8. Дать определение ортогональной скалярной проекции вектора на направление.

Размер: px
Начинать показ со страницы:

Download "8. Дать определение ортогональной скалярной проекции вектора на направление."

Транскрипт

1 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения вектора на число. Суммой a + b двух векторов a и b называют вектор c, построенный по следующему правилу треугольника. Совместим начало вектора b с концом вектора a. Тогда суммой этих векторов будет вектор c, начало которого совпадает с началом a, а конец с концом b. Наряду с правилом треугольника существует правило параллелограмма. Выбрав для векторов a и b общее начало, строим на этих векторах параллелограмм. Тогда диагональ параллелограмма, выходящая из общего начала векторов, определяет их сумму. При умножении вектора на число, направление вектора не меняется, а длина вектора умножается на число. 3. Дать определения коллинеарных и компланарных векторов. Два геометрических вектора называют коллинеарными, если они лежат на одной прямой или на параллельных прямых. Три геометрических вектора называют компланарными, если эти векторы лежат на прямых, параллельных некоторой плоскости. 4. Дать определение линейно зависимой и линейно независимой системы векторов. Векторы a 1,, a n называют линейно зависимыми, если существует такой набор коэффициентов α 1,..., α n, что α 1a α na n = 0 и при этом хотя бы один из этих коэффициентов ненулевой. Если указанного набора коэффициентов не существует, то векторы называют линейно независимыми. 5. Сформулировать геометрические критерии линейной зависимости 2-х и 3-х векторов. Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны. Три вектора линейно зависимы тогда и только тогда, когда они компланарны. 6. Дать определение базиса и координат вектора. Базис множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества базисных векторов. Координаты вектора коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору. 7. Сформулировать теорему о разложении вектора по базису. Любой вектор векторного пространства можно разложить по его базису и притом единственным способом. Если e = (e 1 e ) i базис V i, x V i i = (1, 2, 3), то существует набор чисел (x 1 x i ) такой, что x = x 1 e x i e, i где (x 1 x i ) координаты вектора в базисе. 8. Дать определение ортогональной скалярной проекции вектора на направление. Ортогональной проекции вектора a на направление вектора b называется скалярная величина Пр b a = a cos (φ), где угол φ угол между векторами.

2 9. Дать определение скалярного произведения векторов. Скалярным произведением двух векторов a и b называют число, равное a b cos φ произведению длин a и b этих векторов на косинус угла φ между ними. 10. Сформулировать свойство линейности скалярного произведения. Совместно с умножением на число операция скалярного умножения ассоциативна: (λa ) b = λ(a b ). Скалярное умножение и сложение векторов связаны свойством дистрибутивности: (a + b ) с = a с + b с. 11. Записать формулу для вычисления скалярного произведения двух векторов, заданных в a = {x a, y a, z a }, b = {x b, y b, z b } a b = x a x b + y a y b + z a z b 12. Записать формулу для косинуса угла между векторами, заданными в ортонормированном базисе. a b cos φ = a b 13. Дать определение правой и левой тройки векторов. Упорядоченную тройку некомпланарных векторов a, b, c называют правой, если направление вектора a совмещается с направлением вектора b при помощи кратчайшего поворота вектора a в плоскости этих векторов, который со стороны вектора с совершается против хода часовой стрелки. В противном случае (поворот по ходу часовой стрелки) эту тройку называют левой. 14. Дать определение векторного произведения векторов. Векторным произведением неколлинеарных векторов a и b называют такой вектор с, который удовлетворяет следующим трем условиям: вектор c ортогонален векторам a и b; длина вектора c равна с = a b sin ϕ, где ϕ угол между векторами a и b ; упорядоченная тройка векторов a, b, с является правой. 15. Сформулировать свойство коммутативности (симметричности) скалярного произведения и свойство антикоммутативности (антисимметричности) векторного произведения. Скалярное произведение коммутативно: a b = b a. Векторное произведение антикоммутативно: a xb = b xa. 16. Сформулировать свойство линейности векторного произведения векторов.

