Векторы в пространстве. Выполнили: Девахина Д.П., Иванова П.М. Учитель: Шорникова С.П.

Размер: px
Начинать показ со страницы:

Download "Векторы в пространстве. Выполнили: Девахина Д.П., Иванова П.М. Учитель: Шорникова С.П."

Транскрипт

1 Векторы в пространстве Выполнили: Девахина Д.П., Иванова П.М. Учитель: Шорникова С.П.

2 Понятие вектора в пространстве Вектор(направленный отрезок) отрезок, для которого указано какой из его концов считается началом, а какой концом. А В AB M MM 0 Длина вектора AB длина отрезка AB. AB AB 0 0

3 Коллинеарные векторы Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или параллельных прямых.

4 Сонаправленные векторы Сонаправленные векторы - векторы, лежащие по одну сторону от прямой, проходящей через их начала. Нулевой вектор считается сонаправленным с любым вектором.

5 Равные векторы Равные векторы - сонаправленные векторы, длины которых равны., От любой точки можно отложить вектор, равный данному, и притом только один.

6 Противоположно направленные векторы Противоположно направленные векторы векторы, лежащие по разные стороны от прямой, проходящей через их начала.

7 Противоположные векторы Противоположные векторы противоположно направленные векторы, длины которых равны., Вектором, противоположным нулевому, считается нулевой вектор.

8 Признак коллинеарности Если существует такое число k при котором выполняется равенство k и при том вектор 0, то векторы и коллинеарн ы.

9 Определение компланарных векторов Компланарные векторы векторы, при откладывании которых от одной и той же точки пространства, они будут лежать в одной плоскости. Пример: B C A D B C А D BB, AC,AC компланарны,т.к. BB AA, а векторы AA, AC, AC лежат в плоскости (AA C)

10 О компланарных векторах Любые два вектора всегда компланарны. α и компланарны Три вектора, среди которых имеются два коллинеарных, компланарны., и c,, c если компланарны k

11 Правило треугольника Для сложения двух векторов необходимо :. отложить от какой нибудь точки А вектор AB, равный а 2. от точки В отложитьвектор BC, равный 3. вектор AC называется суммой векторов и А B C

12 Правило треугольника А B C Для любых трех точек А, В и С справедливо равенство: AB BC AC

13 Свойства сложения векторов Для любых векторов, и c справедливы равенства : переместительный закон с а с сочетательный закон

14 Вычитание векторов Для вычитания одного вектора из другого необходимо :. отложить от какой нибудь точки А вектор AB, равный а 2. от этой же точки А отложить вектор AC, равный 3. вектор CB называется разностью векторов и A B C

15 Правило трех точек Любой вектор можно представить как разность двух векторов, проведенных из одной точки. B А BK BK AK AB K

16 Сложение с противоположным вектором Разность векторов и можно представить как сумму вектора вектору. и вектора, противоположного B А O

17 Умножение вектора на число Произведением ненулевог о вектора на число k называется такой вектор, длина которог о равна к а, при чем векторы и сонаправлены при k 0 и противоположно направлены при k

18 Скалярное произведение векторов Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними. cos( ; )

19 Справедливые утверждения скалярное произведение ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны 0 0 0

20 Вычисление скалярного произведения в координатах Скалярное произведение векторов x ; y ;z и x 2 x ; y x 2 2 ; z 2 y выражается формулой y 2 z z 2

21 Задачи.. =6, =2, α=30.определи скалярное произведение данных векторов. 2. Определи скалярное произведение векторов { ; 4; 7} и {;2; }.


Банк заданий по теме «Векторы в пространстве. Метод координат в пространстве»

Банк заданий по теме «Векторы в пространстве. Метод координат в пространстве» Банк заданий по теме «Векторы в пространстве Метод координат в пространстве» Учащиеся должны знать/понимать: Понятие вектора, способ его изображения и названия Определение равенства векторов, их коллинеарности,

Подробнее

Глава II. Векторная алгебра.

