5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1)

Размер: px
Начинать показ со страницы:

Download "5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1)"

Транскрипт

1 Лекция 5 5 Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ Постановка задачи Задача Коши для нормальной системы ОДУ x = f (, x), () состоит в отыскании решения x = x (), удовлетворяющего начальным условиям x = x () В () () введены обозначения: {,, m m x = x x }, f ( x, ) = { f ( x, ),, f ( x, )}, где верхние f x, индексы - номера координат вектора, а вектор-функция мерного пространства переменных ( x) y = max y задана в области G ( m + ), Далее также будем использовать норму вектора и норму вектор-функции f (, x ) = maxmax f(, x ) =,, m [ a; b] Предположим, что выполнены следующие условия f x, (У) Пусть определена и непрерывна в замкнутом ( m + ) {,,,,, } - мерном пераллелепипеде D = a x x b = m, те существует постоянная M такая, что f ( x, ) M в D (У) Пусть f ( x, ) удовлетворяет условию Липшица, те существует постоянная N >, не зависящая от такая, что всюду в замкнутом параллепипеде D выполнено неравенство m j j f, y f, z N y z j= Замечание Условие (У) будет выполнено, в частности, если все частные производные f ( x, ) непрерывны в D j x Замечание Так же, как и для скалярного случая, имеет место следующее утверждение: Лемма Пусть вектор-функция f ( x, ) удовлетворяет (У) в D Тогда задача Коши для системы () эквивалентна интегральному уравнению x () = x + f ( τ, x ( τ) ) dτ (3) в классе непрерывных функций Доказательство практически дословно повторяет доказательство аналогичной леммы из Теорема Пусть выполнены условия (У) и (У) Тогда решение задачи () () существует и единственно на отрезке [ H; + H] Доказательство можно провести с помощью метода последовательных приближений аналогично доказательству Теоремы в для скалярного случая Здесь мы докажем эту теорему с помощью принципа сжимающих отображений, который подробно рассмотрен в курсе «Интегральные уравнения Вариационное исчисление» Принцип сжимающих отображений

2 Напомним основные понятия, следуя указанному выше курсу лекций Пусть задан, вообще говоря, нелинейный оператор ˆΦ с множеством определения D, лежащем в банаховом пространстве B Определение Элемент (точка) y B называется неподвижной точкой оператора ˆΦ, если Φ ˆ ( y) = y Определение Оператор ˆΦ называется сжимающим (или сжимающим отображением) на множестве D, если существует постоянная q (;] такая, что для любых элементов y, y D выполняется неравенство Φˆ( y ˆ ) Φ( y) q y y Следующая теорема является незначительной модификацией теоремы о неподвижной точке, доказанной в курсе лекций по интегральным уравнениям, например, в 9 (лекция 6) учебника ВТ Волков, АГ Ягола «Интегральные уравнения Вариационное исчисление (курс лекций)» М, КДУ, 9 Теорема (о неподвижной точке) Пусть оператор ˆΦ отображает замкнутое подмножество D банахова пространства B в себя и является сжимающим в D Тогда: ) в D существует единственная неподвижная точка y: Φ ˆ ( y) = y оператора ˆΦ ; ) эта точка может быть найдена методом последовательных приближений y ˆ + ( y ) где y D произвольная фиксированная точка, и y y: y =Φ ˆ ( y) 3 Доказательство Теоремы Определим оператор Φˆ ( x ), действующий в пространстве непрерывных векторных функций ˆ Φ ( x) = x + f τ, x( τ) dτ (4) Теперь задачу решения интегрального уравнения (3) можно рассматривать как задачу нахождения неподвижной точки оператора ˆ Φ( x) m b Обозначим H = m a, Аналогично тому, как было сделано в, можно M показать, что решение задачи () (), если оно существует, находится в параллепипеде DH = { H, x x b, =,,, m} Таким образом, оператор ˆ Φ( x) действует на множестве непрерывных функций, графики которых лежат в замкнутом параллелепипеде D H Покажем, что если H достаточно мало, то оператор Φˆ ( x ) является сжимающим Действительно, для любых x, y DH имеем ˆ ( см определение нормы) max max,, =,, m [ H; + H] Φˆ x Φ y = = f s x s f s y s ds j j max H f s, x( s) f s, y( s) ( условие Липшица, см ( У )) H N x y =,, m j j H N max x y H N x y = H K x y, j=,, откуда следует, что при H K < оператор ˆΦ является сжимающим в D H Согласно принципу сжимающих отображений, оператор ˆΦ имеет единственную неподвижную точку j=