3 свойство ассоциативности совместно с умножением на число (λa ) b = λ(a b ); свойство дистрибутивности относительно сложения (a + b ) с = a с + b с. Cвойства ассоциативности и дистрибутивности векторного произведения объединяют, аналогично случаю скалярного произведения, в свойство линейности векторного произведения относительно первого сомножителя. В силу свойства антикоммутативности векторного произведения векторное произведение линейно и относительно второго сомножителя: a (λb ) = (λb ) a = λ(b a ) = λ(a b ) a (b + с ) = (b + с ) a = (b a + с a ) = a b + a с. 17. Записать формулу для вычисления векторного произведения в правом ортонормированном базисе. a = {x a, y a, z a }, b = {x b, y b, z b }. i j k a b = x a y a z a x b y b z b 18. Дать определение смешанного произведения векторов. Смешанным произведением трех векторов a, b, с называют число, равное (a b ) с скалярному произведению векторного произведения первых двух векторов и третьего вектора. 19. Сформулировать свойство перестановки (кососимметричности) смешанного произведения. Для смешанного произведения действует правило циклической перестановки: a b с = b с a = с a b = b a с = с b a = a с b. 20. Сформулировать свойство линейности смешанного произведения. Для смешанного произведения выполняется свойство ассоциативности относительно умножения векторов на число: (λa ) b с = λ(a b с ). Для смешанного произведения выполняется свойство дистрибутивности: (a +a 1 ) 2 b с = a 1 b с + a 2 b с. Эти свойства смешанного произведения сформулированы для первого сомножителя. Однако при помощи циклической перестановки можно доказать аналогичные утверждения и для второго и для третьего сомножителей, т.е. верны равенства a (λb ) с = λ(a b с ), a b (λс ) = λ(a b с ), a (b 1 + b ) 2 с = a b 1 с + a b 2 с, a b (c 1 + c 2 ) = a b c 1 + a b c 2, и в итоге имеем свойство линейности смешанного произведения по каждому сомножителю. 21. Записать формулу для вычисления смешанного произведения в правом a = {x a, y a, z a }, b = {x b, y b, z b }, c = {x c, y c, z c } x a y a z a a b c = x b x c y b y c z b z c 22. Записать общее уравнение плоскости и уравнение в отрезках. Объяснить геометрический смысл входящих в эти уравнения параметров.

4 Уравнение Ax + By + Cz + D = 0 называют общим уравнением плоскости. Коэффициенты A, B, C при неизвестных в этом уравнении имеют наглядный геометрический смысл: вектор n = {A; B; C} перпендикулярен плоскости. Его называют нормальным вектором плоскости. Он, как и общее уравнение плоскости, определяется с точностью до (ненулевого) числового множителя. Уравнение x + y + z = 1 называют уравнением плоскости в отрезках, где a, b, c a b c соответствующие координаты точек лежащих на осях OX, OY и OZ соответственно. 23. Записать уравнение плоскости, проходящей через 3 данные точки. Пусть M 1 (x 1, y 1, z 1 ), M 2 (x 2, y 2, z 2 ), M 3 (x 3, y 3, z 3 ) заданные точки, а точка M(x, y, z) точка, принадлежащая плоскости, образованной точками M 1, M 2 и M 3, тогда уравнение плоскости имеет вид: x x 1 y y 1 z z 1 x 2 x 1 x 3 x 1 y 2 y 1 y 3 y 1 z 2 z 1 = 0 z 3 z Сформулировать условия параллельности и перпендикулярности двух плоскостей. Две плоскости перпендикулярны, если их нормальные векторы ортогональны. Две плоскости параллельны, если их нормальные векторы коллинеарны. 25. Записать формулу для расстояния от точки до плоскости, заданной общим уравнением. Для нахождения расстояния от точки M 0 (x 0, y 0, z 0 ) до плоскости π: Ax + By + Cz + D = 0 используется формула: ρ(m, π) = Ax 0+By 0 +Cz 0 +D A 2 +B 2 +C Записать канонические и параметрические уравнения прямой в пространстве. Объяснить геометрический смысл входящих в эти уравнения параметров. x = x 0 + lt Уравнение { y = y 0 + mt, где {l; m; n} - координаты направляющего вектора S прямой L и z = z 0 + nt (x 0 ; y 0 ; z 0 ) координаты точки M 0 L в прямоугольной системе координат, называют параметрическими уравнениями прямой в пространстве. Уравнение пространстве. x x 0 l = y y 0 = z z 0 m n называют каноническими уравнениями прямой в 27. Записать уравнение прямой, проходящей через две данные точки в пространстве. Уравнения x x 1 x 2 x 1 = y y 1 y 2 y 1 = z z 1 z 2 z 1 называют уравнениями прямой, проходящей через две точки M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ). 28. Записать условие принадлежности двух прямых одной плоскости. Пусть а и b направляющие векторы этих прямых, а точки M 1 и M 2 принадлежат соответственно прямым и l 1 и l 2. Тогда две прямые будут принадлежать одной плоскости, если смешанное произведение (a, b, M 1M 2) равно Записать формулу для расстояния от точки до прямой в пространстве. Расстояние от точки M 1 до прямой L может быть вычислено по формуле:

5 S ρ(m 1, L) = M 0M 1 S, где S направляющий вектор прямой L, M 0 точка на прямой L. 30. Записать формулу для расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми L 1 и L 2 может быть вычислено по формуле: ρ(l 1, L 2 ) = S 1 S 2 M 1 2 S S 1 2 принадлежащие прямым., где S 1, S 2 направляющие векторы прямых; M 1, M 2 точки Часть Б 1. Доказать геометрический критерий линейной зависимости трёх векторов. Три вектора линейно зависимы тогда и только тогда, когда они компланарны. Доказательство: Если три вектора a, b, c линейно зависимы, то, согласно теореме 2.1 (о линейной зависимости векторов), один из них, например a, является линейной комбинацией остальных: a = βb + γc. Совместим начала векторов b и c в точке A. Тогда векторы βb, γc будут иметь общее начало в точке A и по правилу параллелограмма их сумма, т.е. вектор a, будет представлять собой вектор с началом A и концом, являющимся вершиной параллелограмма, построенного на векторахслагаемых. Таким образом, все векторы лежат в одной плоскости, т.е. компланарны. Пусть векторы a, b, c компланарны. Если один из этих векторов является нулевым, то очевидно, что он будет линейной комбинацией остальных. Достаточно все коэффициенты линейной комбинации взять равными нулю. Поэтому можно считать, что все три вектора не являются нулевыми. Совместим начала этих векторов в общей точке O. Пусть их концами будут соответственно точки A, B, C (рис. 2.1). Через точку C проведем прямые, параллельные прямым, проходящим через пары точек O, A и O, B. Обозначив точки пересечения через A и B, получим параллелограмм OA CB, следовательно, OC = OA + OB. Вектор OA и ненулевой вектор a = OA коллинеарны, а потому первый из них может быть получен умножением второго на действительное число α: OA = αoa. Аналогично OB = βob, β R. В результате получаем, что OC = OA + OB, т.е. вектор c является линейной комбинацией векторов a и b. Согласно теореме 2.1 (о линейной зависимости векторов), векторы a, b, c являются линейно зависимыми. 2. Доказать теорему о разложении вектора по базису. Теорема о разложении вектора по базису. Если e = (e 1 e ) i базис V i, x V i i = (1, 2, 3), то существует набор чисел (x 1 x i ) такой, что x = x 1 e x i e, i где (x 1 x i ) координаты вектора в базисе. Доказательство: (для i = 2) (e 1, e 2 ) базис V 2, x V 2