Глава II. Векторная алгебра. Глава II. Векторная алгебра. Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный

Подробнее

Лекция 2. Векторы. Определения.

Лекция 2. Векторы. Определения. Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

10.1 класс (технологический профиль) уч. год. Геометрия. УМК Атанасян Л.С. Модуль 8.

10.1 класс (технологический профиль) уч. год. Геометрия. УМК Атанасян Л.С. Модуль 8. 0 класс (технологический профиль) 208 209 уч год Геометрия УМК Атанасян ЛС Модуль 8 Тема модуля: «Векторы в пространстве Метод координат в пространстве» В процессе изучения данного модуля ученик научится/получит

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

5. Векторы. 5.1 Определение и начальные сведения о векторах

5. Векторы. 5.1 Определение и начальные сведения о векторах 49 5 Векторы 51 Определение и начальные сведения о векторах Любые две точки А,В определяют направленный отрезок, если точка А определяет начало, точка В конец отрезка, направление задается от А к В Направленный

Подробнее

3.4 Векторы. Метод координат

3.4 Векторы. Метод координат 3.4. ВЕКТОРЫ. МЕТОД КООРДИНАТ 167 3.4 Векторы. Метод координат 3.4.1 Понятие вектора. Свойства Будем называть направленным отрезком AB упорядоченную пару (см. определение 16) точек A; B трехмерного пространства

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами. Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аннотация Скалярные и векторные величины. Понятие геометрического вектора, как направленного отрезка. Длина вектора. Нуль-вектор,

Подробнее

Вопросы образовательного минимума по математике за I четверть 9 класса Теоретическая часть: 1. В каком случае числа считается больше, чем число?

Вопросы образовательного минимума по математике за I четверть 9 класса Теоретическая часть: 1. В каком случае числа считается больше, чем число? Вопросы образовательного минимума по математике за I четверть 9 класса Теоретическая часть: 1. В каком случае числа считается больше, чем число? В каком случае числа считается меньше, чем число? 2. В каком

Подробнее

4. Координаты вектора

4. Координаты вектора 4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют

Подробнее

ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами.

ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами. ВЕКТОРЫ Определение вектора Линейные операции над векторами Вектором на плоскости или в пространстве называется направленный отрезок, для которого указаны начало и конец Обозначения: AB, Точка А начало

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

Лекция 3 ВЕКТОР И ЕГО КООРДИНАТЫ. 1. Направленные отрезки и вектор

Лекция 3 ВЕКТОР И ЕГО КООРДИНАТЫ. 1. Направленные отрезки и вектор Лекция 3 ВЕКТОР И ЕГО КООРДИНАТЫ 1. Направленные отрезки и вектор Прежде всего напомним определение направленного отрезка. Определение 1. Упорядоченная пара точек (A,B) называется направленным отрезком

Подробнее

Планируемые результаты освоения учебного предмета. В результате изучения курса математики (геометрия) 9 класса обучающиеся должны уметь/знать:

Планируемые результаты освоения учебного предмета. В результате изучения курса математики (геометрия) 9 класса обучающиеся должны уметь/знать: Планируемые результаты освоения учебного предмета. В результате изучения курса математики (геометрия) 9 класса обучающиеся должны уметь/знать: Знать определения вектора и равных векторов; изображать и

Подробнее

на множестве векторов Понятие линейного пространства

на множестве векторов Понятие линейного пространства Линейная алгебра и аналитическая геометрия Тема: Векторы. Линейные операции на множестве векторов Понятие линейного пространства Лектор Рожкова С.В. 2012 г. Глава II. Векторная алгебра. Элементы теории

Подробнее

Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения:

Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения: Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения: 1. Определение вектора. Коллинеарные и компланарные векторы.. Сложение и вычитание векторов. Умножение вектора на

Подробнее

Обязательный образовательный минимум. Содержание определения (понятия) Для любого числа a, не равного нулю, и целого отрицательного числа n

Обязательный образовательный минимум. Содержание определения (понятия) Для любого числа a, не равного нулю, и целого отрицательного числа n Обязательный образовательный минимум Класс 9 Предмет Математика Четверть I 1 Степень с целым Для любого числа a, не равного нулю, и целого отрицательного числа n Для любого числа a, на равного нулю, определения

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Векторная алгебра Направленные отрезки и векторы.