3 y D H Это означает, что интегральное уравнение (3), а следовательно, и задача () (), имеет единственное решение на отрезке [ H; H] + В случае H K результат теоремы получается путем применения процедуры продолжения решения аналогично тому, как было сделано для скалярного уравнения (см ) Теорема доказана 4 Теорема существования и единственности решения задачи Коши в случае, когда правая часть непрерывна и удовлетворяет условию Липшица в полосе Теорема Если вектор функция f ( x, ) m полосе Π= { a} R, тогда для любой точки (, ) решение x () непрерывна и удовлетворяет условию Липшица в x Π существует единственное задачи () () на отрезке a данной теоремы, так же как и в скалярном случае, лишь незначительно Доказательство отличается от доказательства Теоремы Аналогично Теореме 3 из 4 по изложенной выше схеме можно получить следующий результат, который потребуется нам при рассмотрении нелинейных краевых задач Теорема 3 Пусть функции f( y, μ, μ,, μ) Липшица в полосе { + a y R} при,, непрерывны и удовлетворяют условию μ μ C Тогда решение задачи () существует, единственно и непрерывно зависит от параметров μ, μ,, μ при + a, μ μ C 6 Уравнения го порядка, разрешенные относительно старшей производной Задача Коши в этом случае выглядит так y = f x, y, y, y,, y yx ( ) = y y ( x) = y y ( x ) = y ( ) ( ),,, () Путем замены y = y y = y y = y данная задача сводится к задаче Коши для нормальной системы ОДУ y = y y = y3 y( x ) = y, y = y y = f( x, y, y,, y) =,,, Очевидно, что функции в правых частях уравнений f, = y+ =,,, непрерывны и удовлетворяют условию Липшица, и для применения к системе теоремы существования и единственности достаточно потребовать, чтобы функция f ( xy,, y,, y ) в последнем уравнении также была непрерывна в параллелепипеде

4 { } D = x a, y y b, =,,, и удовлетворяла условию Липшица по переменным y, те f xy,, y,, y f xy,, y,, y N y y Теорема Пусть функция f ( xy y y) =,,,, непрерывна и удовлетворяет условию D = x a, y y b, =,,, Липшица в параллелепипеде { } Тогда задача () имеет единственное решение на отрезке [ x, x + H], где b H = m a, m M = max f x, y, y,, y M D, 7 Замечания, примеры, упражнения Замечание Можно доказать разрешимость задачи Коши лишь при выполнении (У), те f x, CD (теорема Пеано) Однако, в этом случае решение не обязательно единственно Замечание Метод последовательных приближений Пикара обеспечивает существование решения x = ϕ () задачи Коши (), () на некотором отрезке [ ] H, + H, те Теорема носит локальный характер Замечание 3 Возможность продолжения решения Рассмотрим решение () x = ϕ (простроенное методом Пикара), с начальными значениями = + H, ϕ = ϕ( + H) = x Это решение существует на некотором отрезке [ H, + H] Возьмем функцию x = ψ, определенную на отрезке [ ] H, + H : ϕ, [ H, + H], ψ () = ϕ(), [ H, + H] Очевидно, что x = ψ () будет решением задачи Коши (), (), те мы получили продолжение решения x = ϕ () с отрезка [ ] H, + H на больший отрезок [ H, + H] Далее, построив решение () x = ϕ с начальными условиями = + H : ϕ = ϕ + H = x, получим продолжение решения на еще больший отрезок [ H, H ] + и тд Аналогично можно строить продолжение в сторону убывания В результате такого процесса будет построено решение задачи Коши (), (), определенное на некотором максимальном интервале ( ab, ) и такое, что любое его продолжение совпадает с ним самим Такое решение называется непродолжаемым Замечание 4 Метод последовательных приближений Пикара является хорошим приближенным методом решения задачи Коши После итераций получается приближенное решение x (), тем более точное, чем больше Пример Методом последовательных приближений найдем решение задачи Коши для однородной системы линейных дифференциальных уравнений с постоянными коэффициентами: dx Ax d =, x = x

5 Последовательные приближения в этом случае будут иметь вид: x = x () x () = x + Ax ( τ) dτ = x + Ax dτ = x + ( ) Ax ( ) () = + ( τ) τ = + ( ) + x x Ax d x Ax A x ( ) ( ) x () = A x = A x =!, A = E =! Поскольку для систем линейных уравнений последовательные приближения сходятся равномерно на любом отрезке [ a, b], где правая часть системы непрерывна по, в данном случае правая часть от не зависит, то построенная выше функциональная последовательность сходится к решению задачи Коши при всех значениях ( ) Обозначим A = B (), тогда x =! = B x Полагая m j x = e { δ, δ, δ }, =,, m, получим, что существует lm ( B () ),, j =, m Предел такой матричной последовательности называют матричной экспонентой и обозначают A ( ) ( ) e = A =! A ( ) Теперь решение задачи Коши можно записать в виде x = e x Ряд для матричной экспоненты быстро сходится, что дает хороший приближенный метод решения задачи Коши для однородной линейной системы ОДУ с постоянной матрицей Приближенно матричную экспоненту можно вычислить по формуле A ( ) ( ) e A =! λ λ J e Упражнение Покажите, что если J =, то e = λ λ e λ λ λ Упражнение Покажите, что если J = λ, то J e e e = λ e α β Упражнение 3 Покажите, что если J3 = β α, то J cos s 3 α β β e = e s β cos β Замечание 5 В приложениях часто встречаются линейные однородные дифференциальные уравнения вида a x+ a x+ a x=, () () () с аналитическими коэффициентами, у которых a = Такая точка называется особой точкой уравнения, поскольку в ее окрестности уравнение нельзя разрешить относительно старшей производной В этом случае, решения представимого в виде степенного ряда может не существовать, но могут существовать решения, представимые в виде обобщенных степенных рядов

6 r+ ( ), x () = c = где r некоторое (не обязательно целое) число Упражнение 4 (сложное) Найдите решение уравнения x + + x= в виде обобщенного 4 = степенного ряда () r + x = c ( c ) Ответ: m ( ) m ( m! ) m x () = c Убедитесь, что этот ряд сходится при m=


2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Локальная теорема Коши Пикара.

Локальная теорема Коши Пикара. Локальная теорема Коши Пикара. Теорема (о существовании и единственности локального решения). Пусть дана задача Коши x = f(t, x) x(t 0 ) = x 0, (1) где правая часть f(t, x) определена и непрерывна в прямоугольнике

Подробнее

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий.

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий. Лекция 4 3 Непрерывная зависимость решения задачи Коши от параметров и начальных условий Постановка задачи Простейшим примером параметра, от которого зависит решение задачи Коши = f ( xy, ), yx ( ) = y

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды ЛЕКЦИИ 8 9 Теорема Хилле Иосиды S 3. Определение и элементарные свойства максимальных монотонных операторов Всюду на протяжении этих двух лекций символом H обозначено гильбертово пространство со скалярным

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 43 Аннотация Нормальные системы ДУ Задача и теорема Коши Частные и общее решения Системы линейных ДУ первого

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с "малым" λ.

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с малым λ. ТЕМА 4 Принцип сжимающих отображений Метод последовательных приближений для уравнения Фредгольма -рода с "малым" λ Основные определения и теоремы Пусть D оператор вообще говоря нелинейный действующий D:

Подробнее

ЛЕКЦИЯ 2 Простейший случай теоремы Пикара. S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью

ЛЕКЦИЯ 2 Простейший случай теоремы Пикара. S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью ЛЕКЦИЯ 2 Простейший случай теоремы Пикара S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью Теорема 1. Пусть B банахово пространство с нормой.. Пусть функция

Подробнее

ЛЕКЦИЯ 6 Различные обобщения и границы применимости

ЛЕКЦИЯ 6 Различные обобщения и границы применимости ЛЕКЦИЯ 6 Различные обобщения и границы применимости S. Непродолжаемое решение интегрального уравнения Вольтерра. Существование и единственность непродолжаемого решения интегрального уравнения. Рассмотрим

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

ДУ 2курс 4 семестр 1 задание

ДУ 2курс 4 семестр 1 задание . ДУ курс семестр задание. Постановка задачи Коши для нормальной системы дифференциальных уравнений.. Выяснить, при каких начальных условиях существует единственное решение уравнения y y y.. Решить уравнения,

Подробнее

1. Метод итераций. ( x ) x = ϕ. (5.1) Метод отыскания приближенных значений корня уравнения (5.1) с помощью формулы xn

1. Метод итераций. ( x ) x = ϕ. (5.1) Метод отыскания приближенных значений корня уравнения (5.1) с помощью формулы xn Метод итераций Пусть дано уравнение с одной неизвестной ( (5 Метод отыскания приближенных значений корня уравнения (5 с помощью формулы ( называют просто методом итерации При решении таких уравнений возникает

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

Глава 1. ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

Глава 1. ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Глава 1 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Лекция 1 1 Введение Уравнение называется интегральным, если неизвестная функция входит в уравнение под знаком интеграла Разумеется, мы не будем рассматривать интегральные

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

ЛЕКЦИЯ 4Б Метрические пространства 2

ЛЕКЦИЯ 4Б Метрические пространства 2 ЛЕКЦИЯ 4Б Метрические пространства 2. Простейшие (и важнейшие) свойства метрических пространств. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна по совокупности аргументов.

Подробнее

1 Экспонента линейного оператора.

1 Экспонента линейного оператора. 134 1. ЭКСПОНЕНТА ЛИНЕЙНОГО ОПЕРАТОРА. 1 Экспонента линейного оператора. 1.1 Напоминание: геометрическая формулировка основной задачи ОДУ. Напомним, что векторное поле это отображение, которое каждой точке

Подробнее

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Глава 3 ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Лекции 3-4 Интегральное уравнение Фредгольма -го рода как пример некорректно поставленной задачи Эта тема по предмету рассмотрения

Подробнее

Нелинейные краевые задачи

Нелинейные краевые задачи МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им МВЛомоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т АБ Васильева НН Нефедов Нелинейные краевые задачи (дополнительные разделы к курсу лекций «Дифференциальные уравнения»)

Подробнее

Лекция 10. Метод Галеркина в сочетании с методом монотонности.

Лекция 10. Метод Галеркина в сочетании с методом монотонности. Лекция 10. Метод Галеркина в сочетании с методом монотонности. Корпусов Максим Олегович Курс лекций по нелинейному функциональному анализу 28 октября 2011 г. Постановка задачи. div( u p 2 u) = f(x), u

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

Лекция 6. Векторные топологические пространства и их свойства

Лекция 6. Векторные топологические пространства и их свойства Лекция 6. Векторные топологические пространства и их свойства Корпусов Максим Олегович, Панин Александр Анатольевич Курс лекций по линейному функциональному анализу 3 октября 2011 г. Линейные функционалы.

Подробнее

Теорема существования и единственности решения дифференциального уравнения

Теорема существования и единственности решения дифференциального уравнения Теорема существования и единственности решения дифференциального уравнения А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В этом параграфе мы докажем теорему, которой пользовались в

Подробнее

Уравнения первого порядка

Уравнения первого порядка Глава 1. Введение Лекция 1 1. Понятие дифференциального уравнения. Основные определения. 2. Общее решение дифференциального уравнения, общий интеграл. 3. Постановка основных задач для обыкновенных дифференциальных

Подробнее

ЛЕКЦИЯ 4В Теорема Коши. 1. Определения. Рассмотрим задачу Коши { (1)

ЛЕКЦИЯ 4В Теорема Коши. 1. Определения. Рассмотрим задачу Коши { (1) ЛЕКЦИЯ 4В Теорема Коши В этой лекции будет доказана теорема о существовании и единственности решения задачи Коши. 1. Определения Рассмотрим задачу Коши { y = f(t, y), y( ) = y 0. (1) Пусть функция f(t,

Подробнее

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие Министерство общего и профессионального образования Российской Федерации Санкт-Петербургский государственный технический университет Аксёнов АП СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ 1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ 1.1. Основные определения Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, искомую функцию y (

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ. 1. Простейшие свойства метрических пространств

Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ. 1. Простейшие свойства метрических пространств Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ 1. Простейшие свойства метрических пространств Свойство 1. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Основные определения Нормальная система дифференциальных уравнений называется линейной если функции f f K f линейны относительно неизвестных функций Из этого

Подробнее

Лекция 11. Метод Галеркина в сочетании с методом компактности.

Лекция 11. Метод Галеркина в сочетании с методом компактности. Лекция 11. Метод Галеркина в сочетании с методом компактности. Корпусов Максим Олегович Курс лекций по нелинейному функциональному анализу 5 ноября 211 г. Постановка задачи. Пусть Ω ограниченная область

Подробнее

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1 3 2.2.2 Метод сжимаающих отображений Аналогичные рассуждения при определенных условиях справедливы и в общем случае. Приведем условия, при которых существует единственное решение (y(), z()) Y M задачи

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

1. Интегрирование системы дифференциальных уравнений методом исключения переменных

1. Интегрирование системы дифференциальных уравнений методом исключения переменных Интегрирование системы дифференциальных уравнений методом исключения переменных Один из основных методов интегрирования системы дифференциальных уравнений заключается в следующем: из уравнений нормальной

Подробнее

АСИМПТОТИКА РЕШЕНИЯ СИНГУЛЯРНО ВОЗМУЩЕННЫХ НЕЛИНЕЙНЫХ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ М. К. Дауылбаев

АСИМПТОТИКА РЕШЕНИЯ СИНГУЛЯРНО ВОЗМУЩЕННЫХ НЕЛИНЕЙНЫХ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ М. К. Дауылбаев Сибирский математический журнал Январь февраль, 2. Том 41, 1 УДК 517.948 АСИМПТОТИКА РЕШЕНИЯ СИНГУЛЯРНО ВОЗМУЩЕННЫХ НЕЛИНЕЙНЫХ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ М. К. Дауылбаев Аннотация: Рассмотрено сингулярно

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

ТЕМА 1. Метрические, нормированные и евклидовы пространства.

ТЕМА 1. Метрические, нормированные и евклидовы пространства. ТЕМА Метрические, нормированные и евклидовы пространства. Основные определения и теоремы Множество L называется (вещественным) линейным пространством, если для любых двух его элементов x, y определен элемент

Подробнее

Московский институт электроники и математики Национального исследовательского университета

Московский институт электроники и математики Национального исследовательского университета ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский университет «Высшая школа экономики»

Подробнее

1 Принцип сжимающих отображений 2

1 Принцип сжимающих отображений 2 Содержание 1 Принцип сжимающих отображений Применения принципа сжимающих отображений для решения линейных интегральных уравнений -го рода 3.1 Уравнения Фредгольма.................................. 3. Уравнения

Подробнее

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения.

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения. Глава Введение Лекция Понятие дифференциального уравнения Основные определения Определение Дифференциальным уравнением (ДУ) называют уравнение, в котором неизвестная функция находится под знаком производной

Подробнее

Системы управления и моделирование

Системы управления и моделирование Системы управления и моделирование Алгоритм анализа робастной устойчивости дискретных систем управления с периодическими ограничениями М. В. МОРОЗОВ Аннотация. Для дискретных линейных нестационарных систем

Подробнее

ПРИНЦИП ОБОБЩЁННЫХ СЖИМАЮЩИХ ОТОБРАЖЕНИЙ В ПСЕВДОМЕТРИЧЕСКИХ ПРОСТРАНСТВАХ

ПРИНЦИП ОБОБЩЁННЫХ СЖИМАЮЩИХ ОТОБРАЖЕНИЙ В ПСЕВДОМЕТРИЧЕСКИХ ПРОСТРАНСТВАХ УДК 51798868 ПРИНЦИП ОБОБЩЁННЫХ СЖИМАЮЩИХ ОТОБРАЖЕНИЙ В ПСЕВДОМЕТРИЧЕСКИХ ПРОСТРАНСТВАХ А И Перов Воронежский государственный университет При изучении систем уравнений (алгебраических дифференциальных

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных.

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных. ЛЕКЦИЯ Экстремум функции нескольких переменных Экстремум функции нескольких переменных Необходимые и достаточные условия существования экстремума Точка M, 0) называется точкой минимума максимума) функции

Подробнее

1 Организационно-методический раздел

1 Организационно-методический раздел Программа курса Обыкновенные дифференциальные уравнения 3-й и 4-й семестры, 2012-2013 учебный год Основной курс для студентов II курса, I потока Составил доцент, к.ф.-м.н. Г. А. Чумаков 1 Организационно-методический

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 4. Вариационные методы. Полуограниченные функционалы.

Лекция 4. Вариационные методы. Полуограниченные функционалы. Лекция 4. Вариационные методы. Полуограниченные функционалы. Корпусов Максим Олегович Курс лекций по нелинейному функциональному анализу 19 сентября 212 г. Обозначения пусть B это некоторое банахово пространство

Подробнее

ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ТИПА СВЕРТКИ НА ОТРЕЗКЕ

ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ТИПА СВЕРТКИ НА ОТРЕЗКЕ ISSN 74-1871 Уфимский математический журнал. Том 5. (13). С. 3-11. УДК 517.968 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ТИПА СВЕРТКИ НА ОТРЕЗКЕ С.Н. АСХАБОВ, А.Л. ДЖАБРАИЛОВ Аннотация. Методом потенциальных

Подробнее

Простейшие задачи вариационного исчисления

Простейшие задачи вариационного исчисления Глава VI. Простейшие задачи вариационного исчисления 1. Функционалы в линейном нормированном пространстве Опр. 6. 1. Функционалом J[y] в линейном нормированном пространстве E называется закон соответствия,

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Занятие 5. МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Занятие 5. МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Занятие 5 МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем линейных алгебраических уравнений (СЛАУ), записываемых в виде a a b A b или,

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Уравнения первого порядка, не разрешенные относительно производной

Уравнения первого порядка, не разрешенные относительно производной Уравнения первого порядка, не разрешенные относительно производной Будем рассматривать уравнения первого порядка, не разрешенные относительно производной: F (x, y, y ) = 0, (1) где F заданная функция своих

Подробнее

1. Метод Эйлера. Задача нахождения частного решения y = y( x) дифференциального уравнения

1. Метод Эйлера. Задача нахождения частного решения y = y( x) дифференциального уравнения . Метод Эйлера Задача нахождения частного решения дифференциального уравнения ( ) f (6.) может быть приближенно решена численными методами. Для нахождения частного решения уравнения (6.) на отрезке [ a

Подробнее

Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина.

Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т А.Б. Васильева, Н.Н. Нефедов Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина. (некоторые разделы

Подробнее

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений dx d ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2004 Электронный журнал, рег. N П23275 от 07.03.97 hp://www.neva.ru/journal e-mail: diff@osipenko.su.neva.ru Теория обыкновенных дифференциальных

Подробнее

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина.

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина. 6 Раздел ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ Тема Существование и единственность решения краевой задачи Матричные функции Грина Рассмотрим на отрезке по линейную краевую задачу для системы из обыкновенных дифференциальных

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 214, том 5, 6, с. 726 744 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ УДК 517.925.52+519.218 ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ. Содержание

Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ. Содержание Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ Постановка вопроса Содержание Некоторые напоминания Итерационные методы решения уравнений. Сжимающие отображения. Принцип неподвижной

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

Лекция 15. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

Лекция 15. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ Лекция 5. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ На практике существуют задачи оптимизации, в которых критерий качества зависит от функции, определить которую необходимо

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Лекция 2. Теорема Колмогорова о существовании непрерывной модификации

Лекция 2. Теорема Колмогорова о существовании непрерывной модификации Лекция Теорема Колмогорова о существовании непрерывной модификации До сих пор мы ничего не говорили о свойствах траекторий случайного процесса как функций времени Из физических соображений можно, например,

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R..

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R.. СОДЕРЖАНИЕ ВВЕДЕНИЕ 5 Тема ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция Пространство R 6 Лекция Предел и непрерывность функции нескольких переменных 5 Лекция 3 Функции многих переменных

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

ε > 0 N N n, m N d(x n, x m ) < ε,

ε > 0 N N n, m N d(x n, x m ) < ε, 4. Основные факты дифференциального исчисления функций многих переменных 4.5. Теорема об обратной функции. Теорема об обратной функции одна из фундаментальных теорем дифференциального исчисления функций

Подробнее

Гл. I. Основные понятия. Простейшие типы ДУ.

Гл. I. Основные понятия. Простейшие типы ДУ. Лекция Гл I Основные понятия Простейшие типы ДУ Введение Термин aequatio differerialis или дифференциальные уравнения был введен Лейбницем (Leibiz) в 676 г для обозначения зависимости между дифференциалами

Подробнее

4. Существование собственного значения вполне непрерывного самосопряженного оператора.

4. Существование собственного значения вполне непрерывного самосопряженного оператора. Лекция 4 Существование собственного значения вполне непрерывного самосопряженного оператора Пусть линейный оператор действует в линейном пространстве L Число называется собственным значением оператора,

Подробнее

Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP,

Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP, 5 Глава ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Пространство R n Понятие функции нескольких переменных Определение Множество всех упорядоченных наборов (,,, n ), где,,, n - действительные числа называется n-мерным

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

Лекция 5 ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Лекция 5 ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ Лекция 5 ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ В этой лекции мы рассмотрим некоторые результаты об операторах со слабой особенностью и теорию поверхностей Ляпунова. 0. План лекции. Свойства a), b) и c). 2. Теорема

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава Глава I Задача Коши для уравнения первого порядка.

ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава Глава I Задача Коши для уравнения первого порядка. ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава. 8 1.Понятие дифференциального уравнения.математические модели, описываемые дифференциальными уравнениями.11 3.Решение

Подробнее

1 о. Определение асимптотически устойчивого решения. Рассмотрим нормальную систему дифференциальных уравнений в векторной форме (1)

1 о. Определение асимптотически устойчивого решения. Рассмотрим нормальную систему дифференциальных уравнений в векторной форме (1) 29. Асимптотическая устойчивость решений систем обыкновенных дифференциальных уравнений, область притяжения и методы ее оценки. Теорема В.И. Зубова о границе области притяжения. В.Д.Ногин 1 о. Определение

Подробнее

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно.

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно. ЛЕКЦИЯ 5 МЕТОД ГАУССА Мы разобрали выше два различных способа задания линейных подпространств F n 2 при помощи образующих и как множество решений системы линейных уравнений Для различных приложений нам

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

Материалы к экзамену по курсу "Интегральные уравнения. Вариационное исчисление"

Материалы к экзамену по курсу Интегральные уравнения. Вариационное исчисление Материалы к экзамену по курсу "Интегральные уравнения Вариационное исчисление" Экзамен по курсу "Интегральные уравнения Вариационное исчисление" состоит из -х частей -я часть экзамена - тест на знание

Подробнее

Лекция 13. Методы решения равновесных задач и вариационных неравенств

Лекция 13. Методы решения равновесных задач и вариационных неравенств Лекция 13. Методы решения равновесных задач и вариационных неравенств Вспомним основные определения равновесных задач и вариационных неравенств. Пусть D R n - непустое замкнутое выпуклое множество. Определение

Подробнее

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры Лекция 0 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ В этой лекции мы изучим банаховы алгебры и рассмотрим спектральную теорию операторов, действующих в банаховом пространстве, которое в данной лекции всюду

Подробнее

Об однородных разностных схемах

Об однородных разностных схемах Доклады Академии наук СССР Том 4 958 А Н Тихонов А А Самарский Об однородных разностных схемах В статье [] была поставлена задача об отыскании разностных схем пригодных для единообразного решения дифференциальных

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

Теория полугрупп. Полугруппы линейных операторов

Теория полугрупп. Полугруппы линейных операторов Теория полугрупп Полугруппы линейных операторов Пример Рассмотрим обыкновенное дифференциальное уравнение с постоянными коэффициентами dx ax x x Как решить эту начальную задачу или, другими словами, задачу

Подробнее

ГЛАВА II Элементы теории полугрупп

ГЛАВА II Элементы теории полугрупп ГЛАВА II Элементы теории полугрупп ЛЕКЦИЯ 7 Неограниченные линейные операторы Хотя методами главы I нам удалось исследовать многие задачи математической физики, некоторые вполне классические задачи не

Подробнее

c 2003 Kluwer Academic Publishers. Printed in the Netherlands. diana.tex; 21/03/2003; 20:12; p.1

c 2003 Kluwer Academic Publishers. Printed in the Netherlands. diana.tex; 21/03/2003; 20:12; p.1 Итерационный метод решения операторного уравнения с возмущением малым нелинейным слагаемым Д.Ю.Марканова (dianamar@icc.ru) Институт динамики систем и теории управления СО РАН Аннотация. В работе с использованием

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

МЕТОДЫ ИНТЕГРАЛЬНОГО СГЛАЖИВАНИЯ

МЕТОДЫ ИНТЕГРАЛЬНОГО СГЛАЖИВАНИЯ Лекция продолжение лекции МЕТОДЫ ИНТЕГРАЛЬНОГО СГЛАЖИВАНИЯ А ТОЧЕЧНЫЙ МЕТОД НАИМЕНЬШИХ КВАДРАТОВ Пусть на множестве [ ] точкой ПРИМЕНЕНИЕ ОБОБЩЕННЫХ МНОГОЧЛЕНОВ задана сетка а на сетке задана сеточная

Подробнее