ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. 1. Матрицы и операции над ними. 2. Определители и их свойства. Вычисление определителей. А =

Размер: px
Начинать показ со страницы:

Download "ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. 1. Матрицы и операции над ними. 2. Определители и их свойства. Вычисление определителей. А ="

Транскрипт

1 ЭЛЕМЕНТЫ ЛИНЕЙНОЙ ЛГЕБРЫ. Матрицы и операции над ними.. Определители и их свойства. Вычисление определителей. Матрицы и операции над ними Определение. Матрицей размера m n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются, где i- номер строки, а j- номер столбца. = m Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента. Определение. Если число столбцов матрицы равно числу строк (m = n), то матрица называется квадратной. Определение. Матрица вида: m n n = E, называется единичной матрицей. Определение. Если mn = nm, то матрица называется симметрической. Пример: - симметрическая матрица Определение. Квадратная матрица вида диагональной матрицей. mn nn называется Основные действия над матрицами Сумма (разность) матриц. Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.

2 c = b Обозначение: С = + В = В +. Умножение матрицы на число. Операция умножения матрицы любого размера на произвольное число сводится к умножению каждого элемента матрицы на это число. k k k ka k k m k k m k k n n mn Свойства: k( В) =k kв ( ) = Пример: Даны матрицы =, B = 7 =, + В =. Найти + В Произведение двух матриц. Замечание: Операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй. В противном случае произведение матриц не определено. Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам: с Обозначение: A B = C; Из приведенного определения видно, что каждый элемент матрицы С равен алгебраической сумме произведений элементов i той строки матрицы на соответствующие элементы j го столбца матрицы В. Отсюда правило: k n строка ik с о б е ц b т л kj

3 Свойства:. Умножение матриц не коммутативно, т.е. В В даже если определены оба произведения. Е = Е =. Операция перемножения матриц ассоциативна, т.е. если определены произведения В и (В)С, то определены ВС и (ВС), и выполняется равенство: (В)С=(ВС).. Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения (В+С) и (+В)С, то соответственно: (В + С) = В + С ( + В)С = С + ВС.. Если произведение В определено, то для любого числа k верно соотношение: k(ab) = (ka)b = A(kB). Транспонирование матриц Определение. Матрицу Т называют транспонированной матрицей, если элементы каждой строки матрицы записать в том же порядке в столбцы матрицы Т.(т.е. строки матрицы заменены на столбцы и наоборот) = а m m n n mn Пример: Даны матрицы = Найти Т В+ С. A T = C = ; A T B = ; Т В+ С = Пример: Даны матрицы = матриц В и В. ; Т = 9, В = + = = n, С = 7. n m m mn ; и число =. = 9 и В =. Найти произведение ;

4 В = В = = = ( + + ) = ( + + ) = (). Пример: Найти произведение матриц =, В = В = = =. Определение. Элементарными преобразованиями матрицы назовем следующие преобразования: ) умножение строки на число, отличное от нуля; ) прибавление к элементам одной строки элементов другой строки; ) перестановка строк; ) вычеркивание (удаление) одной из одинаковых строк (столбцов); ) транспонирование. Определители и их свойства Определение: Определителем n го порядка называется квадратная таблица чисел, состоящая из n строк и n столбцов. det A= n n n n nn - элементы определителя, где i номер строки, а j номер столбца, - элементы главной диагонали,, nn n n n n nn Побочная диагональ идет из левого нижнего угла в правый верхний. n n n n nn

5 Определение: Определителем второго порядка называется число, определяемое для чисел,,, по следующему правилу: Пример: ( ). Определение: Определителем третьего порядка называется число, определяемое девятью числами по правилу треугольника (звезда): Только для определителей третьего порядка существуют более наглядные правила вычисления определителя. Полезно пользоваться правилом треугольника: Пример: ( )( ) ( ) ( ). Свойства определителей. Определитель не изменяется при транспонировании, т.е.. Если все элементы столбца (строки) равны нулю, то определитель равен нулю.. Постоянный множитель всех элементов некоторой строки (или столбца) выносится за знак определителя.. Если поменять местами какие-либо две строки (или столбца), то определитель изменит знак, не изменившись по абсолютной величине.. Определитель, имеющий две равные строки (или столбца), равен.. Если соответствующие элементы двух столбцов (строк) определителя пропорциональны, то величина определителя равна нулю..

6 7. Определитель не изменится, если к элементам некоторого столбца (строки) прибавить(вычесть) элементы другого столбца (строки), умноженные на одно и то же число, не равное нулю. Разложение определителя по элементам строки или столбца Определение: Минором M элемента определителя называется определитель, полученный вычеркиванием i - той строки и j го столбца, на пересечении которых расположен этот элемент. Определение: лгебраическим дополнением A элемента называется минор этого элемента M умноженный на (-) i+j, т.е. Пример: Минор М = Минор М = A = (-) i+j M,. (вычеркнули первую строку и второй столбец) = -.. (вычеркнули вторую строку и третий столбец) = -7. Определитель равен сумме произведений элементов какого-нибудь столбца (строки) на их алгебраические дополнения. Запишем разложение определителя по первой строке: Пример: Вычислить определитель =, разлагая его по первой строке. а а а = = 9. ( ) ( ) ( ) Пример: Вычислить определитель D =, разложив его по эле- ментам второго столбца.

7 Разложим определитель по элементам второго столбца: D = A + A + A =. Обратная матрица Определение: Матрица A называется обратной по отношению к квадратной матрице A, если A A A A E. Обратная матрица существует только для квадратной матрицы, определитель которой не равен нулю. Такая матрица называется невырожденной. Пример: найти обратную матрицу )Найти определитель матрицы det A ( ) ( A, где Так как det A, то обратная матрица A существует. ) Сформировать матрицу из алгебраических дополнений каждого элемента матрицы. М, i j A ( ) М если i j - четное число, М, если i j - нечетное число ) Транспонируем матрицу из алгебраических дополнений ) A ( ) 9 9. ) Обратная матрица A определяется формулой

8 A, 7 7 A Пример: Для матрицы найти обратную. Находим сначала детерминант матрицы значит, обратная матрица существует, и мы ее можем найти по формуле:, где i j (i,j=,,) - алгебраические дополнения элементов а i j исходной матрицы.

9 откуда. Свойства обратных матриц:. (A - ) - = A;. (AB) - = B - A -. (A T ) - = (A - ) T.


Матрицы и определители. Линейная алгебра

Матрицы и определители. Линейная алгебра Матрицы и определители Линейная алгебра Определение матрицы Числовой матрицей размера mxn называется совокупность чисел, расположенных в виде таблицы, содержащей m строк и n столбцов 11 21... m1 12......

Подробнее

2. ОПРЕДЕЛИТЕЛИ. СВОЙСТВА. МЕТОДЫ ВЫЧИСЛЕНИЯ. порядка n > 1 называется число

2. ОПРЕДЕЛИТЕЛИ. СВОЙСТВА. МЕТОДЫ ВЫЧИСЛЕНИЯ. порядка n > 1 называется число ОПРЕДЕЛИТЕЛИ СВОЙСТВА МЕТОДЫ ВЫЧИСЛЕНИЯ ИНДУКТИВНОЕ ОПРЕДЕЛЕНИЕ Пусть квадратная матрица порядка Определитель (детерминант) квадратной матрицы это число det, которое ставится в соответствие матрице и вычисляется

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

ЛЕКЦИЯ N6. Линейная алгебра. Определители. 1.Определители, свойства, вычисление.

ЛЕКЦИЯ N6. Линейная алгебра. Определители. 1.Определители, свойства, вычисление. ЛЕКЦИЯ N6. Линейная алгебра. Определители..Определители, свойства, вычисление. 2.Определители высших порядков... 4 Рассмотрим таблицу вида:.определители, свойства, вычисление. A = Эта таблица, состоящая

Подробнее

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23 Линейная алгебра Матрицы и определители Обратная матрица Линейная алгебра (лекция 3) 2 / 23 Квадратная матрица называется вырожденной (или особенной), если ее определитель равен нулю, и невырожденной (или

Подробнее

Определители. Решение систем линейных алгебраических уравнений методом Крамера

Определители. Решение систем линейных алгебраических уравнений методом Крамера Занятие Определители. Решение систем линейных алгебраических уравнений методом Крамера.. Определители. Пусть дана квадратная таблица чисел А, т.е. матрица из двух строк и двух столбцов. Заметим сразу,

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

образуют главную диагональ матрицы. Вторую диагональ матрицы называют побочной.

образуют главную диагональ матрицы. Вторую диагональ матрицы называют побочной. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ МАТРИЦ Матрицы При решении ряда прикладных задач используются специальные математические выражения, называемые матрицами О п р е д е л е н и е Матрицей размерности m n называется

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

Лекция 1. Определение матрицы. Определение 1.1. Матрицей называется прямоугольная таблица чисел... a1 A =... =...

Лекция 1. Определение матрицы. Определение 1.1. Матрицей называется прямоугольная таблица чисел... a1 A =... =... Лекция Определение матрицы Определители второго и третьего порядков, их основные свойства Миноры и алгебраические дополнения, разложение определителя по строке (столбцу) Методы вычисления определителей

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ

РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ ЛЕКЦИЯ 11 РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ 1 РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ Определение 1. Определитель матрицы,

Подробнее

A ij (или Ad ij) элемента a ij матрицы A называется

A ij (или Ad ij) элемента a ij матрицы A называется 1) Найти все дополнительные миноры определителя 1 9 11 0 0 0 56 18 2. Пусть дана квадратная матрица порядка n. Дополнительным минором a матрицы называется определитель на единицу меньшего M ij элемента

Подробнее

1. Определители. a11 a12. a21 a22

1. Определители. a11 a12. a21 a22 . Определители. Определитель второго порядка Пусть задана таблица четырех чисел, расположенных в две строки и в два столбца 2 () 2 22 Элементы а, а 2 образуют первую строку, элементы а 2, а 22 образуют

Подробнее

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( )

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( ) Лекция 1 Работа с матрицами. 1. Основные понятия. Определение. Матрицей размерности чисел, содержащая строк и столбцов. называется таблица пронумерованных Исходя из такого определения матрицы, можно сделать

Подробнее

Определители. Определители второго порядка и их свойства.

Определители. Определители второго порядка и их свойства. Определители Определители второго порядка и их свойства Рассмотрим матрицу Определение Определителем (или детерминантом) второго порядка, называется число, определяемое по формуле: det Пример Вычислить

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

Тема 1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ. МАТРИЦЕЙ размера m x n называется прямоугольная таблица чисел, содержащая m строк и n столбцов.

Тема 1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ. МАТРИЦЕЙ размера m x n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Тема. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ МАТРИЦЕЙ размера m x n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Обозначается:. m n Числа, составляющие матрицу, называются элементами матрицы.

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Основы матричной алгебры. Положение элементов определяется двойным индексом. Первый ( - номер строки, второй - номер столбца.

Основы матричной алгебры. Положение элементов определяется двойным индексом. Первый ( - номер строки, второй - номер столбца. ) Матрицы, основные определения ) Элементарная алгебра матриц ) Определители и их свойства 4) Обратные матрицы ) Матрицы, основные определения I Определения Совокупность элементов, расположенных в виде

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

3. Определители высших порядков

3. Определители высших порядков Определители высших порядков Понятие определителя п-го порядка и его основные свойства Понятие определителя п-го порядка вводится на основе изучения структуры определителей -го и -го порядков Так например

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.1

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.1 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.1 Аннотация Матрицы. Виды матриц. Элементарные преобразования матриц. Линейные операции над матрицами (сравнение, сложение,

Подробнее

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет ОБРАТНАЯ МАТРИЦА ОПРЕДЕЛЕНИЕ, СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ ОБРАТНОЙ МАТРИЦЫ Рассмотрим проблему определения операции, обратной умножению матриц Пусть квадратная матрица порядка n Матрица, удовлетворяющая

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1 Аннотация Определитель матрицы произвольного порядка. Вычисление определителей 2-ого и 3-его порядков. Миноры и алгебраические

Подробнее

Линейная алгебра Лекция 2. Определители квадратных матриц

Линейная алгебра Лекция 2. Определители квадратных матриц Линейная алгебра Лекция. Определители квадратных матриц Введение Определитель или детерминант одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел

Подробнее

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En 4 Обратная матрица Понятие обратной матрицы Существование и единственность обратной матрицы Присоединенная матрица Определение 4 Пусть А квадратная матрица порядка п Матрица B называется правой обратной

Подробнее

Линейная алгебра и аналитическая геометрия

Линейная алгебра и аналитическая геометрия Линейная алгебра и аналитическая геометрия I семестр: 3 часа лекций, 2 часа практических занятий, 18 недель 2 лекция лектор Агапова Елена Григорьевна кандидат физико-математических наук, доцент кафедры

Подробнее

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим.

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим. ПЕРЕСТАНОВКИ Определение 1 Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,, n в строчку одно за другим Например, 2, 4, 3, 1, 5 Это перестановка пятой степени Вообще

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Тема 3: Определители

Тема 3: Определители Тема 3: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров Начало

Подробнее

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров.

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров. Лекция 2. Определители Миноры и алгебраические дополнения. Рекуррентное определение определителя n-го порядка. Соответствие между общим определением и правилом Саррюса при n=3. Основные свойства определителей.

Подробнее

Лекция 5. Det-3 должен обладать свойствами, аналогичными свойствам det-2: (1) линейность по столбцам:

Лекция 5. Det-3 должен обладать свойствами, аналогичными свойствам det-2: (1) линейность по столбцам: Лекция 5 1. ОПРЕДЕЛИТЕЛЬ ТРЕТЬЕГО ПОРЯДКА 1.1. Определение. Определитель третьего порядка (сокращенно det-3) должен состоять из трех строк и трех столбцов чисел; будем считать его функцией его столбцов:

Подробнее

2 5 8 A = a) A = 2 3. ; b) B =

2 5 8 A = a) A = 2 3. ; b) B = Занятие 1 Определители 11 Матричные обозначения Основные определения Матрицей размера m n, или m n-матрицей, называется таблица чисел (или других математических выражений с m строками и n столбцами Матрица

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 1 (самостоятельное изучение) Аннотация Определитель матрицы произвольного порядка, его свойства Вычисление определителей 2-ого

Подробнее

Глава 3. Определители

Глава 3. Определители Глава Определители Перестановки Q Рассмотрим множество первых натуральных чисел которое обозначим как Определение Перестановкой P множества элементов из Q назовем любое расположение этих элементов в некотором

Подробнее

Казанский (Приволжский) федеральный университет

Казанский (Приволжский) федеральный университет Казанский (Приволжский) федеральный университет МС МАЛАКАЕВ ЛР СЕКАЕВА ОН ТЮЛЕНЕВА ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Учебно-методическое пособие Казань 2013 УДК 510 Печатается по решению учебно-методической комиссии

Подробнее

Матрицы. Определители Л. В. Калиновская, Ю. Л. Калиновский, А. В. Стадник

Матрицы. Определители Л. В. Калиновская, Ю. Л. Калиновский, А. В. Стадник Матрицы. Определители Л. В. Калиновская, Ю. Л. Калиновский, А. В. Стадник Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего образования Московской

Подробнее

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ДК Агишева СА Зотова ВБ Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Волгоград Тема Матрицы Основные действия над ними Обратная матрица Матричный способ решения систем линейных

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ. АЛГЕБРА МАТРИЦ

АЛГЕБРА И ГЕОМЕТРИЯ. АЛГЕБРА МАТРИЦ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B:

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B: Лекция 3. Обратная матрица. Определитель произведения квадратных матриц. Обратная матрица, определение, основные свойства. Критерий обратимости матрицы. Элементарные преобразования матриц. Нахождение обратных

Подробнее

ТРАНСПОНИРОВАНИЕ МАТРИЦ

ТРАНСПОНИРОВАНИЕ МАТРИЦ матрица Для любой матрицы ТРАНСПОНИРОВАНИЕ МАТРИЦ a a an a a an am am amn a a am a a am, an an amn получающаяся из матрицы заменой строк соответствующими столбцами, а столбцов соответствующими строками,

Подробнее

Тема 1-7: Определители

Тема 1-7: Определители Тема 1-7: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1 семестр) Перестановки

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ НГ ЧЕРНЫШЕВСКОГО Кафедра дифференциальных уравнений и прикладной математики АС Суслова МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Учебное пособие

Подробнее

1. Векторные пространства и линейные операторы

1. Векторные пространства и линейные операторы ЛИНЕЙНАЯ АЛГЕБРА 1 Векторные пространства и линейные операторы Определение 1 Множество V называется векторным пространством (над полем действительных чисел R), если его элементы можно складывать между

Подробнее

Аналитическая геометрия. Лекция 1.1

Аналитическая геометрия. Лекция 1.1 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

Матрицы, определители и системы линейных уравнений

Матрицы, определители и системы линейных уравнений Федеральное агентство по образованию Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Матрицы определители и системы линейных уравнений Методические указания к решению задач Санкт-Петербург

Подробнее

ОПРЕДЕЛИТЕЛИ МАТРИЦ А.В.СТЕПАНОВ. R n. i 1,...,i m=1

ОПРЕДЕЛИТЕЛИ МАТРИЦ А.В.СТЕПАНОВ. R n. i 1,...,i m=1 ОПРЕДЕЛИТЕЛИ МАТРИЦ А.В.СТЕПАНОВ Содержание. Полилинейные отображения 2. Перестановки 3. Определение и формула для вычисления определителя 2 4. Свойства определителя 2 5. Формула для элементов обратной

Подробнее

Аналитическая геометрия. Лекция 1.1

Аналитическая геометрия. Лекция 1.1 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

3. РАНГ МАТРИЦЫ 3.1 ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ

3. РАНГ МАТРИЦЫ 3.1 ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ . РАНГ МАТРИЦЫ. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ Матрицы-столбцы (матрицы-строки) будем называть далее просто столбцами (соответственно строками) и обозначать в этой

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Основные формулы. n2, где. порядка по строке или столбцу:

Основные формулы. n2, где. порядка по строке или столбцу: . Линейная алгебра. Основные формулы. Определитель -го порядка: det A a a a a a a a a. a a a Определитель -го порядка (правило Саррюса): det A a a a a a a a a a + a a a + a a a a a a a a a a a a. Алгебраическое

Подробнее

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством Пусть дана квадратная матрица второго порядка ( ) a11 a A = 12 a 21 a 22 (1) Определитель второго порядка, соответствующий матрице (1), определяется равенством a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21

Подробнее

Элементы линейной алгебры

Элементы линейной алгебры Элементы линейной алгебры Линейная алгебра часть алгебры, изучающая линейные пространства и подпространства, линейные операторы, линейные, билинейные и квадратичные функции на линейных пространствах Литература

Подробнее

Лекция 1. Сайт лектора Колыбасовой Валентины Викторовны (конспекты лекций):

Лекция 1. Сайт лектора Колыбасовой Валентины Викторовны (конспекты лекций): Лекция 1 Сайт лектора Колыбасовой Валентины Викторовны (конспекты лекций): http://sites.google.com/site/vkolybasova Группы ВКонтакте, посвящённые обсуждению учебных вопросов: http://vk.com/vvkolybasova

Подробнее

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы.

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы. .4. Ранг матрицы. В матрице А выделим k строк и столбцов из элементов, стоящих на их пересечении составим определитель. Будем называть его минором k-того порядка. Если минор k-того порядка отличен от нуля,

Подробнее

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E, 31 Обратная матрица Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы 1 Критерий существования и свойства обратной матрицы Определение Пусть A квадратная

Подробнее

Лекция II. II.1. Определитель матрицы. a 1 a 2 b 1 b 2. = a 1b 2 a 2 b 1.

Лекция II. II.1. Определитель матрицы. a 1 a 2 b 1 b 2. = a 1b 2 a 2 b 1. Лекция II II.1. Определитель матрицы С каждой квадратной матрицей A можно связать некоторое число, называемое её определителем или детерминантом (обозначается deta или A ). Определителем (или детерминантом)

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА» НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ ЧАСТНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА И СОЦИАЛЬНОГО УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

Практическая работа 1 Операции над матрицами Цель: закрепить навыки выполнения действий над матрицами

Практическая работа 1 Операции над матрицами Цель: закрепить навыки выполнения действий над матрицами Практическая работа Операции над матрицами Цель: закрепить навыки выполнения действий над матрицами Содержание работы: Основные понятия Матрицей размерности m x n называется прямоугольная таблица m n чисел

Подробнее

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр лектор Панов АН 1 Наиболее часто задаваемые вопросы Вопрос 11 Что такое перестановка и что такое знак перестановки? Ответ Перестановка это множество

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ПРЕЗЕНТАЦИИ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ПРЕЗЕНТАЦИИ ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ПРЕЗЕНТАЦИИ Лекций ч. Практических занятий ч. Всего ч. Итоговый контроль экзамен. Проф., д.ф.-.м.н. Пантелеев Андрей Владимирович ЛИТЕРАТУРА. Беклемишев Д.В.

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 3. Элементы линейной алгебры (матрицы, определители, системы линейных уравнений и формулы Крамера) 1 Тема 1: Матрицы 1.1. Понятие

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

{ определение типы матриц сложение матриц умножение матриц свойства операции умножения умножение матрицы на число полином от матриц транспонирование

{ определение типы матриц сложение матриц умножение матриц свойства операции умножения умножение матрицы на число полином от матриц транспонирование { определение типы матриц сложение матриц умножение матриц свойства операции умножения умножение матрицы на число полином от матриц транспонирование матрицы примеры } Матрицей называется набор m элементов

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева МАТЕМАТИКА Методические рекомендации и задания контрольной работы для студентов, обучающихся по заочной форме по направлениям «Менеджмент», «Экономика» Составитель: старший преподаватель Н А Кривошеева

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

Определение 1.1. Таблица чисел (вещественных или комплексных) Число строк и столбцов матрицы А, если это необходимо, можно указать так:

Определение 1.1. Таблица чисел (вещественных или комплексных) Число строк и столбцов матрицы А, если это необходимо, можно указать так: Матрицы Определение и виды матриц Определение Таблица чисел (вещественных или комплексных) () состоящая из строк и столбцов называется прямоугольной матрицей размера Число строк и столбцов матрицы А если

Подробнее

Лекция 1. Алгебра матриц.

Лекция 1. Алгебра матриц. Лекция 1. Алгебра матриц. Прямоугольные и квадратные матрицы. Треугольные и диагональные матрицы. Транспонирование матриц. Сложение матриц, умножение матрицы на число, умножение матриц. Основные свойства

Подробнее

Рис Ввод матриц на рабочий лист

Рис Ввод матриц на рабочий лист МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ 11 Умножение матриц 12 Транспонирование матриц 13 Обратная матрица 14 Сложение матриц 15 Вычисление определителей Обратите внимание на особенность

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

1 МАТРИЦЫ. Матрицей размера m n называется совокупность чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов.

1 МАТРИЦЫ. Матрицей размера m n называется совокупность чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. МАТРИЦЫ Матрицей размера m n называется совокупность чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки и обозначают большими буквами

Подробнее

Лекция 10: Умножение матриц

Лекция 10: Умножение матриц Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции вводится операция умножения матриц, изучаются

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Лекции по аналитической геометрии и линейной алгебре, 2 семестр. Репин О.Н., под редакцией Зайцева Ю.В. 13 февраля 2006 г.

Лекции по аналитической геометрии и линейной алгебре, 2 семестр. Репин О.Н., под редакцией Зайцева Ю.В. 13 февраля 2006 г. Лекции по аналитической геометрии и линейной алгебре, 2 семестр Репин ОН, под редакцией Зайцева ЮВ 13 февраля 2006 г 1 Аннотация Данные лекции читались на радиофизическом факультете ННГУ им Лобачевского

Подробнее

Управление дистанционного обучения и повышения квалификации. Линейная алгебра ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Управление дистанционного обучения и повышения квалификации. Линейная алгебра ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Математика» Набор тестов для студентов очной формы обучения всех специальностей Автор

Подробнее

Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы

Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы Линейная алгебра Лекция Обратная матрица Ранг матрицы Обратная матрица Определение Матрица А - называется обратной по отношению к квадратной матрице если при умножении этой матрицы на данную матрицу как

Подробнее

ПРАКТИКУМ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

ПРАКТИКУМ ПО ЛИНЕЙНОЙ АЛГЕБРЕ Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ

Подробнее

ЗАДАЧНИК-ПРАКТИКУМ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

ЗАДАЧНИК-ПРАКТИКУМ ПО ЛИНЕЙНОЙ АЛГЕБРЕ А А КИРСАНОВ ЗАДАЧНИК-ПРАКТИКУМ ПО ЛИНЕЙНОЙ АЛГЕБРЕ МАТРИЦЫ ДЕТЕРМИНАНТЫ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ m m n n m n ПСКОВ ББК я К Печатается по решению кафедры алгебры и геометрии, и редакционно-издательского

Подробнее

Кафедра алгебры, геометрии и методики преподавания математики АЛГЕБРА (ЧАСТЬ 1)

Кафедра алгебры, геометрии и методики преподавания математики АЛГЕБРА (ЧАСТЬ 1) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А 8 Методические рекомендации по выполнению контрольны работ, курсовы работ К О Н Т Р О Л Ь Н А Я Р А Б О Т А Д и с ц и п л и н а «М а т е м а т и к а» ) Решить систему линейны уравнений методом Гаусса 7

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

С.Ж. КАРАТАБАНОВА ЛИНЕЙНАЯ АЛГЕБРА

С.Ж. КАРАТАБАНОВА ЛИНЕЙНАЯ АЛГЕБРА АЛМАТИНСКИЙ ФИЛИАЛ НЕГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ ПРОФСОЮЗОВ» СЖ КАРАТАБАНОВА ЛИНЕЙНАЯ АЛГЕБРА задания

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЗАДАЧНИК-ПРАКТИКУМ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

ЗАДАЧНИК-ПРАКТИКУМ ПО ЛИНЕЙНОЙ АЛГЕБРЕ А А КИРСАНОВ ЗАДАЧНИК-ПРАКТИКУМ ПО ЛИНЕЙНОЙ АЛГЕБРЕ МАТРИЦЫ ДЕТЕРМИНАНТЫ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ m m n n m n ПСКОВ PDF создан незарегистрированной версией pdffctory Pro wwwpdffct ББК я К Печатается

Подробнее

ЛЕКЦИЯ 2. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными

ЛЕКЦИЯ 2. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными ЛЕКЦИЯ. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными ) коэффициенты которого составляют квадратную матрицу второго порядка

Подробнее