Векторная алгебра Направленные отрезки и векторы. ГЛАВА 1. Векторная алгебра. 1.1. Направленные отрезки и векторы. Рассмотрим евклидово пространство. Пусть прямые (AB) и (CD) параллельны. Тогда лучи [AB) и [CD) называются одинаково направленными (соответственно

Подробнее

Тема 1-12: Линейные операции над векторами

Тема 1-12: Линейные операции над векторами Тема 1-12: Линейные операции над векторами А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Аналитическая геометрия. Лекция 1.4

Аналитическая геометрия. Лекция 1.4 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

Геометрические векторы

Геометрические векторы Геометрические векторы Определение Вектором называется направленный отрезок начальной точкой А и конечной точкой В (который можно перемещать параллельно самому себе) Если начало вектора - точка А, а его

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 3 ВЕКТОРЫ 1. Определение вектора. Свободные и скользящие векторы Дадим определение направленного отрезка. Определение 1. Отрезок, концы которого упорядочены, называется

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

перпендикулярны(ортогональны), необходимо и достаточно обращения в нуль их скалярного произведения.

перпендикулярны(ортогональны), необходимо и достаточно обращения в нуль их скалярного произведения. 5.2.Скалярное произведение векторов. Определение. Скалярным произведением двух векторов aa и bb называется число, равное произведению длин этих векторов на косинус угла между ними. Скалярное произведение

Подробнее

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только ~ ~ ВЕКТОРНАЯ АЛГЕБРА калярные и векторные величины, виды векторов. Определение: калярной называется величина, которая характеризуется только o своим значением m, T C. Определение: Векторной называется

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

Тема 1-13: Скалярное произведение векторов

Тема 1-13: Скалярное произведение векторов Тема 1-13: Скалярное произведение векторов А. Я. Овсянников Уральский федеральный университет Институт естественных наук и математики Департамент математики, механики и компьютерных наук Алгебра и геометрия

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

В Е К Т О Р Ы 8 класс

В Е К Т О Р Ы 8 класс Серия «Зачет на 5» В Е К Т О Р Ы 8 класс НОЯБРЬСК Серия «Зачет на 5» основана в 003 году. Автор-оставитель: Зайцева И.А. Векторы. 8 класс: Учебное пособие для подготовки учащихся к устному зачету по геометрии

Подробнее

Поурочное планирование по геометрии. 9 класс (Л.С. Атанасян)

Поурочное планирование по геометрии. 9 класс (Л.С. Атанасян) Поурочное планирование по геометрии. 9 класс (Л.С. Атанасян) п\п Тема а Тип а Элементы содержания Требования к уровню подготовки учащихся 1 2 3 4 5 6 1 Повторение Урок повторения и 2 Повторение Урок повторения

Подробнее

Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА

Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА 0. План лекции 1. Скалярное произведение. 1.1. Определение скалярного произведения. 1.2. Эквивалентная запись через проекции. 1.3. Доказательство линейности по

Подробнее

7 класс 1. Виды углов.

7 класс 1. Виды углов. 7 класс 1. Виды углов. Угол называется прямым, если он равен 90 0. Угол называется острым, если он меньше 90 0. Угол называется тупым, если он больше 90 0, но меньше 180 0. Прямой угол Острый угол Тупой

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 2 Векторная алгебра 1. Даны три вектора a = {0; 1; 3}, b = {3; 2; 1}, c = {4; 0; 4}. Требуется найти: a) вектор d = 2 a b

Подробнее

Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1. Проекция вектора на ось

Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1. Проекция вектора на ось Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ В этой лекции мы введем понятие скалярного произведения векторов и рассмотрим его свойства. Для этого нам понадобятся некоторые геометрические

Подробнее

Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность

Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность Практическое занятие 3. Практикум (рекомендации к практической части) МОДУЛЬ. ВЕКТОРНАЯ АЛГЕБРА Тема: Линейные операции над векторами План. Понятие вектора. Основные отношения векторов.. Сложение векторов.