6 По определению пространства V2: x, e1, e2 компланарны => (критерий линейной зависимости 3- х векторов) => x, e 1, e 2 линейно зависимы => α 0, α 1, α 2 R. α 0 x + α 1 e 1 + α 2 e 2 = 0, α α α случай: α 0 = 0, тогда α 1 e 1 + α 2 e 2 = 0, α α 2 2 0, значит α 1, α 2 линейно зависимые (e 1, e 2 ) лин. завис. e 1 и e 2 коллинеарны. 2 случай: α 0 0 x = ( α 1 α 0 ) e 1 + ( α 2 α 0 ) e 2 Доказали существование. Пусть существует 2 представления: x = y 1 e 1 + y 2 e 2 Разность: 0 = x x = x 1 e 1 + x 2 e 2 y 1 e 1 y 2 e 2 = (x 1 y 1 )e 1 + (x 2 y 2 )e 2 => линейно зависимы, а это противоречит определению базиса. 3. Доказать свойство линейности скалярного произведения. Совместно с умножением на число операция скалярного умножения ассоциативна: (λa ) b = λ(a b ). Скалярное умножение и сложение векторов связаны свойством дистрибутивности: (a + b ) с = a с + b с. Что и требовалось доказать. 4. Вывести формулу для вычисления скалярного произведения векторов, заданных в Вывод формулы для вычисления скалярного произведения векторов, заданных в Пусть векторы a и b из V 3 заданы своими координатами в ортонормированном базисе i, j, k : a = {x a ; y a ; z a }, b = {x b ; y b ; z b }. Это означает, что имеются разложения a = x a i + y a j + z a k, b = x b i + y b j + z b k. Используя их и свойства скалярного произведения, вычислим a b = (x a i + y a j + z a k )( x b i + y b j + z b k ) = x a x b i i + x a y b i j + x a z b i k + y a x b j i + y a y b j j + y a z b i k + z a x b k i + z a y b k j + z a z b k k = x a x b i 2 + y a y b j 2 + z a z b k 2 = x a x b + y a y b + z a z b. Окончательный ответ получен с учетом того, что ортонормированность базиса i, j, k означает выполнение равенств i j = i k = j k = 0, i 2 = j 2 = k 2 = 1. Таким образом, a b = x a x b + y a y b + z a z b 5. Вывести формулу для вычисления векторного произведения векторов, заданных в правом Вывод формулы для вычисления векторного произведения векторов, заданных в

7 Рассмотрим два вектора a и b, заданных своими координатами в правом ортонормированном базисе i, j, k : a = {x a ; y a ; z a }, b = {x b ; y b ; z b }. Тогда имеют место разложения этих векторов a = x a i + y a j + z a k, b = x b i + y b j + z b k. Исходя из этих представлений и алгебраических свойств векторного умножения, получаем a b = (x a i + y a j + z a k ) ( x b i + y b j + z b k ) = x a x b i i + x a y b i j + x a z b i k + y a x b j i + y a y b j j + y a z b i k + z a x b k i + z a y b k j + z a z b k k = (y a z b y b z a )i + (z a x b z b x a )j + (x a y b x b y a )k = y a z a y b z i x a z a b x b z j + x a y a b x b y k b Чтобы упростить полученную формулу, заметим, что она похожа на формулу разложения определителя третьего порядка по 1-й строке, только вместо числовых коэффициентов стоят векторы. Поэтому можно записать эту формулу как определитель, который вычисляется по обычным правилам. Две строки этого определителя будут состоять из чисел, а одна из векторов. Итак, формулу вычисления векторного произведения в правом ортонормированном базисе i, j, k можно записать в виде: i j k a b = x a y a z a x b y b z b 6. Доказать свойство линейности смешанного произведения. Используя свойства смешанного произведения, можно доказать линейность векторного произведения по первому множителю: (α a + β b, c ) = α (a, c ) + β (b, c ) Для этого найдем скалярное произведение вектора в левой части равенства и единичного вектора i стандартного базиса. Учитывая линейность смешанного произведения по второму множителю, получаем т.е. абсцисса вектора, стоящего в левой части доказываемого равенства равна абсциссе вектора в правой его части. Аналогично доказываем, что ординаты, а также и аппликаты, векторов в обеих частях равенства соответственно равны. Следовательно, это равные векторы, так как их координаты относительно стандартного базиса совпадают. 7. Вывести формулу для вычисления смешанного произведения трёх векторов в правом Вывод формулы для вычисления смешанного произведения трёх векторов в правом Пусть векторы a, b, c заданы своими координатами в правом ортонормированном базисе: a = {x a ; y a ; z a }, b = {x b ; y b ; z b }, с = {x с ; y с ; z с }. Чтобы найти их смешанное произведение, воспользуемся формулами для вычисления скалярного и векторного произведений: z b a b c = a (b c ) = a ( y b y c z i x b z b c x c z j + x b y b c y k ) c = x a y b z b y c z y a x b z b c x c z + z a x b y b c x c y = c x c x a y a z a x a x b x c x b y b z b = y a y b y c x c y c z c z a z b z c 8. Вывести формулу для расстояния от точки до плоскости, заданной общим уравнением. Вывод формулы для расстояния от точки до плоскости, заданной общим уравнением. Рассмотрим в пространстве некоторую плоскость π и произвольную точку M 0. Выберем

8 для плоскости единичный нормальный вектор n с началом в некоторой точке M 1 π, и пусть ρ(m 0, π) расстояние от точки M 0 до плоскости π. Тогда (рис. 5.5) ρ(m 0, π) = пр n M 1 0 = n M, 1 M 0 (5.8) так как n = 1. Если плоскость π задана в прямоугольной системе координат своим общим уравнением Ax + By + Cz + D = 0, то ее нормальным вектором является вектор с координатами {A; B; C}. Пусть (x 0, y 0, z 0 ) и (x 1, y 1, z 1 ) координаты точек M 0 и M 1. Тогда выполнено равенство Ax 1 +By 1 +Cz 1 +D = 0, так как точка M1 принадлежит плоскости, и можно найти координаты Вектора M : 1 0 M 1 0 = (x 0 x 1 ; y 0 y 1 ; z 0 z 1 ). Записывая скалярное произведение n M 1 M 0 в координатной форме и преобразуя (5.8), получаем ρ(m, π) = A(x 0 x 1 ) + B(y 0 y 1 ) + C(z 0 z 1 ) = Ax 0 + By 0 + Cz 0 (Ax 1 + By 1 + Cz 1 ) A 2 + B 2 + C 2 A 2 + B 2 + C 2 = Ax 0 + By 0 + Cz 0 + D A 2 + B 2 + C 2 поскольку Ax 1 + By 1 + Cz 1 = D. Итак, чтобы вычислить расстояние от точки до плоскости нужно подставить координаты точки в общее уравнение плоскости, а затем абсолютную величину результата разделить на нормирующий множитель, равный длине соответствующего нормального вектора. 9. Вывести формулу для расстояния от точки до прямой в пространстве. Вывод формулы для расстояния от точки до прямой в пространстве. Расстояние от точки M 1 (x 1, y 1, z 1 ) до прямой L, заданной каноническими уравнениями L: x x 0 = y y 0 = z z 0 m n, может быть вычислено при помощи векторного произведения. Действительно, канонические уравнения прямой дают нам точку M 0 (x 0, y 0, z 0 ) на прямой и направляющий вектор S = {l; m; n} этой прямой. Построим параллелограмм на векторах S и M. 0 1 Тогда расстояние от точки M 1 до прямой L будет равно высоте h параллелограмма (рис. 6.6). l Значит, нужное расстояние может быть вычислено по формуле S ρ(m 1, L) = M 0M Вывести формулу для расстояния между скрещивающимися прямыми. Вывод формулы для расстояния между скрещивающимися прямыми. S.

9 Расстояние между скрещивающимися прямыми можно находить, используя смешанное произведение. Пусть прямые L 1 и L 2 заданы каноническими уравнениями. Так как они скрещиваются, их направляющие векторы S 1, S 2 и вектор M, 1 2 соединяющий точки на прямых, некомпланарны. Поэтому на них можно построить параллелепипед (рис. 6.7). Тогда расстояние между прямыми равно высоте h этого параллелепипеда. В свою очередь, высоту параллелепипеда можно вычислить как отношение объема параллелепипеда к площади его основания. Объем параллелепипеда равен модулю смешанного произведения трех указанных векторов, а площадь параллелограмма в основании параллелепипеда равна модулю векторного произведения направляющих векторов прямых. В результате получаем формулу для расстояния ρ(l 1, L 2 ) между прямыми: ρ(l 1, L 2 ) = S 1S 2 M 1 2 S 1 S 2

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами. Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

5. Векторы. 5.1 Определение и начальные сведения о векторах

5. Векторы. 5.1 Определение и начальные сведения о векторах 49 5 Векторы 51 Определение и начальные сведения о векторах Любые две точки А,В определяют направленный отрезок, если точка А определяет начало, точка В конец отрезка, направление задается от А к В Направленный

Подробнее

Лекция 6. Геометрические векторы.

Лекция 6. Геометрические векторы. Лектор Гущина Елена Николаевна, кафедра Высшей математики 2. Лекция 6. Геометрические векторы. Вектор как направленный отрезок. Сложение векторов и умножение вектора на число. Свойства линейных операций.

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только ~ ~ ВЕКТОРНАЯ АЛГЕБРА калярные и векторные величины, виды векторов. Определение: калярной называется величина, которая характеризуется только o своим значением m, T C. Определение: Векторной называется

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

Векторная алгебра. Глава Векторы на плоскости и в пространстве

Векторная алгебра. Глава Векторы на плоскости и в пространстве Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа

Подробнее

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2.

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2. Тема 04 Скалярное произведение векторов Координатное представление скалярного произведения Векторное произведение векторов Координатное представление векторного произведения Смешанное произведение тройки

Подробнее

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

4. Координаты вектора

4. Координаты вектора 4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2 Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2 Аннотация Уравнения прямой в пространстве: общие, канонические, параметрические уравнения прямой и уравнения

Подробнее

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число Лекция 4 Скалярное произведение φ Определение. Углом φ между ненулевыми векторами и называется тот из углов, образованных этими векторами, отложенными от единого начала, который лежит в пределах от до

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

Геометрические векторы

Геометрические векторы Геометрические векторы Определение Вектором называется направленный отрезок начальной точкой А и конечной точкой В (который можно перемещать параллельно самому себе) Если начало вектора - точка А, а его

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.

ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство. ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.... 1 2.Векторная алгебра.... 2 3.Системы координат... 6 1.Векторное пространство. Рассмотрим

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: В.П.Белкин

РЕШЕНИЕ ЗАДАЧ по теме АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Составитель: В.П.Белкин РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: ВПБелкин Занятие Прямая на плоскости Пример Определить коэффициенты k, b в уравнении прямой y = kx+ b, если прямая определена уравнением x y=

Подробнее

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ . ВЕКТОРНАЯ АЛГЕБРА и АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 1. Векторная алгебра 1. Понятие вектора Вектором будем называть направленный отрезок, т. е. отрезок с заданным на нём направлением. На рисунке направление

Подробнее

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ

Подробнее

Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору.

Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Положение плоскости в пространстве можно задать точкой M 0 (x 0, y 0, z 0 ), принадлежащей этой плоскости и вектором

Подробнее

Глава I. Векторная алгебра.

Глава I. Векторная алгебра. Глава I Векторная алгебра Линейные операции над векторами Основные обозначения: - вектор; АВ - вектор с началом в точке и концом в точке B ; B -длина вектора АВ, те расстояние между точками и B ; b - коллинеарные

Подробнее

Лекция 4. Векторное и смешанное произведения векторов

Лекция 4. Векторное и смешанное произведения векторов Лекция 4. Векторное и смешанное произведения векторов Упорядоченная тройка, некомпланарных векторов называется правой (левой), если, приведя их к общему началу, кратчайший поворот от первого вектора ко

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 6 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ 1. Скалярное произведение Определение 1. Углом ϕ между векторами a и b называется тот из углов, образованный

Подробнее

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения.

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между

Подробнее

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b.

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b. ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» А.Н. Канатников, А.П. Крищенко

Подробнее

«Элементы векторной алгебры» Тема4. Минестерство образования Республики Беларусь. Кафедра теоретической и прикладной математики.

«Элементы векторной алгебры» Тема4. Минестерство образования Республики Беларусь. Кафедра теоретической и прикладной математики. Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема4. «Элементы векторной алгебры» Уи льям Ро уэн Га мильтон Кафедра теоретической и прикладной

Подробнее

Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1. Проекция вектора на ось

Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1. Проекция вектора на ось Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ В этой лекции мы введем понятие скалярного произведения векторов и рассмотрим его свойства. Для этого нам понадобятся некоторые геометрические

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аннотация Скалярные и векторные величины. Понятие геометрического вектора, как направленного отрезка. Длина вектора. Нуль-вектор,

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Глава II. Векторная алгебра.

Глава II. Векторная алгебра. Глава II. Векторная алгебра. Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный

Подробнее

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы.

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы. Вопросы и задачи к экзамену по аналитической геометрии, зима 1 I. Теоретические вопросы. Условные бозначения. (*) в конце фразы означает, что студенты будущей группы 2362 ее положения доказывать не должны,

Подробнее

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости Тема 5 Способы задания прямой на плоскости Условие совпадения прямых задаваемых разными линейными уравнениями Геометрические свойства линейных неравенств Способы задания плоскости в пространстве Способы

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I

КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I Министерство образования и науки РФ ФГБОУ ВПО «Камчатский государственный университет имени Витуса Беринга» О. В. Шереметьева КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I Учебно-методическое пособие Петропавловск-Камчатский

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c);

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c); Лекция 4 1. ВЕКТОРЫ Вектор направленный отрезок. Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны) Противоположные векторы: имеют одинаковые длины

Подробнее

Лекция 2 Векторы Определители второго и третьего порядка

Лекция 2 Векторы Определители второго и третьего порядка Лекция 2 Векторы Определители второго и третьего порядка 1 ВЕКТОРЫ Вектор направленный отрезок Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны)

Подробнее

Аналитическая геометрия. Лекция 1.4

Аналитическая геометрия. Лекция 1.4 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое пособие МОСКВА Кафедра математики ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аннотация Декартова прямоугольная система координат на плоскости и в пространстве. Координаты точки. Связь

Подробнее

Системы линейных уравнений и матрицы второго и третьего порядков.

Системы линейных уравнений и матрицы второго и третьего порядков. Системы линейных уравнений и матрицы второго и третьего порядков. Введение: Рассмотрим систему уравнений вида: { a 11 x 1+a 12 x 2+...+a 1n x n=b 1... a m1 x 1 +a m2 x 2 +...+a mn x n =b m} Обозначим систему

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов

Подробнее

Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА

Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА 0. План лекции 1. Скалярное произведение. 1.1. Определение скалярного произведения. 1.2. Эквивалентная запись через проекции. 1.3. Доказательство линейности по

Подробнее

уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим

уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим Уравнения плоскости. Общее уравнение плоскости. Неполные уравнения плоскости. Уравнение плоскости в отрезках Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей. Уравнение

Подробнее

Векторное и смешанное произведение векторов

Векторное и смешанное произведение векторов Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами.

ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами. ВЕКТОРЫ Определение вектора Линейные операции над векторами Вектором на плоскости или в пространстве называется направленный отрезок, для которого указаны начало и конец Обозначения: AB, Точка А начало

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 8 ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ 1. Различные уравнения прямой в пространстве Уравнение прямой в векторной параметрической форме было получено нами в предыдущей лекции:

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Лекция 6 Тема: Векторное произведение векторов

Лекция 6 Тема: Векторное произведение векторов Лекция 6 Тема: Векторное произведение векторов План лекции Ориентация векторного базиса в пространстве Определение векторного произведения двух векторов Свойства векторного произведения 4 Вычисление векторного

Подробнее

5. Система координат. Координаты точки

5. Система координат. Координаты точки 5. Система координат. Координаты точки 1. Понятие системы координат Определение. Системой координат в пространстве (на плоскости) называется совокупность базиса пространства (соответственно базиса плоскости)

Подробнее

Уравнения прямой в пространстве. Лекция 7

Уравнения прямой в пространстве. Лекция 7 Уравнения прямой в пространстве Лекция 7 1 Параметрические уравнения прямой Перейдём в векторном уравнении прямой в пространстве к координатной форме r ( x; y; z), r ( x ; y ; z ), a ( m; n; p) r r t a

Подробнее

a b =S пар. = a b sin( a,b );

a b =S пар. = a b sin( a,b ); Практическое занятие 4 Тема: Векторное произведение векторов План Определение и свойства векторного произведения Векторное произведение в координатах Приложение векторного произведения к вычислению площадей

Подробнее

Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет. Кафедра «Высшая математика»

Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет. Кафедра «Высшая математика» Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет Кафедра «Высшая математика» ЛГ Лелевкина, АК Курманбаева ВЕКТОРНАЯ АЛГЕБРА Учебно-методическое

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль 2 Аналитическая геометрия на плоскости и в пространстве Текст 6 (самостоятельное изучение) Аннотация Уравнения прямой в пространстве: как линии пересечения двух плоскостей,

Подробнее

Глава 1. Элементы линейной алгебры.

Глава 1. Элементы линейной алгебры. Глава Элементы линейной алгебры Матрицы О п р е д е л е н и е Матрицей размерности m n называется прямоугольная таблица чисел, расставленных в m строк и n столбцов Обозначаются матрицы латинскими буквами,,

Подробнее

«Элементы векторной алгебры и аналитической геометрии»

«Элементы векторной алгебры и аналитической геометрии» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Лекция 3 Скалярное, векторное и смешанное произведение векторов

Лекция 3 Скалярное, векторное и смешанное произведение векторов Лекция 3 Скалярное, векторное и смешанное произведение векторов 1. ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1,

Подробнее

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами. ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического

Подробнее

ЭЛЕМЕНТЫ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЭЛЕМЕНТЫ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ Министерство образования и науки Российской Федерации Балтийский государственный технический университет «Военмех» В.Л. ФАЙНШМИДТ ЭЛЕМЕНТЫ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ Учебное пособие Санкт-Петербург

Подробнее

Уравнение прямой в пространстве

Уравнение прямой в пространстве Уравнение прямой в пространстве 1 Прямая как пересечение двух плоскостей. Система двух линейных уравнений с тремя неизвестными. Прямую в пространстве можно задать как пересечение двух плоскостей. Пусть

Подробнее

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица.

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица. ВОПРОСЫ ТЕОРИИ I. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ 1) Дать определение матрицы. Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными? Как выполняется операция транспонирования? Когда

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Базис. Координаты вектора в базисе

Базис. Координаты вектора в базисе Тема 0 Базис Существование и единственность разложения вектора по базису Координатное представление векторов Действия с векторами в координатном представлении Необходимое и достаточное условие линейной

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

перпендикулярны(ортогональны), необходимо и достаточно обращения в нуль их скалярного произведения.

перпендикулярны(ортогональны), необходимо и достаточно обращения в нуль их скалярного произведения. 5.2.Скалярное произведение векторов. Определение. Скалярным произведением двух векторов aa и bb называется число, равное произведению длин этих векторов на косинус угла между ними. Скалярное произведение

Подробнее

Аналитическая геометрия. Задачи для самостоятельного решения.

Аналитическая геометрия. Задачи для самостоятельного решения. Аналитическая геометрия Задачи для самостоятельного решения 1 Векторы 11 Даны вершины треугольника: A( 1; 2; 4), B ( 4; 2;0) и C(3; 2; 1) Найти угол между медианой AM и стороной AB 12 Выяснить при каком

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

( ) ( ) ( ) x x + y y + z z = R

( ) ( ) ( ) x x + y y + z z = R Глава II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Лекции 0-2 2. УРАВНЕНИЯ ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ 2.. Основные понятия Поверхность и ее уравнение Поверхность в пространстве можно рассматривать

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике МИНИСТЕРСТВО СВЯЗИ И ИНФОРМАТИЗАЦИИ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СВЯЗИ» Кафедра математики и физики ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Подробнее

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M Лекция 8 Тема: Деление отрезка в данном отношении Ориентация плоскости Угол между векторами на ориентированной плоскости План лекции Деление отрезка в данном отношении Ориентация плоскости 3 Угол между

Подробнее

Лекция 2. Векторы. Определения.

Лекция 2. Векторы. Определения. Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА Часть ВЕКТОРНАЯ АЛГЕБРА Методические указания для студентов -го

Подробнее

4.1. Определение вектора и линейные операции над векторами

4.1. Определение вектора и линейные операции над векторами 4 Векторная алгебра 73 41 Определение вектора и линейные операции над векторами Пару точек A и B будем называть упорядоченной если известно какая из них первая а какая - вторая Определение 41 Отрезок концы

Подробнее