СЕМИНАР 2. Электрон. Это релятивистский случай. Используем релятивистскую формулу:

Размер: px
Начинать показ со страницы:

Download "СЕМИНАР 2. Электрон. Это релятивистский случай. Используем релятивистскую формулу:"

Транскрипт

1 СЕМИНАР. Вычислить дебройлевскую длину волны α-частицы и электрона с кинетическими энергиями 5 МэВ. Решение: α-частица. Это нерелятивистский случай, так как m α c = 377, 38 МэВ 4000 МэВ. Поэтому используем нерелятивистскую формул и то, что ħс = 97 МэВ Фм 00 МэВ Фм: λ α = πħс m α c T α 40 МэВ Фм МэВ 6, Фм. Электрон. Это релятивистский случай. Используем релятивистскую формулу: λ e = πħс p e c πħс 40 МэВ Фм = 50 Фм. T e 5 МэВ. При изучении дифракционного рассеяния протонов с кинетической энергией T p = 0 ГэВ на ядрах свинца первый дифракционный минимум наблюдался при θ = 0,3 o. Оценить радиус ядра свинца. Решение: Имеет место формула Sinθ m m 0,6 λ R, где R радиус облучаемого объекта а λ дебройлевская длина волны налетающей на объект частицы, θ m угол рассеяния, отвечающий дифракционному минимуму порядка m (m =,, 3 ). Поэтому можем записать с учётом релятивистской формулы для длины волны протона λ p : R Pb 0,6 λ p Sinθ = 0,6 πħс T p 0,3π 80 0,6 40 МэВ Фм , Фм. МэВ 0,3 3,4

2 3. Почему в опыте Резерфорда не наблюдается дифракционная картина? Решение: Обратимся к схеме опыта для случая, когда α-частица подходит к ядру 97 золота ( ) на минимальное расстояние: Au 79 Рассчитаем расстояние r min минимального сближения α-частицы с ядром золота. Это расстояние отвечает условию: Или r min = Z αz я e T α = Z αz я T α T α = Z αz я e r min = V кул, e 79 ħс ħс 5 МэВ 00 МэВ Фм 46 Фм Это много больше радиуса ядра 79Au, который равен 7 Фм. Т. е. αчастица волна «облизывает» пустое пространство вдали от поверхности ядра. Она не ощущает очертания ядра. Дифракция не возникает. 4. Оценить радиус ядра меди, если при прохождении релятивистских нейтронов через пластинку меди толщиной l = см поток нейтронов уменьшается в, раза. Размером нейтрона пренебречь. Решение: Релятивизм нужен, что бы длиной волны нейтрона λ n можно было пренебречь по сравнению с радиусом ядра, т. е. λ n R я (например, при T n = 6 ГэВ длина волны нейтрона λ n 0, Фм). Кроме того, существенно, что электромагнитного взаимодействия нет, а лишь ядерное (сильное), а оно короткодействующее (радиус Фм) и с этой точностью можно оценить радиус действия по формуле σ n πr я. Получим формулу для толстой мишени

3 На Лекции для числа взаимодействий N в слое толщиной l при сечении взаимодействия σ было получено выражение N = j n S l σ, где n число ядер в см 3 мишени, а S поперечная облучаемая площадь мишени. Число взаимодействий dn в тонком слое dx на глубине x даётся соотношением dn(x) = j(x) n S dx σ. Знак «минус» означает уменьшение падающего на тонкий слой потока за dn(x) счёт числа взаимодействий dn(x). Тогда = dj(x) изменение S плотности потока нейтронов при прохождении слоя dx. Можем записать Для мишени толщиной l получаем dj(x) = j(x) n σ dx и j(x) = j(0) e nσx. j(l) = j(0) e nσl. Откуда σ = nl ln j(0) j(l) = A ρn A l ln j(0) j(l) = 63 г 9 г см 3 6,0 0 3 см ln, 0, см = 0,55 барн. Здесь использовано то, что n = ρn A, где ρ 9 г см3 плотность меди, N A A число Авогадро и A массовое число ядра меди в граммах (63). Радиус ядра меди получаем из выражения σ πr :

4 R σ π = 0,55 3,4 0 4 см 4, 0 3 см = 4, Фм. 5. Определить длину L свободного пробега и среднее время жизни τ реакторного антинейтрино до взаимодействия в воде, воспользовавшись данными эксперимента Райнеса и Коуэна ( ), получившими для сечения взаимодействия антинейтрино с нуклоном или электроном величину σ 0 43 см. Решение: Число антинейтрино, прошедших через слой вещества толщиной x дается выражением N(x) = N(0) e nσx, вывод которого дан в задаче 4. Антинейтрино рождаются в реакторе в реакции распада нейтронов Энергия распада 0,78 МэВ. n p + e + ν e. Длина L свободного пробега частицы определяется как среднее расстояние, которое она пролетает без взаимодействия. Найдём выражение для L. Вероятность P(x) частице пройти расстояние x без взаимодействия есть P(x) = N(x) N(0) = e nσx и по определению среднего (математического ожидания) L = 0 0 x P(x)dx P(x)dx = x e nσx dx 0 e nσx dx 0 = ( nσ) ( nσ) = nσ. Для расчёта нужна концентрация n e+n электронов и нуклонов в воде. Она получается умножением концентрации молекул воды n H O на число электронов и нуклонов в одной молекуле воды. Это последнее число для воды (H O) равно Z e + Z p + N n = ( + 8) + ( + 8) + 8 = 8. Итак, имеем n e+n = ( ρn A A ) H O Теперь получаем 8 = г см3 6, г 8 0, см 3.

5 L = n e+n σ = 0, см см,06 09 см =, км. Среднее время жизни антинейтрино (оно двигается практически со скоростью света): τ = L c =,06 09 см ,55 0 см 8 сек 0 лет. сек Здесь использовано то, что год 0 7 сек. 6. Золотая пластинка (Z = 79) толщиной l = 0, мм облучается пучком αчастиц с плотностью потока j = 0 3 см сек. Кинетическая энергия αчастиц T α = 5 МэВ. Оценить число рассеиваемых в секунду в единицу телесного угла α-частиц под углом θ = 70 о к оси падающего пучка, если площадь пятна пучка S = см (опыт Резерфорда). Решение: Используем формулу где формула Резерфорда Вначале рассчитаем dω : dn dω = jnsl dω, dω = (Z αz я e ) 4T α dω = ( МэВ, МэВ см) Мы использовали e = e Итак, имеем dn dω = 03 Sin 4 θ Sin 4 70о. =,9 0 4 см стерад. ħc ħc = МэВ Фм, МэВ см. α 9,3 см сек г см 3 6, г 0,77 см 0 см,9 α. сек стерад см стерад 7. Протон с кинетической энергией T МэВ налетает на неподвижное 97 ядро 79Au. Определить дифференциальное сечение рассеяния dω на

6 угол θ 60 о. Как изменится величина дифференциального сечения рассеяния, если в качестве рассеивающего ядра выбрать Решение: Используем формулу Резерфорда и то, что e ħc ħc = 37 dω = (Z pz я e 4T ) 79,44 МэВ Фм ( ) 4 МэВ 97 МэВ Фм,44 Мэв Фм: Sin 4θ = ( Z pz я e 4T ħc ħc) Sin 4θ 7 Al? 3 Sin 4 30 o 3, 03 Фм стерад = = 3 барн стерад. Из формулы Резерфорда следует, что отношение дифференциальных 97 7 сечений рассеяния при замене ядра 79Au на 3Al будет определяться отношением квадратов зарядов этих ядер: R = ( dω ) Au = Z Au Z Al = 79 Au 3 Al = 37. ( dω ) Al Т. е. при одинаковых условиях сечение рассеяния на ядре золота будет в 37 раз больше, чем на ядре алюминия.


Атомная физика Индивидуальное задание 1

Атомная физика Индивидуальное задание 1 Атомная физика Индивидуальное задание 1 Вариант 1 2 1H 4 0,015 4 2 1 H 1 3 Узкий пучок протонов, имеющих скорость v = 10 м/с, падает нормально на серебряную фольгу толщины d = 1,0 мкм. Найти вероятность

Подробнее

Электрон ( см) Атом (10 8 см) Ядро ( см) Нуклон ( см) Кварк ( см)

Электрон ( см) Атом (10 8 см) Ядро ( см) Нуклон ( см) Кварк ( см) Электрон ( 10 17 см) Атом (10 8 см) Ядро ( 10 12 см) Нуклон ( 10 13 см) Кварк ( 10 17 см) Темы лекции 1. Открытие атомного ядра. Опыт Резерфорда. 2. Эффективное сечение реакции. Формула Резерфорда. 3.

Подробнее

Реферат на тему: Состав и размер ядра. Опыт Резерфорда.

Реферат на тему: Состав и размер ядра. Опыт Резерфорда. Московский государственный университет им. М. В. Ломоносова Физический факультет Реферат на тему: Состав и размер ядра. Опыт Резерфорда. Работу выполнила студентка 209 группы Минаева Евгения. «Москва,

Подробнее

Электрон ( см) Атом (10 8 см) Ядро ( см) Нуклон ( см) Кварк ( см)

Электрон ( см) Атом (10 8 см) Ядро ( см) Нуклон ( см) Кварк ( см) Электрон ( 10 17 см) Атом (10 8 см) Ядро ( 10 12 см) Нуклон ( 10 13 см) Кварк ( 10 17 см) Темы лекции 1. Открытие атомного ядра. Опыт Резерфорда. 2. Эффективное сечение реакции. Формула Резерфорда. 3.

Подробнее

Приложение 4. Взаимодействие частиц с веществом

Приложение 4. Взаимодействие частиц с веществом Приложение 4. Взаимодействие частиц с веществом Взаимодействие частиц с веществом зависит от их типа, заряда, массы и энергии. Заряженные частицы ионизуют атомы вещества, взаимодействуя с атомными электронами.

Подробнее

Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР

Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Атомные ядра условно принято делить на стабильные и радиоактивные. Условность состоит в том что, в сущности, все ядра подвергаются радиоактивному распаду, но

Подробнее

Ядерные реакции. e 1/2. p n n

Ядерные реакции. e 1/2. p n n Ядерные реакции 197 Au 197 79 79 14 N 17 7 8 O 9 Be 1 4 6 C 7 Al 30 13 15 30 P e 30 15 T.5мин 14 1/ P p n n Si Au Ядерные реакции ВХОДНОЙ И ВЫХОДНОЙ КАНАЛЫ РЕАКЦИИ Сечение реакции и число событий N dn(,

Подробнее

Электрон ( см) Атом (10 8 см) Ядро ( см) Нуклон ( см) Кварк ( см)

Электрон ( см) Атом (10 8 см) Ядро ( см) Нуклон ( см) Кварк ( см) Электрон ( 10 17 см) Атом (10 8 см) Ядро ( 10 12 см) Нуклон ( 10 13 см) Кварк ( 10 17 см) Темы лекции 1. Открытие атомного ядра. Опыт Резерфорда. 2. Эффективное сечение реакции. Формула Резерфорда. 3.

Подробнее

СЕМИНАР Получить выражение для среднего времени жизни τ радиоактивного ядра.

СЕМИНАР Получить выражение для среднего времени жизни τ радиоактивного ядра. СЕМИНАР 1 1. Получить выражение для среднего времени жизни τ радиоактивного ядра. Решение: Используем закон радиоактивного распада N(t) = N(0)e λt. По определению среднего τ = te λt dt 0 e λt dt 0 = 1

Подробнее

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома 1 Дифференциальное сечение рассеяния Когда быстрая частица налетает на частицу-мишень, то для того,

Подробнее

1.15. Рассеяние частиц. Эффективное сечение.

1.15. Рассеяние частиц. Эффективное сечение. 1 1.15. Рассеяние частиц. Эффективное сечение. 1.15.1. Рассеяние на силовом центре. Рассмотрим снова рассеяние на силовом центре (или в качестве силового центра возьмем центр инерции двух сталкивающихся

Подробнее

17.1. Основные понятия и соотношения.

17.1. Основные понятия и соотношения. Тема 7. Волны де Бройля. Соотношения неопределенностей. 7.. Основные понятия и соотношения. Гипотеза Луи де Бройля. Де Бройль выдвинул предложение, что корпускулярно волновая двойственность свойств характерна

Подробнее

наименьшей постоянной решетки

наименьшей постоянной решетки Оптика и квантовая физика 59) Имеются 4 решетки с различными постоянными d, освещаемые одним и тем же монохроматическим излучением различной интенсивности. Какой рисунок иллюстрирует положение главных

Подробнее

Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ 2018 Введение Основные понятия и определения Взаимодействие тяжелых заряженных частиц с веществом

Подробнее

( ) ( ) ( ) ( β ) ( )

( ) ( ) ( ) ( β ) ( ) 39 m0v p= mv =, (46) 1 ( v / c) где m релятивистская масса, m 0 масса покоя. Релятивистское уравнение динамики частицы: где р релятивистский импульс частицы. dp dt = F. (47) Полная и кинетическая энергии

Подробнее

ТЕОРЕТИЧЕСКИЙ ПРАКТИКУМ ПО ФИЗИКЕ ЯДРА И ЧАСТИЦ

ТЕОРЕТИЧЕСКИЙ ПРАКТИКУМ ПО ФИЗИКЕ ЯДРА И ЧАСТИЦ 1 Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» В.С. Малышевский ТЕОРЕТИЧЕСКИЙ ПРАКТИКУМ

Подробнее

МОЛЕКУЛЯРНАЯ ФИЗИКА. Глава 5. Явления переноса. R d. Sin d 2

МОЛЕКУЛЯРНАЯ ФИЗИКА. Глава 5. Явления переноса. R d. Sin d 2 Глава 5. Явления переноса. МОЛЕКУЛЯРНАЯ ФИЗИКА Наука, изучающая процессы при нарушенном равновесии, называется физическая кинетика. Эта наука изучает необратимые процессы. Сущность процессов переноса:

Подробнее

Физический факультет

Физический факультет Московский Государственный Университет им. М.В. Ломоносова Физический факультет Кафедра Общей ядерной физики Москва 005 г. Взаимодействие гамма-излучения с веществом Аспирант Руководитель : Чжо Чжо Тун

Подробнее

СЕМИНАР 11 Ядерные реакции. Деление атомных ядер. Ядерные реакции

СЕМИНАР 11 Ядерные реакции. Деление атомных ядер. Ядерные реакции СЕМИНАР 11 Ядерные реакции. Деление атомных ядер Ядерные реакции Порог реакции a A B b в лабораторной системе координат (ЛСК) даётся формулой (E a,b ) порог = Q (1 m a Q m A m A c ), где Q = (W B W b )

Подробнее

Лабораторная работа 18 Опыт Резерфорда

Лабораторная работа 18 Опыт Резерфорда I II III Лабораторная работа 18 Опыт Резерфорда Цель работы Теоретическая часть 1 Введение 2 Рассеяние α -частиц 3 Дифференциальное сечение рассеяния 4 Формула Резерфорда Экспериментальная часть 1 Методика

Подробнее

2. Основные понятия в теории переноса излучения в веществе

2. Основные понятия в теории переноса излучения в веществе 2. Основные понятия в теории переноса излучения в веществе Содержание. Сечения взаимодействия частиц. 2. Сечения рассеяния и поглощения энергии. 3. Тормозная способность вещества. 4. Закон ослабления нерассеянного

Подробнее

Министерство образования и науки Российской Федерации. НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

Министерство образования и науки Российской Федерации. НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им РЕАЛЕКСЕЕВА

Подробнее

СЕМИНАР 3. Решение: Используем соотношение неопределённости «импульскоордината» p r ħ (ħ = 1, эрг сек), полагая для оценки

СЕМИНАР 3. Решение: Используем соотношение неопределённости «импульскоордината» p r ħ (ħ = 1, эрг сек), полагая для оценки СЕМИНАР 3 1. Имеется частица с массой m = 1 г, движущаяся со скоростью v = 1 см/. Оценить неопределенность в координате и временнòм положении этой частицы. Можно ли их наблюдать? Используем соотношение

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов 1 ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ Варианты домашнего задания по физике для студентов II курса IV семестра всех факультетов Вариант Номера задач 1 1 13 5 37

Подробнее

Индивидуальное задание 1 к курсу «Прикладная физика»

Индивидуальное задание 1 к курсу «Прикладная физика» Индивидуальное задание 1 к курсу «Прикладная физика» Вариант 1 1 В широкой части горизонтально расположенной трубы нефть течет со скоростью v 1 = м/с. Определить скорость v нефти в узкой части трубы, если

Подробнее

КВАНТОВАЯ ОПТИКА. Задачи

КВАНТОВАЯ ОПТИКА. Задачи КВАНТОВАЯ ОПТИКА. Задачи 1 Качественные задачи 1. Зависит ли энергия фотона от длины волны света? 2. Металлическая пластинка под действием рентгеновских лучей зарядилась. Каков знак заряда? 3. Чему равно

Подробнее

ГЛАВА 5. СТОЛКНОВЕНИЯ И РАССЕЯНИЕ ЧАСТИЦ Упругие столкновения

ГЛАВА 5. СТОЛКНОВЕНИЯ И РАССЕЯНИЕ ЧАСТИЦ Упругие столкновения ГЛАВА 5. СТОЛКНОВЕНИЯ И РАССЕЯНИЕ ЧАСТИЦ 5.. Упругие столкновения Рассмотрим упругое столкновение двух частиц. В таких столкновениях сохраняются суммарные импульс и энергия сталкивающихся частиц: p + p

Подробнее

ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО

ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО Мы рассматривали атом в магнитном поле и его влияние на спектр излучения. Впервые эти процессы рассмотрел Зееман, поэтому расщепление уровней энергии в магнитном поле называется эффектом

Подробнее

ЗАДАЧИ. Номера задач. 1. Найти наиболее вероятную длину волны тормозного рентгеновского излучения со спектральным распределением Iω = A( ωmax

ЗАДАЧИ. Номера задач. 1. Найти наиболее вероятную длину волны тормозного рентгеновского излучения со спектральным распределением Iω = A( ωmax ЗАДАЧИ В таблице приведены номера вариантов (первый столбец) и номера задач, входящих в контрольную работу (горизонтальные строки таблицы). Номера вариантов распределяются согласно списку, содержащемуся

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 23 Нуклон-нуклонные взаимодействия

Подробнее

Семинар 2. Квантовые свойства излучения и частиц

Семинар 2. Квантовые свойства излучения и частиц Семинар. Квантовые свойства излучения и частиц Представления о дискретной структуре материи зародилось в XIX веке. В 1811 г. Авогадро предположил, что в равных объемах различных газов при одинаковой температуре

Подробнее

Нуклон-нуклонные взаимодействия

Нуклон-нуклонные взаимодействия Национальный исследовательский ядерный университет «МИФИ» Институт ядерной физики и технологий Лаборатория экспериментальной ядерной физики http://enpl.mephi.ru/ А.И. Болоздыня Экспериментальная ядерная

Подробнее

электрона. Упругое рассеяние может быть разделено на следующие виды: однократное рассеяние ( х << 1/(σ N))

электрона. Упругое рассеяние может быть разделено на следующие виды: однократное рассеяние ( х << 1/(σ N)) Лабораторная работа 2. Обратное рассеяние β- излучения Цель работы: выявить закономерности отражения β-частиц, испускаемых радионуклидами. Теоретическая часть Основные закономерности процесса обратного

Подробнее

Вариант 1 1. Какую скорость должно иметь движущееся тело, чтобы его продольные размеры уменьшились в 2 раза?

Вариант 1 1. Какую скорость должно иметь движущееся тело, чтобы его продольные размеры уменьшились в 2 раза? Вариант 1 1. Какую скорость должно иметь движущееся тело, чтобы его продольные размеры уменьшились в 2 раза? 2. Найти изменение энергии W, соответствующее изменению массы на m = 1 а.е.м. 3. За время t

Подробнее

γ =, c скорость света.

γ =, c скорость света. 6. Антипротон Первой обнаруженной античастицей был позитрон. Открытие позитрона, частицы по своим характеристикам идентичной электрону, но с противоположным (положительным) электрическим зарядом, было

Подробнее

Лекция 7. Столкновение нерелятивистских частиц.

Лекция 7. Столкновение нерелятивистских частиц. Лекция 7 Столкновение нерелятивистских частиц 1 Упругое столкновение Задача состоит в следующем Пусть какая-то частица пролетает мимо другой частицы Это могут быть два протона один из ускорителя, другой

Подробнее

4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ 4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ По роду взаимодействия с веществом радиоактивное излучение можно разделить на три группы: 1.Заряженные частицы: -излучение, -излучение, протоны, дейтроны, различные

Подробнее

ЛЕКЦИЯ 5 ПОТЕНЦИАЛЬНЫЕ ЯМЫ (ПРОДОЛЖЕНИЕ)

ЛЕКЦИЯ 5 ПОТЕНЦИАЛЬНЫЕ ЯМЫ (ПРОДОЛЖЕНИЕ) ЛЕКЦИЯ 5 ПОТЕНЦИАЛЬНЫЕ ЯМЫ (ПРОДОЛЖЕНИЕ) В прошлый раз рассматривалась потенциальная яма с бесконечно высокими стенками. Было показано, что в этом случае имеет место квантование. Частица, находящийся в

Подробнее

Контрольная работа кг м

Контрольная работа кг м Контрольная работа 4 Вариант 0 1. Невозбужденный атом водорода поглощает квант излучения с длиной волны 97,2 нм. Вычислите, пользуясь теорией Бора, радиус электронной орбиты возбужденного атома водорода

Подробнее

E γ + E e = E e; (4) m e v. m e c 2 1 v2 /c 2 ; p e = E e = E γ = m e c 2 1. c = m eβc 1 = m e c 2 = 1

E γ + E e = E e; (4) m e v. m e c 2 1 v2 /c 2 ; p e = E e = E γ = m e c 2 1. c = m eβc 1 = m e c 2 = 1 Изучение взаимодействия гамма-излучения с веществом Составители: к. ф.-м. н. В. В. Добротворский, асс. О. В. Журенков Рецензенты: к. ф.-м. н. В. А. Литвинов, д. ф.-м. н. А. В. Пляшешников Цель работы:

Подробнее

Лабораторная работа 6 Определение эффективного сечения взаимодействия γ-квантов с веществом методом поглощения

Лабораторная работа 6 Определение эффективного сечения взаимодействия γ-квантов с веществом методом поглощения Лабораторная работа 6 Определение эффективного сечения взаимодействия γ-квантов с веществом методом поглощения Целью работы является изучение физики взаимодействий γ-квантов с веществом и определение эффективного

Подробнее

Лекция 3 Модель жидкой капли. 1. О ядерных моделях

Лекция 3 Модель жидкой капли. 1. О ядерных моделях Лекция Модель жидкой капли.. О ядерных моделях Свойство насыщения ядерных сил, вытекающее, в ою очередь, из их короткодействия и отталкивания на малых расстояниях, делает ядро похожим на жидкость. Силы,

Подробнее

Семинар 1. Введение. Физика микромира

Семинар 1. Введение. Физика микромира Семинар 1. Введение. Физика микромира Во введении рассматриваются основные составляющие новой физики, возникшей на рубеже XIX и XX столетий: Теория относительности, изменившая существующие в классической

Подробнее

Тестирование по дисциплине «ядерная физика»

Тестирование по дисциплине «ядерная физика» Тестирование по дисциплине «ядерная физика» Основные разделы: 1. Свойства атомных ядер; 2. Нуклон-нуклонные взаимодействия; 3. Радиоактивность, ядерные реакции; 4. Частицы и взаимодействия; 5. Дискретные

Подробнее

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 Задача 1. 1. Покоившееся ядро радона 220 Rn выбросило α чаcтицу со скоростью υ = 16 Мм/с. В какое ядро превратилось ядро радона? Какую скорость υ 1 получило оно вследствие

Подробнее

ЛЕКЦИЯ 2 ВОЛНЫ ДЕ БРОЙЛЯ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ

ЛЕКЦИЯ 2 ВОЛНЫ ДЕ БРОЙЛЯ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ЛЕКЦИЯ 2 ВОЛНЫ ДЕ БРОЙЛЯ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ 1. Корпускулярно-волновой дуализм Электромагнитное излучение при некоторых условиях обладает корпускулярными свойствами, а в других проявляет себя

Подробнее

6,4 10 м. 2 1, где k 0,1,2,... cos. sin. sin. 2 cos cos 2 cos

6,4 10 м. 2 1, где k 0,1,2,... cos. sin. sin. 2 cos cos 2 cos 56 На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления,3 Пластинка освещена параллельным пучком монохроматического света с длиной волны 64 нм, падающим на пластинку

Подробнее

ЛЕКЦИЯ 4 ПОТЕНЦИАЛЬНЫЕ БАРЬЕРЫ. ПОТЕНЦИАЛЬНЫЕ ЯМЫ

ЛЕКЦИЯ 4 ПОТЕНЦИАЛЬНЫЕ БАРЬЕРЫ. ПОТЕНЦИАЛЬНЫЕ ЯМЫ ЛЕКЦИЯ 4 ПОТЕНЦИАЛЬНЫЕ БАРЬЕРЫ. ПОТЕНЦИАЛЬНЫЕ ЯМЫ Задача 3.25. Туннелирование На прошлой лекции был рассмотрен потенциальный барьер. Он представлен на (4.1). Рис. 4.1 Оказывается, частица проникает под

Подробнее

Волны де Бройля. Соотношение неопределенностей. Лекция 5.1.

Волны де Бройля. Соотношение неопределенностей. Лекция 5.1. Волны де Бройля. Соотношение неопределенностей Лекция 5.1. Гипотеза де Бройля В 1924 г. Луи де Бройль выдвинул гипотезу, что дуализм не является особенностью только оптических явлений, а имеет универсальный

Подробнее

Введение в ядерную физику

Введение в ядерную физику 1. Предмет «Ядерная физика». 2. Основные свойства атомных ядер. 3. Модели атомных ядер. 4. Радиоактивность. 5. Взаимодействие излучения с веществом. 1 6. Ядерные реакции. Законы сохранения в ядерных реакциях.

Подробнее

Ядро атома. Ядерные силы. Структура атомного ядра

Ядро атома. Ядерные силы. Структура атомного ядра Ядро атома. Ядерные силы. Структура атомного ядра На основе опытов Резерфорда была предложена планетарная модель атома: r атома = 10-10 м, r ядра = 10-15 м. В 1932 г. Иваненко и Гейзенберг обосновали протон-нейтронную

Подробнее

Радиоактивность. 2. Объяснение α распада с помощью туннельного эффекта. 5. Искусственная радиоактивность. Ядерные реакции.

Радиоактивность. 2. Объяснение α распада с помощью туннельного эффекта. 5. Искусственная радиоактивность. Ядерные реакции. Радиоактивность 1. Естественная радиоактивность. Излучение. Общая характеристика. Закон радиоактивного распада. 2. Объяснение α распада с помощью туннельного эффекта. 3. β распад. Нейтрино. Возбужденное

Подробнее

7 4Be + e 7 3Li + ν e. M(Z, A) > M(Z + 1, A) + m e

7 4Be + e 7 3Li + ν e. M(Z, A) > M(Z + 1, A) + m e Изучение β-излучения радиоактивных веществ Составители: к. ф.-м. н. В. А. Литвинов, асс. О. В. Журенков Рецензенты: к. ф.-м. н. К. В. Воробьёв, д. ф.-м. н. А. В. Пляшешников Цель работы: Оборудование:

Подробнее

ЛЕКЦИЯ 4 ИМПУЛЬС. ЭФФЕКТИВНАЯ МАССА. УПРУГИЕ РЕАКЦИИ

ЛЕКЦИЯ 4 ИМПУЛЬС. ЭФФЕКТИВНАЯ МАССА. УПРУГИЕ РЕАКЦИИ ЛЕКЦИЯ 4 ИМПУЛЬС. ЭФФЕКТИВНАЯ МАССА. УПРУГИЕ РЕАКЦИИ На прошлой лекции мы выяснили, что, согласно (3.4) P = ( ε c, P ). Почему этот вектор 4-импульс? Напомним, что контравариантным вектором dx u называются

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 23 Ядерные силы в нуклон-нуклонных

Подробнее

Основные законы и формулы физики Оптика 390 λ 750 Геометрическая оптика = 2 = 1, v = α

Основные законы и формулы физики Оптика 390 λ 750 Геометрическая оптика = 2 = 1, v = α Оптика Оптикой называется раздел физики, в котором изучаются явления и законы, связанные с возникновением, распространением и взаимодействием световых электромагнитных волн ( 390 нм λ 750 нм). Геометрическая

Подробнее

Государственный экзамен по физике Физический факультет МГУ имени М.В.Ломоносова Направление "Физика" (бакалавриат)

Государственный экзамен по физике Физический факультет МГУ имени М.В.Ломоносова Направление Физика (бакалавриат) Билет 1 1. Способы описания движения. Закон движения. Линейные и угловые скорости и ускорения. 2. Состав атомных ядер. Размеры ядер и методы их определения. 3. Золотая пластинка толщиной l=1 мкм облучается

Подробнее

И протон, и нейтрон обладают полуцелым спином

И протон, и нейтрон обладают полуцелым спином Конспект лекций по курсу общей физики. Часть III Оптика. Квантовые представления о свете. Атомная физика и физика ядра Лекция 1 9. СТРОЕНИЕ ЯДРА 9.1. Состав атомного ядра Теперь мы должны обратить наше

Подробнее

некоторых лёгких элементов. одинаковые осколки; 3) ядра атомов гелия (альфа-частицы), протоны, нейтроны и ядра

некоторых лёгких элементов. одинаковые осколки; 3) ядра атомов гелия (альфа-частицы), протоны, нейтроны и ядра Радиоактивность это испускание атомными ядрами излучения вследствие перехода ядер из одного энергетического состояния в другое или превращения одного ядра в другое. Атомные ядра испускают: 1)электромагнитные

Подробнее

Лекция Введение в курс

Лекция Введение в курс Лекция. Введение в курс До изучения курса «Физика ядра и частиц» знания студентов ограничивались двумя типами фундаментальных взаимодействий: электромагнитным и гравитационным. В этом курсе добавятся остальные

Подробнее

КВАНТОВАЯ ФИЗИКА. Лекция 4. Атомное ядро. Элементарные частицы. Характеристики атомного ядра.

КВАНТОВАЯ ФИЗИКА. Лекция 4. Атомное ядро. Элементарные частицы. Характеристики атомного ядра. КВАНТОВАЯ ФИЗИКА Лекция 4. Атомное ядро. Элементарные частицы Характеристики атомного ядра. Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно

Подробнее

Введение в ядерную физику

Введение в ядерную физику Национальный исследовательский ядерный университет «МИФИ» Институт ядерной физики и технологий Лаборатория экспериментальной ядерной физики http://enpl.mephi.ru/ А.И.Болоздыня Введение в ядерную физику

Подробнее

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 для студентов 2 курса медико-биологического факультета. Тема 1. Законы теплового излучения. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ:

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 для студентов 2 курса медико-биологического факультета. Тема 1. Законы теплового излучения. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ: МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 Тема 1. Законы теплового излучения. 1. Равновесное тепловое излучение. 2. Энергетическая светимость. Испускательная и поглощательная способности. Абсолютно черное тело. 3. Закон

Подробнее

2. РЕЛЯТИВИСТСКАЯ МЕХАНИКА В механике, основанной на новом принципе относительности, импульс p и энергия E движущейся частицы связаны с ее скоростью

2. РЕЛЯТИВИСТСКАЯ МЕХАНИКА В механике, основанной на новом принципе относительности, импульс p и энергия E движущейся частицы связаны с ее скоростью РЕЛЯТИВИСТСКАЯ МЕХАНИКА В механике, основанной на новом принципе относительности, импульс и энергия движущейся частицы связаны с ее скоростью V иными соотношениями, чем в классической физике: mv,, () V

Подробнее

ОСНОВНЫЕ ФОРМУЛЫ РЕЛЯТИВИСТСКОЙ КИНЕМАТИКИ. 2 Натуральная система единиц (система Хевисайда)

ОСНОВНЫЕ ФОРМУЛЫ РЕЛЯТИВИСТСКОЙ КИНЕМАТИКИ. 2 Натуральная система единиц (система Хевисайда) 1 Физический факультет МГУ им. М.В. Ломоносова Физика атомного ядра и элементарных частиц. Общий курс физики, III семестр. Семинары. ОСНОВНЫЕ ФОРМУЛЫ РЕЛЯТИВИСТСКОЙ КИНЕМАТИКИ 1 Система единиц Гаусса Время

Подробнее

Билет 1. Билет p p p p π. рождение π 0 мезонов:

Билет 1. Билет p p p p π. рождение π 0 мезонов: Билет 1 1. Способы описания движения. Закон движения. Линейные и угловые скорости и ускорения. 2. Состав атомных ядер. Размеры ядер и методы их определения. 3. Золотая пластинка толщиной l=1 мкм облучается

Подробнее

Модуль 3. Теоретические основы методов электронной спектроскопии.

Модуль 3. Теоретические основы методов электронной спектроскопии. Модуль 3. Теоретические основы методов электронной спектроскопии. Раздел 1. Глубина выхода электронов и исследуемый объем вещества Тема 1. Сведения из теории столкновений частиц 1 Общие сведения из теории

Подробнее

Физический факультет. Реферат на тему: «Свойства нуклон-нуклонного взаимодействия»

Физический факультет. Реферат на тему: «Свойства нуклон-нуклонного взаимодействия» Московский государственный университет имени М.В.Ломоносова Физический факультет Реферат на тему: «Свойства нуклон-нуклонного взаимодействия» Работа выполнена студентом 209 группы Сухановым Андреем Евгеньевичем

Подробнее

СЕМИНАР 9 0,72. Здесь в последнем слагаемом (энергия спаривания) +1 для чётно чётного ядра, 0 для нечётного ядра, 1 для нечётно нечётного ядра.

СЕМИНАР 9 0,72. Здесь в последнем слагаемом (энергия спаривания) +1 для чётно чётного ядра, 0 для нечётного ядра, 1 для нечётно нечётного ядра. СЕМИНАР 9 Темы семинара: 1. Энергия связи ядер. Формула Вайцзеккера. 2. Энергия отделения нуклонов. Энергия связи ядра W(A, Z) и масса ядра M(A, Z). Формула Вайцзеккера: W(A, Z) = [Zm p + (A Z)m n ]c 2

Подробнее

Ядерные реакции. Лекция

Ядерные реакции. Лекция Ядерные реакции Лекция 1 04.09.2015 Ядерные реакции Ядерные реакции происходят при столкновениях частиц с ядрами или ядер с ядрами, в результате которых происходит изменение внутреннего состояния частиц

Подробнее

Полусеместровая контрольная работа по курсу «Основы квантовой физики»

Полусеместровая контрольная работа по курсу «Основы квантовой физики» Вариант 1. ID: ФИО, группа 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 Σ Шкала оценок 1 2 3 4 5 6 7 8 9 10 0-2 3-4 5-6 7-9 10-12 13-15 16-20 21-23 24-26 27+ Полусеместровая контрольная работа по курсу «Основы

Подробнее

Атомная физика Индивидуальное задание 4

Атомная физика Индивидуальное задание 4 Атомная физика Индивидуальное задание 4 Вариант 1 1. Предполагая, что неопределенность координаты движущейся частицы равна дебройлевской длине волны, оцените относительную неточность р/р импульса этой

Подробнее

5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР

5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР 5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР Решение уравнения Шредингера для частицы в прямоугольной бесконечно глубокой потенциальной яме (рис.4) шириной дает для энергии лишь дискретные значения n n

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 3.36

ЛАБОРАТОРНАЯ РАБОТА 3.36 ЛАБОРАТОРНАЯ РАБОТА 3.36 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОГЛОЩЕНИЯ γ-лучей СВИНЦОМ Цель работы - изучить свойства γ-излучения и особенности его взаимодействия c веществом. В результате выполнения данной работы

Подробнее

Методика решения задач по квантовой, атомной и ядерной физике.

Методика решения задач по квантовой, атомной и ядерной физике. Методика решения задач по квантовой, атомной и ядерной физике.. КВАНТОВАЯ ОПТИКА. Основные формулы. Закон Стефана Больцмана R e T 4, где R e энергетическая светимость абсолютно черного тела, равная энергии,

Подробнее

Упругое и неупругое рассеяние

Упругое и неупругое рассеяние Семинар Упругое и неупругое рассеяние.. Борновское приближение... Рассеяние частиц Рассеяние взаимодействие частиц при столкновении. Если в ходе взаимодействия частицы не меняются: + + то такое столкновение

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнитные волны Лекция 13 ЛЕКЦИЯ 13

Д. А. Паршин, Г. Г. Зегря Физика Электромагнитные волны Лекция 13 ЛЕКЦИЯ 13 1 ЛЕКЦИЯ 13 Мощность излучения. Сохранение энергии при излучении. Излучение и поле в ближней зоне. Излучение электрического диполя. Естественная ширина линии излучения испускаемого атомом. Рассеяние света

Подробнее

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ Продолжаем изучать атомные ядра. 1. Диаграмма стабильности ядер. Долина стабильности На рис. 11.1 показана диаграмма стабильности ядер. Если сдвинуться из этой долины, то тогда

Подробнее

Лектор: Игорь Михайлович Капитонов, профессор кафедры Общей ядерной физики

Лектор: Игорь Михайлович Капитонов, профессор кафедры Общей ядерной физики Вводная часть 4 лекции, Физика частиц и взаимодействий 4 лекции, Физика атомного ядра 4,5 лекции, Дискретные симметрии и объединение взаимодействий 1,5 лекции, Вселенная 1 лекция Лектор: Игорь Михайлович

Подробнее

3. Взаимодействие альфа-частиц с веществом. Введение

3. Взаимодействие альфа-частиц с веществом. Введение 3. Взаимодействие альфа-частиц с веществом Введение Альфа-частицы представляют собой ядра гелия 4 2He, имеют заряд +2e, состоят из 4 нуклонов 2 протонов и 2 нейтронов. Альфа-частицы возникают при радиоактивном

Подробнее

Лекция 7: Определение чётности гамма-переходов в поляризационных ЯРФ-экспериментах. Метод, использующий линейно поляризованное тормозное излучение.

Лекция 7: Определение чётности гамма-переходов в поляризационных ЯРФ-экспериментах. Метод, использующий линейно поляризованное тормозное излучение. Лекция 7: Определение чётности гамма-переходов в поляризационных ЯРФ-экспериментах. Метод, использующий линейно поляризованное тормозное излучение. ЯРФ-эксперименты позволяют модельно независимым путём

Подробнее

ФОТОЭФФЕКТ. ЭФФЕКТ КОМПТОНА. ВОЛНОВЫЕ СВОЙСТВА ЧАСТИЦ. 1. Определить энергию ε, импульс р и массу m фотона, длина волны которого λ = 500 нм.

ФОТОЭФФЕКТ. ЭФФЕКТ КОМПТОНА. ВОЛНОВЫЕ СВОЙСТВА ЧАСТИЦ. 1. Определить энергию ε, импульс р и массу m фотона, длина волны которого λ = 500 нм. ФОТОЭФФЕКТ. ЭФФЕКТ КОМПТОНА. ВОЛНОВЫЕ СВОЙСТВА ЧАСТИЦ 1. Определить энергию ε, импульс р и массу m фотона, длина волны которого λ = 500 нм. 2. Какую длину волны λ должен иметь фотон, чтобы его масса была

Подробнее

Эта волна описывает движение с определённым импульсом p = k, но её координата r полностью неопределённа, т. е. может быть любой от до.

Эта волна описывает движение с определённым импульсом p = k, но её координата r полностью неопределённа, т. е. может быть любой от до. Вернер Гейзенберг Темы лекции 1. Классическая и квантовая неопределённость. Соотношение неопределённости. 2. Заглянем внутрь атомного ядра. 3. Угловые моменты микрочастиц. Спин частицы. 4. Геометрия квантовых

Подробнее

Атомная физика и физика твердого тела. Индивидуальное домашнее задание. Вариант 1.

Атомная физика и физика твердого тела. Индивидуальное домашнее задание. Вариант 1. Вариант 1. 1.Фотон рассеялся под углом 120 на покоившемся свободном электроне, в результате чего электрон получил кинетическую энергию 0,45 МэВ. Найдите энергию фотона до рассеяния. 2.Электрон находится

Подробнее

Лектор: Игорь Михайлович Капитонов, профессор кафедры Общей ядерной физики

Лектор: Игорь Михайлович Капитонов, профессор кафедры Общей ядерной физики Вводная часть 4 лекции, Физика частиц и взаимодействий 4 лекции, Физика атомного ядра 4,5 лекции, Дискретные симметрии и объединение взаимодействий 1,5 лекции, Вселенная 1 лекция Лектор: Игорь Михайлович

Подробнее

Лектор: Игорь Михайлович Капитонов, профессор кафедры Общей ядерной физики

Лектор: Игорь Михайлович Капитонов, профессор кафедры Общей ядерной физики Вводная часть 4 лекции, Физика частиц и взаимодействий 4 лекции, Физика атомного ядра 4,5 лекции, Дискретные симметрии и объединение взаимодействий 1,5 лекции, Вселенная 1 лекция Лектор: Игорь Михайлович

Подробнее

ОПЫТ РЕЗЕРФОРДА Методические указания к выполнению лабораторной работы 128Ф по физике для студентов, обучающихся по направлению «Физика».

ОПЫТ РЕЗЕРФОРДА Методические указания к выполнению лабораторной работы 128Ф по физике для студентов, обучающихся по направлению «Физика». Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет ОПЫТ

Подробнее

ВЗАИМОДЕЙСТВИЕ α-излучения, n-излучения И γ-квантов С ВЕЩЕСТВОМ

ВЗАИМОДЕЙСТВИЕ α-излучения, n-излучения И γ-квантов С ВЕЩЕСТВОМ (Computer Simulation) CS-01-011 В.В. Дьячков и др. ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПО ЯДЕРНОЙ ФИЗИКЕ КОМПЬЮТЕРНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ «Некоторые вопросы физики управляемого термоядерного синтеза. Часть 1» ВЗАИМОДЕЙСТВИЕ

Подробнее

ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ТРЕКОВ ПОЛОЖИТЕЛЬНЫХ МЮОНОВ

ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ТРЕКОВ ПОЛОЖИТЕЛЬНЫХ МЮОНОВ ЛАБОРАТОРНАЯ РАБОТА 4.15. ИЗУЧЕНИЕ ТРЕКОВ ПОЛОЖИТЕЛЬНЫХ МЮОНОВ Ц е л ь р а б о т ы : изучение треков элементарных частиц в ядерной фотоэмульсии; измерение пробега и оценка энергии мюона, образующегося

Подробнее

Методические указания к решению задач по ядерной физике

Методические указания к решению задач по ядерной физике Санкт-Петербургский Государственный Политехнический Университет Физико-Механический Факультет Кафедра Экспериментальной Ядерной Физики Методические указания к решению задач по ядерной физике Н.И.Троицкая

Подробнее

Прохождение γ излучения через вещество

Прохождение γ излучения через вещество Прохождение γ излучения через вещество Каждый фотон выбывает из падающего пучка в результате единичного акта ΔI= -τ I Δx = - N σ I Δx I число γ-квантов, падающих на слой Δх ΔI число фотонов, выбывших из

Подробнее

Основные законы и формулы. hc ε = hν =, λ. c λ. I h

Основные законы и формулы. hc ε = hν =, λ. c λ. I h 4. Квантовые свойства света. Строение атома. Основные законы и формулы Квант электромагнитного поля фотон, обладает энергией, массой и импульсом. Энергия фотона hc ε = hν =, λ 34 где h = 6,6 1 Дж с постоянная

Подробнее

ЗАМЕДЛЕНИЕ НЕЙТРОНОВ В РЕАКТОРЕ

ЗАМЕДЛЕНИЕ НЕЙТРОНОВ В РЕАКТОРЕ ЗАМЕДЛЕНИЕ НЕЙТРОНОВ В РЕАКТОРЕ Общие положения замедления k эфф p з p т Непосредственно с процессом замедления нейтронов в реакторе связана величина p з вероятность избежать утечки замедляющихся нейтронов.

Подробнее

РЕФЕРАТ. Электромагнитные взаимодействия. Структура нуклона. Московский государственный университет им. М.В.Ломоносова

РЕФЕРАТ. Электромагнитные взаимодействия. Структура нуклона. Московский государственный университет им. М.В.Ломоносова Московский государственный университет им. М.В.Ломоносова Физический факультет РЕФЕРАТ По дисциплине физика атомного ядра и частиц На тему: Электромагнитные взаимодействия. Структура нуклона. Работу выполнила:

Подробнее

, b ) вектор прицельного параметра между

, b ) вектор прицельного параметра между Приложение 1. Центральность столкновения В модели Глаубера [R.Glauber, Interscience Publ., 315, 1959] в работах польских физиков [.ialas et al., Nucl. Phys. 111, 461 (1976)] была получена разумная оценка

Подробнее

Занятие 28 Ядерная физика. СТО

Занятие 28 Ядерная физика. СТО Задача 1 Гамма-излучение это 1) Поток ядер гелия; 2) Поток протонов; 3) Поток электронов; 4) Электромагнитные волны. Занятие 28 Ядерная физика. СТО Задача 2 Неизвестная частица, являющаяся продуктом некоторой

Подробнее

Тема 1.4: Взаимодействие гаммаквантов

Тема 1.4: Взаимодействие гаммаквантов «Защита от ионизирующих излучений» Тема 1.4: Взаимодействие гаммаквантов с веществом Энергетический факультет 2015/2016 учебный год Источники гамма-квантов -излучение коротковолновое электромагнитное излучение

Подробнее

7. Определить импульсы и массы фотонов с длинами волн 500 нм, 250 нм и 400 нм.

7. Определить импульсы и массы фотонов с длинами волн 500 нм, 250 нм и 400 нм. Вариант 1 1. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r 3 третьего темного кольца Ньютона при наблюдении

Подробнее