Подробнее

векторы ШИМАНЧУК Дмитрий Викторович

векторы ШИМАНЧУК Дмитрий Викторович А Н А Л И Т И Ч Е С К А Я векторы Г Е О М Е Т Р И Я ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов управления Санкт-Петербург

Подробнее

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Модуль 3 для класса. Учебно-методическая часть./

Подробнее

Лекция 2: Линейные операции над векторами

Лекция 2: Линейные операции над векторами Лекция 2: Линейные операции над векторами Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы приступаем к изучению

Подробнее

Тест 371. Сонаправленные векторы. Равенство векторов

Тест 371. Сонаправленные векторы. Равенство векторов Тест 371. Сонаправленные векторы. Равенство векторов Пусть ABCD параллелограмм, O точка пересечения его диагоналей, точка K середина его стороны АВ, точка L середина его стороны ВС. Тогда: 1. векторы АВ

Подробнее

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

, то смешанное произведение векторов находим по формуле

, то смешанное произведение векторов находим по формуле Тест 1. 1.Скалярным произведением векторов a и b называется число, обозначаемое,, равное sin б) вектор ортогональный векторам a и b, длиной cos cos, г) вектор соединяющий начало вектора a и конец вектора

Подробнее

ЗАДАЧИ по теме «ВЕКТОРЫ»

ЗАДАЧИ по теме «ВЕКТОРЫ» УТВЕРЖДАЮ: ДЕ Капуткин, Председатель Учебно-методической комиссии по реализации Соглашения с Департаментом образования г Москвы "30" августа 013г ЗАДАЧИ по теме «ВЕКТОРЫ» МИСиС-013 1 Какие векторы равны

Подробнее

Лекция 6. Геометрические векторы.

Лекция 6. Геометрические векторы. Лектор Гущина Елена Николаевна, кафедра Высшей математики 2. Лекция 6. Геометрические векторы. Вектор как направленный отрезок. Сложение векторов и умножение вектора на число. Свойства линейных операций.

Подробнее

Вопросы к зачёту по математике. 9 класс 1 семестр

Вопросы к зачёту по математике. 9 класс 1 семестр Вопросы к зачёту по математике. 9 класс 1 семестр Геометрия ЧАСТЬ 1 (без доказательства) 1. Дайте определение вектора. Дайте определение нулевого вектора.. Дайте определение длины вектора. 3. Дайте определение

Подробнее

ВЕКТОРНАЯ АЛГЕБРА Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

ВЕКТОРНАЯ АЛГЕБРА Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ ВЕКТОРНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

Линейная алгебра Лекция 7. Векторы

Линейная алгебра Лекция 7. Векторы Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Подробнее

векторы ШИМАНЧУК Дмитрий Викторович

векторы ШИМАНЧУК Дмитрий Викторович А Н А Л И Т И Ч Е С К А Я векторы Г Е О М Е Т Р И Я ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов управления Санкт-Петербург

Подробнее

Векторное и смешанное произведение векторов

Векторное и смешанное произведение векторов Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

8. Дать определение ортогональной скалярной проекции вектора на направление.

8. Дать определение ортогональной скалярной проекции вектора на направление. 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения

Подробнее

Векторная алгебра. Глава Векторы на плоскости и в пространстве

Векторная алгебра. Глава Векторы на плоскости и в пространстве Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа

Подробнее

R может быть задана с помощью

R может быть задана с помощью 5... Уравнения плоскости. Плоскость в пространстве 5.. ПЛОСКОСТЬ. R может быть задана с помощью n, B, C, вектора перпендикулярного плоскости, и точки M,, этой плоскости. Вектор n, B, C,, лежащей на E перпендикулярный

Подробнее

ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.

ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство. ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.... 1 2.Векторная алгебра.... 2 3.Системы координат... 6 1.Векторное пространство. Рассмотрим

Подробнее

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р.

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р. Векторная алгебра Аналитическая геометрия Ищанов ТР h://schowru/veor-lger-lches-geomerhml Задача Написать разложение вектора по векторам r 8 r Требуется представить вектор в виде r где числа Найдем их

Подробнее

Лекция 3. Базис. Вычтем из первого разложения второе:

Лекция 3. Базис. Вычтем из первого разложения второе: Лекция 3 Базис Теорема 3.1. Любой вектор d единственным образом раскладывается по данному базису, b, c в пространстве. Аналогично, любой вектор c на плоскости единственным образом раскладывается по данному

Подробнее

Лекция 6 Тема: Векторное произведение векторов

Лекция 6 Тема: Векторное произведение векторов Лекция 6 Тема: Векторное произведение векторов План лекции Ориентация векторного базиса в пространстве Определение векторного произведения двух векторов Свойства векторного произведения 4 Вычисление векторного

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

Теоретический минимум по вычислительной геометрии

Теоретический минимум по вычислительной геометрии Теоретический минимум по вычислительной геометрии для групп параллели B Летняя компьютерная школа, 2010 г. Содержание 1 Вектора 1 1.1 Скалярное произведение векторов.................................. 2

Подробнее

b a b c а O a ПРИЛОЖЕНИЕ ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ П.1. Понятие вектора. Сложение векторов

b a b c а O a ПРИЛОЖЕНИЕ ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ П.1. Понятие вектора. Сложение векторов 05 ПРИЛОЖЕНИЕ ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ П.1. Понятие вектора. Сложение векторов В механике различают величины скалярные и векторные. К скалярным величинам относятся: масса, энергия, механическая работа,

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации

МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации ОДЕССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СВЯЗИ им АС ПОПОВА Кафедра высшей математики ВЕКТОРНАЯ АЛГЕБРА Учебное

Подробнее

Календарно тематическое планирование 9 класс (учебник «Геометрия 7-9», автор Атанасян Л.С.).

Календарно тематическое планирование 9 класс (учебник «Геометрия 7-9», автор Атанасян Л.С.). Тема урока Кол. часов Векторы. Метод координат. 18 Понятие 1 1. Понятие вектора п.76 Равенство векторов п.77 Откладывание вектора от данной точки п.78 2. 3. 4. 5. 6. 7. 8. 9. Сложение и вычитание Сумма

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

называется суммой векторов a и b = b. Докажем,. Так как AB = A 1 и и выполнено аналогичное построение: A1 B1

называется суммой векторов a и b = b. Докажем,. Так как AB = A 1 и и выполнено аналогичное построение: A1 B1 Лекция 2 Тема: Сложение и вычитание векторов Умножение вектора на число НДУ коллинеарности План лекции Сложение векторов 2 Вычитание векторов Модуль суммы и модуль разности векторов 3 Определение и свойства

Подробнее

Коллоквиум по аналитической геометрии

Коллоквиум по аналитической геометрии Коллоквиум по аналитической геометрии Решения 07/11/2013 Напоминание некоторых обозначений. f : A B: f функция с областью определения A и областью значений B. Z, Q, R множества целых, рациональных, и действительных

Подробнее

Лекция 6. f 1 = c 1 1e 1 + c 2 1e 2, f 2 = c 1 2e 1 + c 2 2e 2. c 1 1 c 2 1 E = (e 1,e 2 ), F = (f 1,f 2 ), C =. c 1 2 c 2 2 F = EC.

Лекция 6. f 1 = c 1 1e 1 + c 2 1e 2, f 2 = c 1 2e 1 + c 2 2e 2. c 1 1 c 2 1 E = (e 1,e 2 ), F = (f 1,f 2 ), C =. c 1 2 c 2 2 F = EC. Лекция 6 1 ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1, f Векторы нового базиса можно выразить через векторы старого

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 6 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ 1. Скалярное произведение Определение 1. Углом ϕ между векторами a и b называется тот из углов, образованный

Подробнее

Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов:

Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов: 1 2 Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов: изучение материала по учебникам, решение задач, самопроверка

Подробнее

I. Требования к уровню подготовки учащихся В результате изучения данного курса обучающиеся должны уметь/знать: Знать определения вектора и равных

I. Требования к уровню подготовки учащихся В результате изучения данного курса обучающиеся должны уметь/знать: Знать определения вектора и равных I. Требования к уровню подготовки учащихся В результате изучения данного курса обучающиеся должны уметь/знать: Знать определения вектора и равных векторов; изображать и обозначать векторы, откладывать

Подробнее

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве.

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве. Аналитическая геометрия в пространстве Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию Прямоугольная система координат Охy в пространстве

Подробнее

б) Координаты точек K и L середин ребер A 1 B 1 и CC 1 соответственно. Найдем координаты точек K, L из разложения векторов AK,

б) Координаты точек K и L середин ребер A 1 B 1 и CC 1 соответственно. Найдем координаты точек K, L из разложения векторов AK, . Дан параллелепипед ABCDA B C D. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA, найти координаты: а) вершин C, B, C ; б) точек K и L середин ребер A B и CC соответственно. Решение:

Подробнее

Лекция 31 Глава 3. Аналитическая геометрия в пространстве

Лекция 31 Глава 3. Аналитическая геометрия в пространстве Лекция Глава Аналитическая геометрия в пространстве Плоскость в пространстве Уравнение плоскости проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка ) и ненулевой

Подробнее

Основы векторной алгебры

Основы векторной алгебры Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Основы векторной алгебры Раздел электронного учебника для сопровождения лекции Изд. 4-е, испр. и

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Высшая математика для психологов

Высшая математика для психологов Саратовский государственный университет им Н Г Чернышевского Галаев СВ, Шевцова ЮВ Высшая математика для психологов Часть (Линейная алгебра и аналитическая геометрия) Саратов 00 СОДЕРЖАНИЕ Глава Векторная

Подробнее

«Элементы векторной алгебры» Тема4. Минестерство образования Республики Беларусь. Кафедра теоретической и прикладной математики.

«Элементы векторной алгебры» Тема4. Минестерство образования Республики Беларусь. Кафедра теоретической и прикладной математики. Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема4. «Элементы векторной алгебры» Уи льям Ро уэн Га мильтон Кафедра теоретической и прикладной

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА» НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ ЧАСТНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА И СОЦИАЛЬНОГО УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Подробнее

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами. ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Методические указания к выполнению индивидуальных домашних заданий ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ m n называется прямоугольная табли- Матрицей размера ца

Подробнее

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения.

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ

Подробнее

Рабочая программа по геометрии для 9 класса 2 часа в неделю, 68 часов за год Учебник «Геометрия 7 9» под редакцией Атанасяна Л. С.

Рабочая программа по геометрии для 9 класса 2 часа в неделю, 68 часов за год Учебник «Геометрия 7 9» под редакцией Атанасяна Л. С. Рабочая программа по геометрии для 9 класса 2 часа в неделю, 68 часов за год Учебник «Геометрия 7 9» под редакцией Атанасяна Л. С. Пояснительная записка Рабочая программа учебного курса геометрии для 9

Подробнее

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

1.Планируемые результаты обучения

1.Планируемые результаты обучения .Планируемые результаты обучения Знать определения вектора и равных векторов; изображать и обозначать векторы, откладывать от данной точки вектор, равный данному; уметь решать задачи. Уметь объяснить,

Подробнее

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее