ОСЛАУ переходит в эквивалентную ОСЛАУ, но более простого вида. Метод Гаусса Жордана позволяет решить любую ОСЛАУ за наименьшее количество операций. Пример. Найти ФСР и ОР системы уравнений x + x + x + x 4 + 5x 5 =, 6x { + 4x + x + 5x 4 + 7x 5 =, 9x + 6x + 5x + 7x 4 + 9x 5 =, x + x + 4x 4 + 8x 5 =. Выпишем матрицу ОСЛАУ и приведём её к упрощённому виду:

2 ) ~ ) ~ ) ~ ~ 4 8 ) ~ 4 8 ). Последовательность ЭПС: вычитаем из второй строки удвоенную первую строку, вычитаем из третьей строки утроенную первую строку, вычитаем из четвёртой строки первую строку; вычитаем из первой строки вторую строку, вычитаем из третьей строки удвоенную вторую строку, прибавляем к четвёртой строке вторую строку; вычёркиваем третью и четвёртую строку; умножаем первую строку на /.) Матрица системы приведена к упрощённому виду. Базисные столбцы первый и третий. Запишем ОСЛАУ, соответствующую преобразованной матрице: { x + x + 4 x x 5 =, x x 4 x 5 =. Переменные, отвечающие базисным столбцам x и x ), называются базисными переменными, а остальные переменные x, x 4 и x 5 ) свободными. Базисные переменные оставим в левой части, а свободные перенесём в правую часть: { x = x 4 x 4 8 x 5, x = x 4 + x 5. Теперь видно, что свободные переменные x, x 4, x 5 могут принимать произвольные значения, а базисные переменные x, x однозначно выражаются через них. Для построения ФСР удобно поступить следующим образом: положить все свободные переменные, кроме одной, равными нулю, а оставшуюся свободную переменную приравнять к любому числу, отличному от нуля. Таким образом получится одно из решений системы. Остальные решения, входящие в ФСР, получаются аналогично, но в них должны быть отличны от нуля другие свободные переменные в каждом решении только одна ненулевая свободная переменная). Указанный способ построения решений гарантирует их линейную независимость. Полученная ФСР называется нормальной. ) Пусть x =, x 4 =, x 5 =. Тогда x =, x =. Это соответствует решению X =. ) ) Пусть x =, x 4 =, x 5 =. Тогда x = 4, x =. Это соответствует решению 4 X =. ) ) Пусть x =, x 4 =, x 5 =. Тогда x = 8, x = 9. Это соответствует решению

3 X = 8 9. ) Таким образом, ФСР системы состоит из столбцов X, X, X, а ОР имеет вид X = C X + C X + C X = C + C ) где C, C, C произвольные числа. Ответ: X =, X = 4, X = ) ) C, C, C произвольные числа ) ) + C 8 9, ) ФСР; X = C X + C X + C X ОР, где НСЛАУ в матричной форме имеет вид: AX = B, b Неоднородные СЛАУ НСЛАУ) b где B = ) известный столбец. b m О. НСЛАУ называется совместной, если она имеет хотя бы одно решение. Т. Кронекера Капелли) НСЛАУ совместна тогда и только тогда, когда rang A = rang A, где A = A B) расширенная матрица системы. Т. Если НСЛАУ совместна, то её ОР имеет вид: n r X = X + C k X k, k= где X ЧР частное решение) НСЛАУ т.е. какое-либо одно её решение), X,, X n r ФСР соответствующей ОСЛАУ AX = θ), C k произвольные числа. Т.е. ОР НСЛАУ = ЧР НСЛАУ + ОР ОСЛАУ. Метод Гаусса Жордана позволяет решить любую НСЛАУ за наименьшее количество операций. Замечание. Если соответствующая ОСЛАУ имеет только тривиальное решение, а НСЛАУ совместна, то НСЛАУ имеет единственное решение X = X.

4 Пример ЛАВЗ гл. III пример ). Доказать совместность НСЛАУ. Найти ФСР и ОР соответствующей ОСЛАУ, ЧР и ОР НСЛАУ. x x + x x 4 + 4x 5 =, { 4x x + 5x + x 4 + 7x 5 =, x x + x + 8x 4 + x 5 =. Для того чтобы решить НСЛАУ методом Гаусса Жордана, нужно с помощью ЭПС преобразовать её расширенную матрицу A = A B) так, чтобы матрица A приняла упрощённый вид: 4 4 A = ) ~ 5 ) ~ 8 4 ~ 5 ) ~ 5 ). Последовательность ЭПС: вычтем из второй строки удвоенную первую строку, вычтем из третьей строки первую строку; умножим первую и вторую строки на, прибавим к третьей строке удвоенную вторую строку; вычеркнем третью строку, прибавим к первой строке утроенную вторую строку.) Поскольку rang A = rang A =, то система совместна. Базисные переменные: x и x. Свободные переменные: x, x 4 и x 5. Запишем НСЛАУ, соответствующую упрощённой матрице, оставив в левой части базисные переменные x и x : { x = + x + x 4 + x 5, x = + 5x 4 x 5. Чтобы найти её ЧР, положим все свободные переменные равными нулю: x =, x 4 =, x 5 =. Тогда x =, x =, и мы получаем решение X =. ) Чтобы построить ФСР и ЧР соответствующей однородной системы, запишем её: { x = x + x 4 + x 5, x = 5x 4 x 5. ) x =, x 4 =, x 5 = x =, x = X =. ) ) x =, x 4 =, x 5 = x =, x = 5 X = 5. ) 4

5 ) x =, x 4 =, x 5 = x =, x = X =. ) Тогда X ЧР НСЛАУ, {X, X, X } ФСР ОСЛАУ, C X + C X + C X ОР ОСЛАУ, X + C X + C X + C X ОР НСЛАУ, где C, C, C произвольные числа. Ответ: X = ЧР НСЛАУ; X =, X = 5, X = ФСР ОСЛАУ; ) ) ) ) C X + C X + C X ОР ОСЛАУ; X = X + C X + C X + C X ОР НСЛАУ, где C, C, C произвольные числа. Пример. Исследовать НСЛАУ на совместность и найти её ОР при тех значениях параметра p, при которых она совместна. p + )x + py = 6, { px + y = p +. В данном случае число неизвестных равно числу уравнений, поэтому при det A система имеет единственное решение, причём это решение можно найти по формулам Крамера. Вычислим det A: Δ = det A = p + p p = p + p = p + )p ). Значит, при p ; НСЛАУ совместна. Найдём её решение по формулам Крамера: 6 p Δ x = p + = 6 p p = p + )p ), Δ y = p + 6 p p + = p + p + 6p = p p + = p )p ), x = Δ x Δ = p + p +, y = Δ y Δ = p p +. Теперь рассмотрим НСЛАУ при p = : x y = 6, { x + y =. Очевидно, система не совместна, поскольку из первого уравнения x y = 6, а из второго x y =. Рассмотрим НСЛАУ при p = : 4x + y = 6, { x + y =. Первое уравнение следует из второго, поэтому его можно отбросить. Останется НСЛАУ, состоящая только из одного уравнения: {x + y =. Её ОР можно записать в виде x = C, y = C, где C произвольное число. Ответ: система совместна при p, её ОР при p ; : x = p+ p, y = ; при p = : x = C, y = C, где C произвольное число. p+ p+ 5

6 ДЗ. ЛАВЗ гл. III 4б,ж), б,ж,з,и), 4а), 5б). Читать теорию и отвечать на контрольные вопросы: МАВЗ гл. X. 6

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Основные определения Рассмотрим следующую систему m уравнений относительно n неизвестных в поле K: a x + a 2 + + a nx n b, a 2 x + a 2 2 + + a2 nx

Подробнее

Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ План лекции Лекция Системы линейных уравнений Матричная запись Основная и расширенная матрицы системы; 2 Совместные и не совместные системы 2 Однородные системы

Подробнее

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51 Системы линейных уравнений Системы линейных уравнений. Методы решения систем линейных уравнений Линейная алгебра (лекция 5) 06.10.2012 2 / 51 Система m линейных уравнений с n неизвестными имеет вид: Линейная

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

Метод Гаусса (метод исключения неизвестных)

Метод Гаусса (метод исключения неизвестных) Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно перейти с помощью элементарных преобразований

Подробнее

Лекция V. V.1. Системы линейных уравнений. x

Лекция V. V.1. Системы линейных уравнений. x Лекция V V Системы линейных уравнений a x +a ++a n b a x +a ++a n b a m x +a m ++a mn b m () Запишем систему m линейных уравнений с n неизвестными в несколько необычном виде: a a a m x + a a a m ++ a n

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Аналитическая геометрия. Лекция 1.3

Аналитическая геометрия. Лекция 1.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a Лекция 5 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль Матричная алгебра Векторная алгебра Текст (самостоятельное изучение) Аннотация Однородные СЛАУ их совместность Критерий существования ненулевого решения однородной СЛАУ его

Подробнее

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса Лекция 6 Методы решения СЛАУ: матричный и Гаусса Аннотация: Доказывается теорема о базисном миноре Кратко излагается суть метода Гаусса Приводятся пример решения системы этим методом Доказывается теорема

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида...

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида... Системы линейных алгебраических уравнений Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида a a a, a a a,, a a a Ее можно представить в виде матричного уравнения

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ. 0. План лекции Лекция Теорема о базисном миноре. 1. Две вспомогательные теоремы из теории определителей.

Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ. 0. План лекции Лекция Теорема о базисном миноре. 1. Две вспомогательные теоремы из теории определителей. Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ План лекции Лекция Теорема о базисном миноре Две вспомогательные теоремы из теории определителей НИДУ равенства нулю определителя: det A = ; 2 Явное выражение

Подробнее

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса.

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Ранг матрицы. Рассмотрим прямоугольную матрицу имеющую m строк и столбцов: A. m m m Выделим в этой матрице произвольные строк и столбцов. Элементы

Подробнее

Лекция 5 РТУ-МИРЭА. Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ГОРШУНОВА Т.А.

Лекция 5 РТУ-МИРЭА. Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ГОРШУНОВА Т.А. Лекция Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Однородная система линейных алгебраических уравнений Пусть дана однородная система линейных уравнений: или в матричной форме: m m n n A

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Электронные методические указания

АЛГЕБРА И ГЕОМЕТРИЯ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Электронные методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 1 Линейная алгебра Решить матричное уравнение ( ( 3 1 2 1 X + 2 4 2 3 3 ( 1 0 = 3 2 3 Выполним вначале умножение матриц на

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений ) Понятие СЛАУ ) Правило Крамера решения СЛАУ ) Метод Гаусса 4) Ранг матрицы, теорема Кронекера-Капелли 5) Решение СЛАУ обращением матриц, понятие обусловленности матриц ) Понятие СЛАУ О. СЛАУ система

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 5 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ Ранг матрицы Рассмотрим матрицу A K m следующего общего вида: a a a A a 2 a 2 2 a 2 A = = A A 2,A 2,,A =, a m a2 m a m A m где a a a 2 A =,,A a 2

Подробнее

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методическое пособие по проведению практических

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы.

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы. .4. Ранг матрицы. В матрице А выделим k строк и столбцов из элементов, стоящих на их пересечении составим определитель. Будем называть его минором k-того порядка. Если минор k-того порядка отличен от нуля,

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством Пусть дана квадратная матрица второго порядка ( ) a11 a A = 12 a 21 a 22 (1) Определитель второго порядка, соответствующий матрице (1), определяется равенством a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

Основные формулы. n2, где. порядка по строке или столбцу:

Основные формулы. n2, где. порядка по строке или столбцу: . Линейная алгебра. Основные формулы. Определитель -го порядка: det A a a a a a a a a. a a a Определитель -го порядка (правило Саррюса): det A a a a a a a a a a + a a a + a a a a a a a a a a a a. Алгебраическое

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

2. Решение произвольных систем линейных алгебраических уравнений

2. Решение произвольных систем линейных алгебраических уравнений Решение произвольных систем линейных алгебраических уравнений Выше рассматривались в основном квадратные системы линейных уравнений число неизвестных в которых совпадает с числом уравнений В настоящем

Подробнее

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( )

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( ) МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Пусть дана система () m линейных уравнений с неизвестными Для ее решения нужно выполнить следующие действия: Составить расширенную матрицу (7) системы: m

Подробнее

Теория систем линейных уравнений

Теория систем линейных уравнений Глава Теория систем линейных уравнений Ранг матрицы Пусть A F m n Рассмотрим столбцы a,,a n матрицы A = (a,,a n ) как векторы пространства F m, а строки ã,,ã m как векторы пространства F n Базу (соответственно

Подробнее

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений ЗАНЯТИЕ Метод Крамера и матричный метод решения систем линейных уравнений Сведения из теории Уравнение называется линейным, если оно содержит неизвестные только в первой степени и не содержит произведений

