2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ"

Транскрипт

1 . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений удовлетворяющих с заданной точностью данному уравнению и состоит из следующих основных этапов:. Отделение изоляция локализация корней уравнения.. Уточнение с помощью некоторого вычислительного алгоритма конкретного выделенного корня с заданной точностью. Целью первого этапа является нахождение отрезков из области определения функции внутри которых содержится только один корень решаемого уравнения. Иногда ограничиваются рассмотрением лишь какой-нибудь части области определения вызывающей по тем или иным соображениям интерес. Для реализации данного этапа используются графические или аналитические способы. При аналитическом способе отделения корней полезна следующая теорема []: Теорема.. Непрерывная строго монотонная функция имеет и притом единственный нуль на отрезке [ a b] тогда и только тогда когда на его концах она принимает значения разных знаков. Достаточным признаком монотонности функции на отрезке [ a b] является сохранение знака производной функции. Графический способ отделения корней целесообразно использовать в том случае когда имеется возможность построения графика функции y. Наличие графика исходной функции дает непосредственное представление о количестве и расположении нулей функции что позволяет определить промежутки внутри которых содержится только один корень. Если построение графика функции y вызывает затруднение часто оказывается удобным преобразовать уравнение. к эквивалентному виду и построить графики функций y и y. Абсциссы точек пересечения этих графиков будут соответствовать значениям корней решаемого уравнения. Так или иначе при завершении первого этапа должны быть определены промежутки на каждом из которых содержится только один корень уравнения.

2 Для уточнения корня с требуемой точностью обычно применяется какой-либо итерационный метод заключающийся в построении числовой последовательности сходящейся к искомому корню уравнения.. Метод половинного деления. Процесс уточнения корня уравнения. на отрезке [ a b] при условии что функция непрерывна на этом отрезке заключается в следующем [3]. a b Исходный отрезок делится пополам. Если то a b - является a b a b корнем уравнения. Если то выбирается та из половин a или a b b на концах которой функция имеет противоположные знаки. Новый суженный отрезок [ a b ] снова делится пополам и проводится то же рассмотрение и т.д. В результате на каком-то этапе либо находится точный корень уравнения либо имеется последовательность вложенных друг в друга отрезков [ a b ] [ a b ] [ a b ] для которых a b < Если требуется найти корень с точностью ε то деление отрезка пополам продолжается до тех пор пока длина отрезка не станет меньше последнего отрезка даст значение корня с требуемой точностью. ε. Тогда середина Метод Ньютона метод касательных. При нахождении корня уравнения. методом Ньютона итерационный процесс определяется формулой. Для начала вычислений требуется задание начального приближения. Условия сходимости метода определяются следующей теоремой []: Теорема.. Пусть на отрезке [ab] функция имеет первую и вторую производные постоянного знака и пусть a b <. Тогда если точка выбрана на [ab] так что >.3 то начатая с нее последовательность определяемая методом Ньютона. монотонно сходится к корню a b уравнения..

3 В качестве условия окончания итераций в практических вычислениях часто используется правило < ε. Метод секущих. Использование метода Ньютона предполагает вычисление на каждой итерации значения функции и ее производной. Заменяя производную функции приближенным разностным отношением и подставляя его в. получаем итерационную формулу метода секущих.4 Использование этого метода избавляет от необходимости расчета производной функции в процессе вычислений. Метод является двухшаговым; как видно из формулы.4 результат -го шага зависит от результатов -го и -го шагов. Для выполнения первой итерации требуется задание двух начальных точек и. Выбор начальной точки осуществляется по тому же принципу что и в методе касательных например используя условие.3. Вторая начальная точка выбирается в непосредственной близости от желательно между точкой и искомым корнем. Окончание счета по методу секущих учитывая его быструю сходимость можно контролировать путем проверки на малость модуля или модуля невязки []. Метод простой итерации. При использовании метода простой итерации уравнение. заменяется эквивалентным уравнением с выделенным линейным членом Решение ищется путем построения последовательности.5.6 начиная с некоторого заданного значения. Если - непрерывная функция а решением уравнения.5. - сходящаяся последовательность то значение lim является Условия сходимости метода и оценка его погрешности определяются теоремой []: Теорема.3. Пусть функция определена и дифференцируема на отрезке [ab]. Тогда если выполняются условия: [ a b] [ a b] : < a b то уравнение.5 имеет и притом единственный на [ab] корень ;

4 к этому корню сходится определяемая методом простой итерации последовательность начинающаяся с любого [ a b]. При этом справедливы оценки погрешности N :.7. Пример.. Решить уравнение e с точностью ε 3. Решение. Для локализации корней применим графический способ. Преобразуем исходное уравнение к следующему эквивалентному виду: e 4 3 Построив графики функций e и 4 3 рис.. определяем что у решаемого уравнения имеется только один корень который находится в интервале.4 < <.6. Рис.. Уточним значение корня с требуемой точностью пользуясь методами приведенными выше. Метод половинного деления. В качестве исходного отрезка выберем [.4.6]. Результаты дальнейших вычислений согласно приведенному выше алгоритму содержатся в таблице..

5 Таблица. a b a b a b [.474] a b Метод Ньютона. Для корректного использования данного метода необходимо в соответствии с теоремой. определить поведение первой и второй производной функции на интервале уточнения корня и правильно выбрать начальное приближение. Для функции e 3 4 имеем: e 3 4e - положительные во всей области определения функции. В качестве начального приближения можно выбрать правую границу интервала.6 для которой выполняется неравенство.3:.6.6 > Дальнейшие вычисления проводятся по формуле. где e 3 4 e 3. Итерации завершаются при выполнении условия < ε. Результаты вычислений содержатся в таблице.. Таблица / [.4737] Метод секущих. В качестве начальных точек зададим:.6 и. 59. Дальнейшие вычисления проводятся по формуле.4 где e 3 4. Итерации завершаются при выполнении условия < ε. Результаты вычислений содержатся в таблице.3.

6 Таблица [.4737] Метод простой итерации. Уравнение.8 можно записать в виде 4 e.9 3 или l Из двух этих вариантов приемлемым является вариант. так как взяв за основной l4 3 интервал.4.55 и положив будем иметь: [.4.55] [.4.55] 3. Отсюда на интервале.4.55 < Условия теоремы.3 выполнены. В качестве начального приближения положим Вычисляем последовательные приближения с одним запасным знаком по формуле l4 3.6 где. В соответствии с.7 достижение требуемой точности контролируется условием ε. Результаты вычислений приведены в таблице.4. Таблица [.4738]

7 Замечание. Если непосредственное преобразование уравнения. к виду.5 не позволяет получить уравнение для которого выполняются условия сходимости метода простой итерации можно преобразовать уравнение. к следующему эквивалентному уравнению λ. Данное уравнение имеет вид.5 с λ. Здесь λ - параметр который подбирается таким образом [3] чтобы в нужной области выполнялось неравенство λ <... РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Систему нелинейных уравнений с неизвестными можно записать в виде. или более коротко в векторной форме где - вектор неизвестных величин - вектор-функция... В редких случаях для решения такой системы удается применить метод последовательного исключения неизвестных и свести решение исходной задачи к решению одного нелинейного уравнения с одним неизвестным. Значения других неизвестных величин находятся соответствующей подстановкой в конкретные выражения. Однако в подавляющем большинстве случаев для решения систем нелинейных уравнений используются итерационные методы. В дальнейшем предполагается что ищется изолированное решение нелинейной системы. Как и в случае одного нелинейного уравнения локализация решения может осуществляться на основе специфической информации по конкретной решаемой задаче например по физическим соображениям и - с помощью методов математического анализа. При решении системы двух уравнений достаточно часто удобным является графический способ когда месторасположение корней определяется как точки пересечения кривых на плоскости.

8 Метод Ньютона. Если определено начальное приближение итерационный процесс нахождения решения системы. методом Ньютона можно представить в виде T.3 где значения приращений определяются из решения системы линейных алгебраических уравнений все коэффициенты которой выражаются через известное предыдущее приближение.4 В векторно-матричной форме расчетные формулы имеют вид.5 где вектор приращений находится из решения уравнения.6 J Здесь J - матрица Якоби первых производных векторфункции.

9 Выражая из.6 вектор приращений и подставляя его в.5 итерационный процесс нахождения решения можно записать в виде J.7 где J - матрица обратная матрице Якоби. Формула.7 есть обобщение формулы. на случай систем нелинейных уравнений. При реализации алгоритма метода Ньютона в большинстве случаев предпочтительным является не вычисление обратной матрицы J а нахождение из системы.4 значений приращений и вычисление нового приближения по.3. Для решения таких линейных систем можно привлекать самые разные методы как прямые так и итерационные см. раздел. с учетом размерности решаемой задачи и специфики матриц Якоби J например симметрии разреженности и т.п.. Использование метода Ньютона предполагает дифференцируемость функций и невырожденность матрицы Якоби det J. В случае если начальное приближение выбрано в достаточно малой окрестности искомого корня итерации сходятся к точному решению причем сходимость квадратичная. В практических вычислениях в качестве условия окончания итераций обычно используется критерий [5] ε.8 где ε - заданная точность. Пример.. Методом Ньютона найти положительное решение системы нелинейных уравнений с точностью ε 4..9 Решение. Для выбора начального приближения применяем графический способ. Построив на плоскости находится в квадрате в интересующей нас области кривые и рис.. определяем что положительное решение системы уравнений < < <.5.5 <..

10 Рис.. За начальное приближение примем Для системы двух уравнений расчетные формулы.3.4 удобно записать в виде разрешенном относительно det det det det J A J A. где J A A. В рассматриваемом примере:

11 Подставляя в правые части соотношений. выбранные значения получим приближение используемое в свою очередь для нахождения. Итерации продолжаются до выполнения условия.8 где ma i i. i Результаты вычислений содержатся в таблице.5. Таблица det A det A det J Метод простой итерации. При использовании метода простой итерации система уравнений. приводится к эквивалентной системе специального вида.. или в векторной форме. где функции - определены и непрерывны в некоторой окрестности T искомого изолированного решения. T Если выбрано некоторое начальное приближение последующие приближения в методе простой итерации находятся по формулам

12 ..3 или в векторной форме.4 Если последовательность векторов сходится то она сходится к решению. T T Достаточное условие сходимости итерационного процесса.3 формулируется следующим образом [3]: Теорема.4. Пусть вектор-функция непрерывна вместе со своей производной в ограниченной выпуклой замкнутой области G и ma < G.5 где - постоянная. Если и все последовательные приближения G также содержатся в G то процесс итерации.3 сходится к единственному решению уравнения в области G и справедливы оценки погрешности N :.6 Пример.. продолжение. Найти положительное решение системы.9 методом простой итерации с точностью. 4 ε Преобразуем исходную систему уравнений.9 к виду

13 Проверим выполнение условия.5 в области : G Для этого найдем j j i i G G ma ma ma.7 Так как то в области G имеем ma < G. Следовательно если последовательные приближения не покинут области что легко обнаружить в процессе вычислений то итерационный процесс будет сходящимся. G В качестве начального приближения примем. Последующие приближения определяем как.75.5 где В соответствии с.6 вычисления завершаются при выполнении условия ε где ma i i i. Результаты вычислений содержатся в таблице.6

14 Таблица Замечание. В случае когда при анализе сходимости конкретной итерационной схемы проверка условия.7 является затруднительной можно определить норму «мажорирующей матрицы» [56] M с элементами m ij i ma G j так что ma M G. Если Μ < то последовательные приближения сходятся к решению.

1. Численные методы решения уравнений

1. Численные методы решения уравнений 1. Численные методы решения уравнений 1. Системы линейных уравнений. 1.1. Прямые методы. 1.2. Итерационные методы. 2. Нелинейные уравнения. 2.1. Уравнения с одним неизвестным. 2.2. Системы уравнений. 1.

Подробнее

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ После изучения данной темы вы сможете: проводить численное решение задач линейной алгебры. К решению систем линейных уравнений сводятся многочисленные практические задачи, решение

Подробнее

Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений»

Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений» Лабораторная работа по теме «Тема.. Методы решения нелинейных уравнений» Перейти к Теме. Теме. Огл.... Вопросы, подлежащие изучению. Постановка задачи численного решения нелинейных уравнений.. Этапы численного

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC.

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC. ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC. Машкова Е.Г., Покришка О.И. Донской Государственный Технический Университет (ДГТУ) Ростов-на-Дону,

Подробнее

1 Элеметарная теория погрешностей. 2

1 Элеметарная теория погрешностей. 2 Содержание Элеметарная теория погрешностей. Решение СЛАУ. 4. Нормы в конечномерных пространствах... 4. Обусловленность СЛАУ............ 5.3 Итерационные методы решения линейных систем......................

Подробнее

Нелинейные алгебраические уравнения Системы алгебраических уравнений. Скалько Юрий Иванович Цыбулин Иван

Нелинейные алгебраические уравнения Системы алгебраических уравнений. Скалько Юрий Иванович Цыбулин Иван Системы алгебраических уравнений Скалько Юрий Иванович Цыбулин Иван Скалярные уравнения Постановка задачи Дана функция f (x). Найти решение уравнения f (x) = 0 В отличие от случая линейного уравнения,

Подробнее

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г.

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г. А. П. Иванов Методические указания Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений факультет ПМ ПУ СПбГУ 2007 г. Оглавление 1. Решение скалярных уравнений...........................

Подробнее

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Лабораторная работа Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Постановка задачи: Требуется найти безусловный минимум функции одной переменной (

Подробнее

ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА 4.6. РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ. Синтаксис оператора:

ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА 4.6. РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ. Синтаксис оператора: Синтаксис оператора: ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА DO [{ WHILE UNTIL } ] [] []... [] LOOP [{ WHILE UNTIL } ] где ключевые слова переводятся следующим

Подробнее

Государственное бюджетное образовательное учреждение среднего профессионального образования

Государственное бюджетное образовательное учреждение среднего профессионального образования Государственное бюджетное образовательное учреждение среднего профессионального образования «Владимирский авиамеханический колледж» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине ЧИСЛЕННЫЕ

Подробнее

Лабораторная работа 2

Лабораторная работа 2 Лабораторная работа Цель работы: Закрепление навыков работы с основными синтаксическими конструкциями языка Си и умения организовывать циклы и выполнять вычисления.. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.. Методы решения

Подробнее

Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ. Содержание

Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ. Содержание Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ Постановка вопроса Содержание Некоторые напоминания Итерационные методы решения уравнений. Сжимающие отображения. Принцип неподвижной

Подробнее

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин Лекция ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ЦЕЛЬ ЛЕКЦИИ: построить метод линеаризации функций случайных величин; ввести понятие комплексной случайной величины и получить ее числовые характеристики; определить характеристическую

Подробнее

Рассмотрим в качестве функциональной зависимости многочлен., тогда

Рассмотрим в качестве функциональной зависимости многочлен., тогда Лекция 5. Аппроксимация функций по методу наименьших квадратов. В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Построение кривых... 1.План исследования и построения кривых...

Построение кривых... 1.План исследования и построения кривых... Содержание Построение графиков функций............. План исследования функции при построении графика... Основные понятия и этапы исследования функции..... Область определения функции D f и множество значений

Подробнее

Исследование областей сходимости численных методов второго порядка

Исследование областей сходимости численных методов второго порядка Электронный научный журнал «Вестник Омского государственного педагогического университета» Выпуск 6 www.oms.edu А.Т. Когут, Н.Ю. Безбородова Омский государственный университет путей сообщения Исследование

Подробнее

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач.

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных

Подробнее

- столбец напряжений в узлах схемы;

- столбец напряжений в узлах схемы; Лекция 5. Основные уравнения и граничные условия, описывающие электростатическое поле. Расчеты установившихся режимов необходимы при выборе конфигурации схемы электрической системы и параметров ее элементов,

Подробнее

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход.

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход. Метод Ритца Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты

Подробнее

4. ЧИСЛЕННЫЕ МЕТОДЫ ПОИСКА БЕЗУСЛОВНОГО ЭКСТРЕМУМА

4. ЧИСЛЕННЫЕ МЕТОДЫ ПОИСКА БЕЗУСЛОВНОГО ЭКСТРЕМУМА Лекция 3 4. ЧИСЛЕННЫЕ МЕТОДЫ ПОИСКА БЕЗУСЛОВНОГО ЭКСТРЕМУМА Принципы построения численных методов. Применение необходимых и достаточных условий безусловного экстремума эффективно для решения ограниченного

Подробнее

Ростов на Дону 2003г.

Ростов на Дону 2003г. Министерство Образования Российской Федерации Ростовский государственный университет И. В. МОРШНЕВА С. Н. ОВЧИННИКОВА Методические указания ЧИСЛЕННОЕ РЕШЕНИЕ КРАЕВЫХ ЗАДАЧ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методические

Подробнее

Численные методы Тема 2. Интерполяция

Численные методы Тема 2. Интерполяция Численные методы Тема 2 Интерполяция В И Великодный 2011 2012 уч год 1 Понятие интерполяции Интерполяция это способ приближенного или точного нахождения какой-либо величины по известным отдельным значениям

Подробнее

Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна

Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна Дисциплина «Углубленный курс информатики» Лекция 2 Приближенные методы решения нелинейных уравнений Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна 2016 План лекции Нелинейные уравнения Определение

Подробнее

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра прикладной математики М.В. Лукина МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

Подробнее

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям РЕФЕРАТ Выпускная квалификационная работа по теме «Численная идентификация правой части параболического уравнения» содержит 45 страниц текста 4 приложения 6 использованных источников 4 таблицы ОБРАТНАЯ

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

ПРИКЛАДНАЯ МАТЕМАТИКА: ЧИСЛЕННЫЕ МЕТОДЫ

ПРИКЛАДНАЯ МАТЕМАТИКА: ЧИСЛЕННЫЕ МЕТОДЫ МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ФИНАНСОВЫЙ ИНСТИТУТ БАБАДЖАНОВ Ш.Ш. ПРИКЛАДНАЯ МАТЕМАТИКА: ЧИСЛЕННЫЕ МЕТОДЫ Ташкент 04 Бабаджанов Ш.Ш. Прикладная

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения. Кафедра Математики и математических методов в экономике. Направление подготовки 05000

Подробнее

Применение интервального метода Ньютона и его модификации для решения задачи поиска глобального оптимума функций

Применение интервального метода Ньютона и его модификации для решения задачи поиска глобального оптимума функций Применение интервального метода Ньютона и его модификации для решения задачи поиска глобального оптимума функций М. А. Лядова Новосибирский государственный университет e-mail: tilvit-teg@rambler.ru Н.

Подробнее

x i Определение. Задача нахождения значения интерполяционной функции F x в точке не совпадающей ни с одной абсциссой интерполяционных узлов x,

x i Определение. Задача нахождения значения интерполяционной функции F x в точке не совпадающей ни с одной абсциссой интерполяционных узлов x, ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ Дано: точки наблюдения y (их количество + ) a b ; ; y y y y y Найти функцию : F F : y Определение Точки y называются узлами интерполяции Графическая интерпретация

Подробнее

Решение обыкновенных дифференциальных уравнений.

Решение обыкновенных дифференциальных уравнений. Решение обыкновенных дифференциальных уравнений Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывно меняются со временем t Эти

Подробнее

ГЛОБАЛЬНАЯ ОПТИМИЗАЦИЯ И МЕТОДЫ НАХОЖДЕНИЯ ВСЕХ КОРНЕЙ СИСТЕМ НЕЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ. В. П. Булатов, Т. И. Белых

ГЛОБАЛЬНАЯ ОПТИМИЗАЦИЯ И МЕТОДЫ НАХОЖДЕНИЯ ВСЕХ КОРНЕЙ СИСТЕМ НЕЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ. В. П. Булатов, Т. И. Белых ДИСКРЕТНЫЙ АНАЛИЗ И ИССЛЕДОВАНИЕ ОПЕРАЦИЙ Январь июнь 2006. Серия 2. Том 13, 1. 3 9 УДК 519.853.4 ГЛОБАЛЬНАЯ ОПТИМИЗАЦИЯ И МЕТОДЫ НАХОЖДЕНИЯ ВСЕХ КОРНЕЙ СИСТЕМ НЕЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ В. П.

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ. Математические модели и численные методы

ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ. Математические модели и численные методы ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ Математические модели и численные методы Математические модели содержат соотношения, составленные на основе теоретического анализа изучаемых процессов или полученные

Подробнее

Министерство образования Российской Федерации Владимирский государственный университет Кафедра автоматических и мехатронных систем

Министерство образования Российской Федерации Владимирский государственный университет Кафедра автоматических и мехатронных систем Министерство образования Российской Федерации Владимирский государственный университет Кафедра автоматических и мехатронных систем ПРОГРАММИРОВАНИЕ И ОСНОВЫ АЛГОРИТМИЗАЦИИ Практикум Часть Составитель:

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики. Занятие. Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.. Вспомнить свойства степени с рациональным показателем. a a a a a для натурального раз

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Отделение корней Пусть дано уравнение f ( 0, () где функция f ( C[ a; Определение Число f ( ) 0 x называется корнем уравнения () или нулем функции f (,

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

Институт радиоэлектроники и информационных технологий

Институт радиоэлектроники и информационных технологий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.

Подробнее

Тема 3. Численные методы решения задачи аппроксимации

Тема 3. Численные методы решения задачи аппроксимации Тема. Численные методы решения задачи аппроксимации Будем считать, что является функцией аргумента. Это означает, что любому значению из области определения поставлено в соответствие значение. На практике

Подробнее

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями)

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) 10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Представьте выражение в виде многочлена стандартного вида и найдите его

Подробнее

Спец. Разделы основ ИТ и программирования Лабораторная работа 1 ТЕМА: ЭЛЕКТРОННАЯ ТАБЛИЦА EXCEL. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

Спец. Разделы основ ИТ и программирования Лабораторная работа 1 ТЕМА: ЭЛЕКТРОННАЯ ТАБЛИЦА EXCEL. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. ТЕМА: ЭЛЕКТРОННАЯ ТАБЛИЦА EXCEL. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. ЦЕЛЬ РАБОТЫ: научиться решать нелинейные уравнения средствами EXCEL методом половинного деления; с помощью инструмента «Подбор

Подробнее

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса.

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Для численного решения нелинейных задач в различных ситуациях используют как линейные, так и нелинейные схемы. Устойчивость соответствующих

Подробнее

ПОИСК МИНИМУМА ФУНКЦИЙ, КОТОРЫЕ ИМЕЮТ РАЗРЫВЫ ЧАСТНЫХ ПРОИЗВОДНЫХ

ПОИСК МИНИМУМА ФУНКЦИЙ, КОТОРЫЕ ИМЕЮТ РАЗРЫВЫ ЧАСТНЫХ ПРОИЗВОДНЫХ УДК 59.8 О. А. Юдин, аспирант ПОИСК МИНИМУМА ФУНКЦИЙ, КОТОРЫЕ ИМЕЮТ РАЗРЫВЫ ЧАСТНЫХ ПРОИЗВОДНЫХ Проанализированы возможные варианты решения задачи поиска минимума функции, которая имеет разрыв частной

Подробнее

Лекция 27 Глава 3. Системы линейных неравенств 3.1. Основные понятия

Лекция 27 Глава 3. Системы линейных неравенств 3.1. Основные понятия Лекция 7 Глава. Системы линейных неравенств.. Основные понятия Системы линейных неравенств применяются для решения различных математических задач. Системой линейных неравенств из с неизвестными система

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ

ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ Основная задача теории погрешностей состоит в оценке погрешности результата вычислений при известных погрешностях исходных данных. Источники и классификация погрешностей результата

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

Матричная форма записи

Матричная форма записи Матричная форма записи b x x x b x x x b x x x 2 2 1 1 2 2 2 22 1 21 1 1 2 12 1 11 Ax b A 2 1 2 22 21 1 12 11 b b b b 2 1 x x x x 2 1 Пусть имеется система уравнений для которой существуют точные значения

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

5. Нелинейные уравнения и системы в MathCAD

5. Нелинейные уравнения и системы в MathCAD 5. Нелинейные уравнения и системы в MathCAD Рассмотрим возможности численного и символьного решения уравнений средствами MathCAD. 5.1. Решение нелинейных уравнений В общем случае аналитическое решение

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЁЖИ И СПОРТА УКРАИНЫ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «НАЦИОНАЛЬНЫЙ ГОРНЫЙ УНИВЕРСИТЕТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЁЖИ И СПОРТА УКРАИНЫ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «НАЦИОНАЛЬНЫЙ ГОРНЫЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОЛОДЁЖИ И СПОРТА УКРАИНЫ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «НАЦИОНАЛЬНЫЙ ГОРНЫЙ УНИВЕРСИТЕТ» Кафедра геофизических методов разведки МЕТОДИЧЕСКИЕ УКАЗАНИЯ к лабораторной

Подробнее

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость .. Линейная корреляционная зависимость Часто на практике требуется установить вид и оценить силу зависимости изучаемой случайной величины Y от одной или нескольких других величин (случайных или неслучайных).

Подробнее

2. Задача Коши для дифференциального уравнения первого порядка. Теорема о существовании и единственности решения. Геометрический смысл теоремы.

2. Задача Коши для дифференциального уравнения первого порядка. Теорема о существовании и единственности решения. Геометрический смысл теоремы. 1 1. Определение дифференциального уравнения первого порядка. Его общее и частное решение, частный и общий интеграл. Запись уравнения в нормальной форме. 2. Задача Коши для дифференциального уравнения

Подробнее

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ Вектором называется количественная характеристика, имеющая не только числовую величину, но и направление Иногда говорят, что вектор это направленный отрезок Векторная система

Подробнее

Численные методы и моделирование на ЭВМ

Численные методы и моделирование на ЭВМ Министерство образования и науки, молодежи и спорта Донбасская государственная машиностроительная академия Составитель Костиков А.А. Численные методы и моделирование на ЭВМ Методические указания к выполнению

Подробнее

Приближенное вычисление определенных интегралов. 1. Формула трапеций.

Приближенное вычисление определенных интегралов. 1. Формула трапеций. ЛЕКЦИЯ N 7. Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов..... Формула трапеций.....формула парабол.... Несобственные интегралы....

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость.

Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость. Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных и нелинейных дифференциальных уравнений

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ ЭЙЛЕРА

НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ ЭЙЛЕРА МЕЖДУНАРОДНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ «Актуальные проблемы современной математики механики и информатики» «ТАРАПОВСКИЕ ЧТЕНИЯ -» НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

Решение нелинейных уравнений

Решение нелинейных уравнений Решение нелинейных уравнений Постановка задачи и этапы решения Дано: уравнение с одним неизвестным f(x)=0; точность Найти: корни уравнения точки x*, такие что f(x*)=0 Этапы решения: 1) Отделение корней:

Подробнее

Вопросы к экзамену по курсу 1-2 модулей

Вопросы к экзамену по курсу 1-2 модулей На устном экзамене студент получает два вопроса и две задачи. Вопросы к экзамену по курсу 1- модулей 1. Расскажите о числах: натуральных, целых, рациональных и иррациональных. Расскажите о числовой прямой

Подробнее

1.Последовательности комплексных чисел. Предел.

1.Последовательности комплексных чисел. Предел. ЛЕКЦИЯ N33. Функции комплексного переменного. Пределы. Непрерывность. Элементарные функции. Дифференцирование ФКП. Свойства производных. 1.Последовательности комплексных чисел. Предел.... 1.Ограниченные

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ПРОГРАММА ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО МАТЕМАТИКЕ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ в 2018 году

ПРОГРАММА ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО МАТЕМАТИКЕ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ в 2018 году ПРОГРАММА ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО МАТЕМАТИКЕ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ в 2018 году В экзаменационной работе проверяется следующий учебный материал: 1. Математика, 5 6 классы;

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

Численные методы решения нелинейных и трансцендентных уравнений

Численные методы решения нелинейных и трансцендентных уравнений 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ВОСТОЧНО-СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Методические указания к лабораторным работам по курсу «Информатика» для студентов строительного факультета

Подробнее

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет Министерство образования и науки Российской Федерации Федеральное агентство по образованию Пензенский государственный университет Руденко АК, Руденко МН, Семерич ЮС СБОРНИК ЗАДАЧ С РЕШЕНИЯМИ ДЛЯ ПОДГОТОВКИ

Подробнее

Лекция 3. Интегральный признак

Лекция 3. Интегральный признак С. А. Лавренченко www.lwreceko.ru Лекция Интегральный признак Перед прослушиванием этой лекции рекомендуется повторить несобственные интегралы (лекция 9 и практическое занятие 9 из модуля «Интегральное

Подробнее

Методы решения сеточных уравнений

Методы решения сеточных уравнений Методы решения сеточных уравнений 1 Прямые и итерационные методы В результате разностной аппроксимации краевых и начально-краевых задач математической физики получаются СЛАУ матрицы которых обладают следующими

Подробнее

Об одном методе исследования зависимости решения задачи линейного программирования от параметров

Об одном методе исследования зависимости решения задачи линейного программирования от параметров 180 Прикладная математика, управление, экономика ТРУДЫ МФТИ. 014. Том 6, 1 УДК 519.65 Е. А. Умнов, А. Е. Умнов Московский физико-технический институт (государственный университет) Об одном методе исследования

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Основные понятия и формулы Определение 1 Производной функции в точке называется предел отношения приращения функции к приращению аргумента, при условии, что приращение аргумента

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

Параметрический анализ в задачах математического программирования

Параметрический анализ в задачах математического программирования ТРУДЫ МФТИ. 014. Том 6, 3 Е. А. Умнов, А. Е. Умнов 73 УДК 519.65 Е. А. Умнов, А. Е. Умнов Московский физико-технический институт (государственный университет) Параметрический анализ в задачах математического

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

Практикум: «Формула Тейлора». Если функция f (x)

Практикум: «Формула Тейлора». Если функция f (x) Практикум: «Формула Тейлора» Если функция f () имеет производные до (п +)-го порядка включительно в интервале ( 0, 0 ), 0, то для всех х из этого интервала справедлива формула Тейлора (порядка п) ( ) f

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами:

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами: Вариант 7 Найти область определения функции : y Область определения данной функции определяется двумя неравенствами: и > Второе неравенство выполняется при всех значениях Корнями уравнения являются числа

Подробнее

Содержание учебного курса «Алгебра»

Содержание учебного курса «Алгебра» Планируемые результаты освоения учебного курса «Алгебра» В результате изучения курса алгебры в 8 классе учащиеся должны знать/понимать: значение математической науки для решения задач, возникающих в теории

Подробнее

«Математический анализ»

«Математический анализ» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени НЭ БАУМАНА Билеты для сдачи экзамена по курсу «Математический анализ» МГТУ имени НЭ Баумана МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени

Подробнее

1., 2., 3., где а, d постоянные числа.

1., 2., 3., где а, d постоянные числа. ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь

Подробнее

Предел. Непрерывность.

Предел. Непрерывность. Функция. 1 1. Какие числа образуют множество действительных чисел? 2. Что называется числовой осью? 3. Что называется интервалом? 4. Определить понятие окрестности точки. 5. Что называется абсолютной величиной?

Подробнее

7. КВАДРАТИЧНЫЕ ФОРМЫ. n. Это условие не ограничивает общности, так как сумму двух подобных членов

7. КВАДРАТИЧНЫЕ ФОРМЫ. n. Это условие не ограничивает общности, так как сумму двух подобных членов 7 КВАДРАТИЧНЫЕ ФОРМЫ 7 ОПРЕДЕЛЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ Квадратичной формой переменных,, называется выражение вида q a, 7 в котором коэффициенты a, не все равные нулю, удовлетворяют условиям симметричности

Подробнее

Первые шаги в решении уравнений и неравенств с параметром

Первые шаги в решении уравнений и неравенств с параметром КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ МАТЕМАТИКИ И МЕХАНИКИ ИМ. Н.И.ЛОБАЧЕВСКОГО Кафедра теории и технологий преподавания математики и информатики Фалилеева М.В. Первые шаги в решении уравнений и

Подробнее