Подробнее

a 1 1 a 1 2 a 1 n a 2 1 a 2 2 a 2 n a m 1 a m 2 a m n a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn

a 1 1 a 1 2 a 1 n a 2 1 a 2 2 a 2 n a m 1 a m 2 a m n a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Лекция 8 Матрицы Системы линейных уравнений Алгоритм Гаусса МАТРИЦЫ Основные определения Матрица размера m n прямоугольная таблица из чисел (элементов матрицы), состоящая из m строк и n столбцов Нумерация

Подробнее

Параллельные вычисления в. Библиотеки решения систем линейных уравнений. Параллельная реализация CPU / GPU

Параллельные вычисления в. Библиотеки решения систем линейных уравнений. Параллельная реализация CPU / GPU Параллельные вычисления в томографии Библиотеки решения систем линейных уравнений Параллельная реализация CPU / GPU Решение системы линейных алгебраических уравнений методом Гаусса Дана система из s линейных

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст (самостоятельное изучение) Аннотация Понятие линейной зависимости строк или столбцов матрицы. Ранг матрицы, теорема о ранге

Подробнее

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим.

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим. ПЕРЕСТАНОВКИ Определение 1 Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,, n в строчку одно за другим Например, 2, 4, 3, 1, 5 Это перестановка пятой степени Вообще

Подробнее

Тема 1-5: Системы линейных уравнений

Тема 1-5: Системы линейных уравнений Тема 1-5: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40 Линейная алгебра Матрицы и определители Ранг матрицы Линейная алгебра (лекция 4) 2 / 40 Выберем в матрице A размера m n произвольные k строк и k столбцов, k min(m, n). Линейная алгебра (лекция 4) 3 / 40

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

Тема : Общая теория систем линейных уравнений

Тема : Общая теория систем линейных уравнений Тема : Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Лекция 5. Det-3 должен обладать свойствами, аналогичными свойствам det-2: (1) линейность по столбцам:

Лекция 5. Det-3 должен обладать свойствами, аналогичными свойствам det-2: (1) линейность по столбцам: Лекция 5 1. ОПРЕДЕЛИТЕЛЬ ТРЕТЬЕГО ПОРЯДКА 1.1. Определение. Определитель третьего порядка (сокращенно det-3) должен состоять из трех строк и трех столбцов чисел; будем считать его функцией его столбцов:

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА» НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ ЧАСТНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА И СОЦИАЛЬНОГО УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Подробнее

1. Системы линейных алгебраических уравнений. Основные понятия. Метод Гаусса

1. Системы линейных алгебраических уравнений. Основные понятия. Метод Гаусса Системы линейных алгебраических уравнений Основные понятия Метод Гаусса Основные понятия Равносильные системы Определение Система линейных алгебраических уравнений (или система линейных уравнений) имеет

Подробнее

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК ББК Составитель: Н.А. Пинкина КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Линейная алгебра. Решение типовых примеров. Варианты контрольных

Подробнее

ОСНОВЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ОСНОВЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Д. З. Ильязова

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера

Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера Габриель Крамер (1704 1752) швейцарский математик. Данный метод применим только в случае систем линейных уравнений, где число переменных

Подробнее

С.Н. Зиненко. Линейная алгебра. Матрицы и определители. (теория к задачам)

С.Н. Зиненко. Линейная алгебра. Матрицы и определители. (теория к задачам) С.Н. Зиненко Линейная алгебра Матрицы и определители (теория к задачам) 215 1. ЛИНЕЙНОЕ ПРОСТРАНСТВО, ПОДПРОСТРАНСТВО. БАЗИС И РАЗМЕРНОСТЬ 1º Линейным пространством называется множество элементов a, b,

Подробнее

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ 1 ЭКВИВАЛЕНТНОСТЬ ЛИНЕЙНЫХ СИСТЕМ Пусть нам дана еще одна линейная система того же размера a 11x 1 + a 12x 2 + + a 1nx n = b 1, a 21x 1

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Лекция 5. Метод исключения Гаусса и Жордана-Гаусса.

Лекция 5. Метод исключения Гаусса и Жордана-Гаусса. Международный институт экономики и финансов (Государственный университет Высшая школа экономики) Лекции по линейной алгебре Владимир Черняк, Лекция 5. Метод исключения Гаусса и Жордана-Гаусса. Читать под

Подробнее

Матрицы, определители и системы линейных уравнений

Матрицы, определители и системы линейных уравнений Федеральное агентство по образованию Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Матрицы определители и системы линейных уравнений Методические указания к решению задач Санкт-Петербург

Подробнее

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1. Найдите произведение матриц ABC: Решение типового варианта: Так как произведение матриц не перестановочно, то найти данное произведение можно двумя способами: Для определенности воспользуемся вторым

Подробнее

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли Установить совместность и решить систему линейных уравнений 5xx x xx 5x 0 x4x x 0 а) по формулам Крамера, б) матричным способом, в) методом Гаусса Совместность Совместность системы можно установить: а)

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ,

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

Содержание. Задания по вариантам.46 Заключение..79 Литература...81

Содержание. Задания по вариантам.46 Заключение..79 Литература...81 Содержание Введение Матрицы Основные понятия Действия над матрицами 8 Определители Вычисление определителей квадратных матриц второго и третьего порядков Определители более высоких порядков 9 Невырожденные

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА ООО «Резольвента», wwwresolventru, resolvent@listru, (95) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

НЕКОТОРЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

НЕКОТОРЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ ФГОУ ВПО «Саратовский государственный университет им НГ Чернышевского» НЕКОТОРЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ МП Мисник ОВ Сорокина Учебное пособие для студентов нематематических

Подробнее

Элементы линейной алгебры

Элементы линейной алгебры Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет путей сообщения» Институт экономики и финансов Кафедра «Математика»

Подробнее

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение.

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение. Т е м а : «Л и н е й н а я з а в и с и м о с т ь с и с т е м ы в е к т о р о в» ( т и п о в ы е п р и м е р ы с р е ш е н и я м и ) Пример. Путем приведения элементарными преобразованиями исходной матрицы

Подробнее

Контрольная по алгебре с решением

Контрольная по алгебре с решением Контрольная по алгебре с решением Линейная алгебра 1-10 Каждый вариант этого раздела содержит четыре пункта, задания к которым соответствуют номеру пункта 1 Вычислить определитель 4-го порядка двумя способами:

Подробнее

Тема: Линейное пространство R n

Тема: Линейное пространство R n Тема: Линейное пространство R n А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ Как изменится произведение B матриц и B если: а переставить -ю и j -ю строки матрицы? б переставить -й и j -й столбцы матрицы B? в к -й строке матрицы прибавить ее j -ю строку

Подробнее

Лекция 7. . = [A 1,A 2,...,A n ], AX = B,

Лекция 7. . = [A 1,A 2,...,A n ], AX = B, Лекция 7 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ДК Агишева СА Зотова ВБ Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Волгоград Тема Матрицы Основные действия над ними Обратная матрица Матричный способ решения систем линейных

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ВЫСШЕЙ МАТЕМАТИКЕ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования и науки Российской Федерации РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени ИМ ГУБКИНА ИН Мельникова, ТС Соболева, НО Фастовец МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ

Подробнее

Министерство образования Российской Федерации

Министерство образования Российской Федерации Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

ТЕКСТЫ ЛЕКЦИЙ по учебной дисциплине

ТЕКСТЫ ЛЕКЦИЙ по учебной дисциплине ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ «САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ» Кафедра высшей математики Допущены к проведению занятий в - учгоду Заведующий кафедрой профессор АП Господариков

Подробнее

2.1.3 Методы решений системы линейных алгебраических уравнений

2.1.3 Методы решений системы линейных алгебраических уравнений Методы решений системы линейных алгебраических уравнений Метод обратной матрицы Рассмотрим частный случай системы ) когда число уравнений равно числу неизвестных те m Система уравнений имеет вид: ì ) î

Подробнее

Решение систем линейных уравнений

Решение систем линейных уравнений Решение систем линейных уравнений Л. В. Калиновская, Ю. Л. Калиновский Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего образования Московской области

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Определители. Решение систем линейных алгебраических уравнений методом Крамера

Определители. Решение систем линейных алгебраических уравнений методом Крамера Занятие Определители. Решение систем линейных алгебраических уравнений методом Крамера.. Определители. Пусть дана квадратная таблица чисел А, т.е. матрица из двух строк и двух столбцов. Заметим сразу,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее