Системы тригонометрических уравнений

Размер: px
Начинать показ со страницы:

Download "Системы тригонометрических уравнений"

Транскрипт

1 И. В. Яковлев Материалы по математике MathUs.ru Системы тригонометрических уравнений В данной статье мы рассматриваем тригонометрические системы двух уравнений с двумя неизвестными. Методы решения таких систем и различные специальные приёмы мы будем изучать сразу на конкретных примерах. Может случиться, что одно из уравнений системы содержит тригонометрические функции от неизвестных x и y, а другое уравнение является линейным относительно x и y. В таком случае действуем очевидным образом: одну из неизвестных выражаем из линейного уравнения и подставляем в другое уравнение системы. Задача 1. Решить систему: x + y =, sin x + sin y = 1. Решение. Из первого уравнения выражаем y через x: и подставляем во второе уравнение: y = x, sin x + sin x) = 1 sin x = 1 sin x = 1. Получилось простейшее тригонометрическое уравнение относительно x. Его решения запишем в виде двух серий: x 1 = 6 + n, x = n n Z). Остаётся найти соответствующие значения y: y 1 = x 1 = 5 6 n, y = x = 6 n. Как всегда в случае системы уравнений, ответ даётся в виде перечисления пар x; y). 6 + n; 5 ) 5 6 n, 6 + n; ) 6 n, n Z. Обратите внимание, что x и y связаны друг с другом посредством целочисленного параметра n. А именно, если в выражении для x стоит +n, то в выражении для y автоматически появляется n, причём с тем же самым n. Это следствие «жёсткой» зависимости между x и y, задаваемой уравнением x + y =. Задача. Решить систему: cos x + cos y = 1, x y =. Решение. Здесь имеет смысл сначала преобразовать первое уравнение системы: 1 + cos x cos y = 1 cos x + cos y = 1 cosx + y) cosx y) = 1. 1

2 Таким образом, наша система равносильна следующей системе: cosx + y) cosx y) = 1, x y =. Подставляем x y = в первое уравнение: cosx + y) cos = 1 cosx + y) = 1 x + y = n n Z). В результате приходим к системе: x + y = n, x y =. Складываем эти уравнения, делим на и находим x; вычитаем из первого уравнения второе, делим на и находим y: x = + n, y = + n n Z). + n; + n ), n Z. В ряде случаев тригонометрическую систему удаётся свести к системе алгебраических уравнений подходящей заменой переменных. Задача. Решить систему: sin x + cos y = 1, sin x cos y = 1. Решение. Замена u = sin x, v = cos y приводит к алгебраической системе относительно u и v: u + v = 1, u v = 1. Эту систему вы без труда решите самостоятельно. Решение единственно: u = 1, v = 0. Обратная замена приводит к двум простейшим тригонометрическим уравнениям: sin x = 1, cos y = 0, откуда + k; + n ), k, n Z. x = + k, y = + n k, n Z). Теперь в записи ответа фигурируют два целочисленных параметра k и n. Отличие от предыдущих задач состоит в том, что в данной системе отсутствует «жёсткая» связь между x и y например, в виде линейного уравнения), поэтому x и y в гораздо большей степени независимы друг от друга.

3 В данном случае было бы ошибкой использовать лишь один целочисленный параметр n, записав ответ в виде + n; ) + n. Это привело бы к потере бесконечного множества 5 решений системы. Например, потерялось бы решение ; ), возникающее при k = 1 и n = 0. Задача 4. Решить систему: sin x + sin y = 1, cos x + cos y =. Решение. Преобразуем сначала второе уравнение: 1 sin x + 1 sin y) = sin x + 4 sin y = 1. Теперь делаем замену: u = sin x, v = sin y. Получим систему: u + v = 1, u + 4v = 1. Решениями этой системы служат две пары: u 1 = 0, v 1 = 1/ и u = /, v = 1/6. Остаётся сделать обратную замену: sin x = 0, sin x = sin y = 1 или, sin y = 1 6, и записать ответ. k; 1) n 6 + n ), 1) k arcsin + k; 1)n arcsin 16 + n ), k, n Z. Задача 5. Решить систему: cos x + cos y = 1, sin x sin y = 4. Решение. Здесь для получения алгебраической системы нужно поработать ещё больше. Первое уравнение нашей системы запишем в виде: Во втором уравнении имеем: cos x + y cos x y = 1. = sin x sin y = cosx y) cosx + y) = = cos x y 1 Таким образом, исходная система равносильна системе: cos x + y cos x y = 1, cos x y cos x + y = 4. cos x + y ) 1 = cos x y cos x + y.

4 Делаем замену u = cos x y, v = cos x + y и получаем алгебраическую систему: uv = 1, u v = 4. Решениями этой системы служат две пары: u 1 = 1, v 1 = 1/ и u = 1, v = 1/. Первая пара даёт систему: x y = 1, = k, Отсюда cos x y cos x + y Вторая пара даёт систему: cos x y cos x + y = 1 x + y x = ± + n + k), y = 1, = 1 = ± + n k, n Z). = ± + n k). x y = + k, x + y = ± + n k, n Z). Отсюда x = ± + n + k), y = ± + n k). ± ) + n + k); ± + n k), ± + n + k); ± ) + n k), k, n Z. Однако свести систему тригонометрических уравнений к системе алгебраических уравнений удаётся далеко не всегда. В ряде случаев требуется применять различные специальные приёмы. Иногда удаётся упростить систему путём сложения или вычитания уравнений. Задача 6. Решить систему: sin x cos y = 4, cos x sin y = 1 4. Решение. Складывая и вычитая эти уравнения, получим равносильную систему: sinx + y) = 1, sinx y) = 1. А эта система, в свою очередь, равносильна совокупности двух систем: x + y = + k, x + y = x y = + k, или 6 + n x y = n k, n Z). 4

5 Отсюда x = + k + n), x = + k + n), y = или + k n) y = + k n) k + n); ) ) 6 + k n), + k + n); + k n), k, n Z. 6 Иногда можно прийти к решению, умножая уравнения друг на друга. Задача 7. Решить систему: tg x = sin y, ctg x = cos y. Решение. Напомним, что умножить уравнения системы друг на друга это значит записать уравнение вида «произведение левых частей равно произведению правых частей». Полученное уравнение будет следствием исходной системы то есть все решения исходной системы удовлетворяют и полученному уравнению). В данном случае умножение уравнений системы приводит к уравнению: 1 = sin y cos y = sin y, откуда y = /4 + n n Z). Подставлять y в таком виде в систему неудобно лучше разбить на две серии: y 1 = 4 + n, Подставляем y 1 в первое уравнение системы: y = 4 + n. tg x = sin y 1 = 1 x 1 = 4 + k k Z). Легко видеть, что подстановка y 1 во второе уравнение системы приведёт к тому же самому результату. Теперь подставляем y : tg x = sin y = 1 x = 4 + k k Z). 4 + k; ) 4 + n, 4 ) + k; 4 + n, k, n Z. Иногда к результату приводит деление уравнений друг на друга. Задача 8. Решить систему: cos x + cos y = 1, sin x + sin y =. Решение. Преобразуем: cos x + y sin x + y cos x y cos x y = 1, =. 5

6 Введём временно обозначения: α = x + y, β = x y. Тогда полученная система перепишется в виде: cos α cos β = 1, sin α cos β =. Ясно, что cos β 0. Тогда, поделив второе уравнение на первое, придём к уравнению tg α =, которое является следствием системы. Имеем: α = + n n Z), и снова в целях дальнейшей подстановки в систему) нам удобно разбить полученное множество на две серии: α 1 = + n, α = 4 + n. Подстановка α 1 в любое из уравнений системы приводит к уравнению: cos β = 1 β 1 = k k Z). Аналогично, подстановка α в любое из уравнений системы даёт уравнение: cos β = 1 β = + k k Z). Итак, имеем: то есть откуда α 1 = + n, β 1 = k или α = 4 + n, β = + k, x + y = + n, x + y = 4 x y или + n, = k x y = + k, x = + n + k), x = 7 + n + k), y = или + n k) y = + n k). + n + k); ) 7 + n k), + n + k); ) + n k), k, n Z. В некоторых случаях на помощь приходит основное тригонометрическое тождество. Задача 9. Решить систему: sin x = 1 sin y, cos x = cos y. Решение. Возведём обе части каждого уравнения в квадрат: sin x = 1 sin y), cos x = cos y. 6

7 Сложим полученные уравнения: = 1 sin y) + cos y = 1 sin y + sin y + cos y = sin y, откуда sin y = 0 и y = n n Z). Это следствие исходной системы; то есть, для всякой пары x; y), являющейся решением системы, второе число этой пары будет иметь вид n с некоторым целым n. Разбиваем y на две серии: y 1 = n, y = + n. Подставляем y 1 в исходную систему: sin x = 1 sin y1 = 1, cos x = cos y1 = 1 Решением данной системы служит серия sin x = 1, cos x = 1. x 1 = 4 + k k Z). Обратите внимание, что теперь недостаточно было бы подставить y 1 в какое-то одно из уравнений системы. Подстановка y 1 в первое и второе уравнение системы приводит к системе двух разных уравнений относительно x.) Аналогично, подставляем y в исходную систему: Отсюда sin x = 1 sin y = 1, cos x = cos y = 1 x = 4 + k k Z). ) ) 4 + k; n, + k; + n, k, n Z. 4 sin x = 1, cos x = 1. Иногда в ходе преобразований удаётся получить простое соотношение между неизвестными и выразить из этого соотношения одно неизвестное через другое. Задача 10. Решить систему: 5 cos x cos y =, sin x siny x) + cos y = 1. Решение. Во втором уравнении системы преобразуем удвоенное произведение синусов в разность косинусов: cosx y) cos y + cos y = 1 cosx y) = 1 x y = n n Z). Выражаем отсюда y через x: y = x + n, 7

8 и подставляем в первое уравнение системы: 5 cos x cos x = 5 cos x cos x 1) = cos x 5 cos x + = 0. Дальнейшее тривиально. Получаем: cos x = 1, откуда x = ± Остаётся найти y из полученного выше соотношения: + k k Z). y = ± + 4k + n. ± + k; ± + 4k + n ), k, n Z. Разумеется, рассмотренные задачи не охватывают всего многоообразия систем тригонометрических уравнений. В любой сколько-нибудь непростой ситуации требуется проявлять изобретательность, которая вырабатывается только практикой решения разнообразных задач. Во всех ответах предполагается, что k, n Z. Задачи 1. Решите систему: x + y =, cos x cos y = 1. б) x + y =, sin x sin y = 1. + n; n), + n; 4 n) ; б) n; n). Решите систему: x + y = 4, tg x tg y = 1 б) 6. x y = 5, sin x = sin y. arctg 1 + n; arctg 1 n), arctg 1 + n; arctg 1 n) ; б) + n; 6 + n). Решите систему: sin x + sin y = 1, x y = 4 б). x + y =, sin x sin y = n; 6 + n) ; б) 6 + n; 6 n) 8

9 4. Решите систему: sin x + cos y = 0, sin x + cos y = 1. б) sin x + cos y = 1, sin x cos y =. 1) k 6 + k; ± + n), 1) k k; ± + n) ; б) 1) k 4 + k; + n) 5. Решите систему: cos x + cos y = 1, tg x + tg y =, sin x sin y = б) 4. ctg x + ctg y = 9 5. ± + k; n) ; б) arctg 5 + k; arctg 1 + n), arctg 1 + k; arctg 5 + n) 6. Решите систему: sin x + cos y = 1, cos x cos y = 1. б) sin x + cos x = + sin y + cos y, sin x + sin y = 0. 1) k 6 + k; ± + n) ; б) 4 ± 4 + k; 5 4 ± 4 + n) 7. Решите систему: sin x + sin y =, cos x cos y = 1. 1) k 4 + k + n); 1)k 4 + k n)), 1) k k + n + 1); 1)k k n 1)) 8. Решите систему: sin x sin y = 1 4, tg x tg y =, cos x cos y = б) 4. sin x sin y = 4. ± 6 + k + n); ± 6 + k n)) ; б) ± + k + n); ± + k n)) 9. Решите систему: 4 sin x cos y = 1, tg x = tg y. б) sin x = cos x cos y, cos x = sin x sin y )k n k ) ; 1) k 1 + n + k )) ; б) ) 4 + k ; 4 + k + n 9

10 10. Решите систему: cos x = tg cos y = tg y + ), 4 x + ). 4 k; n), 4 + k; 4 + n), + k; + n) 11. Решите систему: ) tg 4 + x = cos y, ) tg 4 x = sin y. k; 4 + n), + k; 4 + n) 1. Решите систему: sin x + sin y = 1, cos x cos y =. 6 + n + k); n k)), 6 + n + k); n k)) 1. Решите систему: tg x + tg y =, cos x cos y = n + k); 4 + n k)) 14. Решите систему: sin x = sin y, cos x = cos y. 6 + k; 4 + n), 6 + k; 4 + n), k; 4 + n), k; 4 + n) 15. Решите систему: 6 cos x + 4 cos y = 5, sin x + sin y = 0. arccos 4 + k; arccos n), arccos 4 + k; arccos n) 16. Решите систему: 4 tg x = tg y, sin x cosx y) = sin y. б) ctg x + sin y = sin x, sin x sinx + y) = cos y. k; n); б) ) 4 + k ; n, + k; + n) 10

11 17. «Физтех», 010 ) Решить систему уравнений 5 sin x cos y =, sin y + cos x =. 4 + k, 6 + n) ; k, n Z 18. МГУ, экз. для иностр. гр-н, 01 ) Решите систему уравнений: 4 + cos x = 7 sin y, y x = y 4. + n; 6 + n), + n; n), + n; 6 n), + n; 5 6 n), n Z 19. МГУ, ВМК, 005 ) Найдите все решения системы уравнений sin x + y) = 1, xy = 9. xn, 4 + n ) xn, где xn = 8 + n ± n) 6, n Z, n, 1, 0, 1 0. МГУ, географич. ф-т, 005 ) Решите систему уравнений 1 sin x sin y =, 6 sin x + cos y =. 1) n n, k), k, n Z 1. МГУ, ф-т гос. управления, 005 ) Решите систему уравнений sin x sin 1 = 0, cos x cos 1 = n, n Z. МФТИ, 199 ) Решите систему уравнений 10 cos x = 7 cos x cos y, sin x = cos x sin y. arccos + n, 1)k arcsin 5 ); 6 + k arccos + n, 1)k+1 arcsin 5 ), 6 + k k, n Z 11

12 . МФТИ, 199 ) Решите систему уравнений tg x 4 ctg x = tg y, 4 sin x = sin x cos y. arctg 4 + n, arccos 4 + k) ; + arctg 4 + n, + arccos 4 + k), k, n Z 4. МФТИ, 1996 ) Решите систему уравнений sin x = sin y, cos y + cos x sin x = 4. ± 6 + n, 1)k k) ; k, n Z 5. МФТИ, 1996 ) Решите систему уравнений sin x + ) = sin y cos y, 4 sin y + sin x = 4 + sin x. 1) n 1 + n, 4 + 1)k 4 + k) ; k, n Z 6. МФТИ, 1997 ) Решите систему уравнений 9 cos x cos y 5 sin x sin y = 6, 7 cos x cos y sin x sin y = 4. ± n + k, ± 6 + n + k) ; k, n Z 1

Тригонометрические уравнения. 2

Тригонометрические уравнения. 2 И. В. Яковлев Материалы по математике MathUs.ru Тригонометрические уравнения. В статье «Тригонометрические уравнения. 1» мы рассмотрели стандартные методы решения весьма простых тригонометрических уравнений.

Подробнее

уч. год. 3, 11 кл. Математика. Тригонометрические уравнения, системы, неравенства. 5. Системы тригонометрических уравнений

уч. год. 3, 11 кл. Математика. Тригонометрические уравнения, системы, неравенства. 5. Системы тригонометрических уравнений 008-009 уч. год., кл. Математика. Тригонометрические уравнения, системы, неравенства. Системы тригонометрических уравнений В этом параграфе мы ограничимся рассмотрением нескольких типов систем тригонометрических

Подробнее

Тригонометрические преобразования и вычисления

Тригонометрические преобразования и вычисления И. В. Яковлев Материалы по математике MathUs.ru Тригонометрические преобразования и вычисления Задачи, связанные с тригонометрическими вычислениями, обычно сводятся к стандартным манипуляциям с тригонометрическими

Подробнее

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год)

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год) Федеральное агентство по образованию Федеральная заочная физико-техническая школа при Московском физико техническом институте (государственном университете) МАТЕМАТИКА Тригонометрические уравнения, системы,

Подробнее

Тригонометрические уравнения

Тригонометрические уравнения И. В. Яковлев, А. Г. Малкова. Подготовка к ЕГЭ по математике. Материалы сайта http://www.ege-study.ru Тригонометрические уравнения В данной статье мы расскажем об основных типах тригонометрических уравнений

Подробнее

Обратные тригонометрические функции. 2

Обратные тригонометрические функции. 2 И. В. Яковлев Материалы по математике MathUs.ru Обратные тригонометрические функции. Перед этим листком следует повторить статью «Обратные тригонометрические функции.», в которой приводятся определения

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год)

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Задание для -х классов (05 06 учебный

Подробнее

ТРИГОНОМЕТРИЯ Н.В. ЛАТЫПОВА

ТРИГОНОМЕТРИЯ Н.В. ЛАТЫПОВА ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ДЕТЕЙ "ЦЕНТР

Подробнее

тригонометрические уравнения (типовые задания 13(С1))

тригонометрические уравнения (типовые задания 13(С1)) тригонометрические уравнения (типовые задания 13(С1)) Отбор корней в тригонометрических уравнениях. (типовые задания С1) СОДЕРЖАНИЕ 1. Способы отбора корней в тригонометрических ур-ях. 1 2. Отбор общих

Подробнее

Учебный центр «Резольвента»

Учебный центр «Резольвента» ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 509-8-0 Учебный центр «Резольвента» К. Л. САМАРОВ, С.С. САМАРОВА ТРИГОНОМЕТРИЯ В ЕГЭ ПО МАТЕМАТИКЕ Учебно-методическое пособие для подготовки

Подробнее

Иррациональные неравенства

Иррациональные неравенства Содержание И. В. Яковлев Материалы по математике MathUs.ru Иррациональные неравенства Учёт ОДЗ.......................................... Равносильные преобразования.............................. Двукратное

Подробнее

Баллы 0-4 5 6-7 8-9 Оценка «2» «3» «4» «5»

Баллы 0-4 5 6-7 8-9 Оценка «2» «3» «4» «5» МАТЕМАТИКА, класс Ответы и критерии, Ноябрь 0 Вариант/ задания ОТВЕТЫ В В В В В В В7 С 90, 0 0 0,8 0, arcsi 7, 00 0-0, +, +, ( + +, 0-0, 0, 9 Отрезку принадлежат корни 78,8 79 700 9, - 0, 0, arccos 8 7,

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

Тема 5 Рациональные системы уравнений

Тема 5 Рациональные системы уравнений Тема 5 Рациональные системы уравнений F ( x, x,..., ) 0, F ( x, x,..., ) 0, Система уравнений вида где... Fk ( x, x,..., ) 0, F i( x, x,..., ), i,..., k, некоторые многочлены, называется системой рациональных

Подробнее

ОТВЕТЫ ,5-0, arcsin ,

ОТВЕТЫ ,5-0, arcsin , АЛГЕБРА И НАЧАЛА АНАЛИЗА, класс Ответы и критерии, Апрель ОТВЕТЫ Вариант/ задания А А В В В В4 В5 С 6,5-4 8 arcsin 4 4,5 -,8 arcsin + k, 4,5 8-6 arccos 5 4 4,5, 5 arc tg9 + k, 5 4, -,4 6 6 8-7,5 7 6 855,4

Подробнее

Доклад по теме: Решение задач с параметрами при подготовке к ЕГЭ по математике

Доклад по теме: Решение задач с параметрами при подготовке к ЕГЭ по математике Доклад по теме: задач с параметрами при подготовке к ЕГЭ по математике Выполнила Яценко Ирина Алексеевна Учитель математики МОУ СОШ 16 г. Щелково Щелково 2011 г. Содержание Знакомство с параметрами...

Подробнее

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год)

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год) Министерство образования и науки Российской Федерации Федеральная заочная физико-техническая школа при Московском физико-техническом институте (государственном университете) МАТЕМАТИКА Тригонометрические

Подробнее

2-е занятие. Показательная форма комплексного числа Матем. анализ, прикл. матем., 4-й семестр

2-е занятие. Показательная форма комплексного числа Матем. анализ, прикл. матем., 4-й семестр стр. 1 из 14 2-е занятие. Показательная форма комплексного числа Матем. анализ, прикл. матем., 4-й семестр A1 Найти модули и аргументы следующих комплексных чисел и записать эти числа в форме z = ρe iϕ,

Подробнее

Подготовка к вступительным экзаменам

Подготовка к вступительным экзаменам МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова Галеев Э. М. Подготовка к вступительным экзаменам по математике в МГУ и ЕГЭ (типы задач и методы их решений) Часть Тригонометрические уравнения

Подробнее

Готовим к ЕГЭ хорошистов и отличников

Готовим к ЕГЭ хорошистов и отличников А.Г. КОРЯНОВ, А.А. ПРОКОФЬЕВ Готовим к ЕГЭ хорошистов и отличников Лекции Москва Педагогический университет «Первое сентября» 0 Анатолий Георгиевич Корянов, Александр Александрович Прокофьев Материалы

Подробнее

Образовательный портал «Физ/Мат класс» МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ

Образовательный портал «Физ/Мат класс» МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ wwwfmclassru МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ Анализ величин, использование формул а) Сравните числа 6 6 и 5 7 5 4 8 6 б) Сравните числа ( + )( + )( + )( + )( + ) и 999 999 999 в) Сравните числа si0 cos0 и si 40

Подробнее

УРАВНЕНИЯ И НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

УРАВНЕНИЯ И НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ С Шестаков, М Галицкий, Москва УРАВНЕНИЯ И НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Уравнения с модулем

И. В. Яковлев Материалы по математике MathUs.ru. Уравнения с модулем И В Яковлев Материалы по математике MathUsru Содержание Уравнения с модулем 1 Определение модуля 1 Замена переменной 3 Перебор промежутков Равносильные переходы 5 5 Задачи 6 В данной статье мы изучаем

Подробнее

2. Действия над комплексными числами

2. Действия над комплексными числами Действия над комплексными числами Словарь: произведение комплексных чисел комплексная плоскость радиус-вектор формула Муавра Обратите внимание: Действия (над чем? над числами Извлечение (чего? корня Действия

Подробнее

ФДП МАТЕМАТИКА ЕГЭ 2012

ФДП МАТЕМАТИКА ЕГЭ 2012 Корянов АГ, Прокофьев АА Тригонометрические уравнения: методы решений и отбор корней ФДП МАТЕМАТИКА ЕГЭ 0 Тригонометрические уравнения: методы решений и отбор корней (типовые задания С) Прокофьев АА, СОДЕРЖАНИЕ

Подробнее

,, -- данные углы. Так как все они положительны, а сумма. + ) = sin cos + cos sin < cos + cos, а значит cos cos + cos.

,, -- данные углы. Так как все они положительны, а сумма. + ) = sin cos + cos sin < cos + cos, а значит cos cos + cos. Задача 1 Сумма трѐх положительных углов равна 90 o. Может ли сумма косинусов двух из них быть равна косинусу третьего? Пусть,, -- данные углы. Так как все они положительны, а сумма равна 90 o, все они

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

Инструкция к практическому занятию: Решение однородных тригонометрических уравнений

Инструкция к практическому занятию: Решение однородных тригонометрических уравнений Молодечненский государственный политехнический техникум Инструкция к практическому занятию: Решение однородных тригонометрических уравнений Разработчик: И. А. Кочеткова, Ж. И. Тимошко Цель работы: 1) Повторить

Подробнее

Тема 12 «Системы двух уравнений с двумя неизвестными».

Тема 12 «Системы двух уравнений с двумя неизвестными». Тема 1 «Системы двух уравнений с двумя неизвестными». Системой уравнений называется некоторое количество уравнений, которые должны выполняться одновременно. Решением системы уравнений с двумя переменными

Подробнее

Математика 8 класс Многочлены

Математика 8 класс Многочлены МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 8 класс Многочлены Новосибирск Многочлены Рациональными

Подробнее

Показательные, логарифмические уравнения и неравенства, метод потенциирования и логарифмирования в решении задач.

Показательные, логарифмические уравнения и неравенства, метод потенциирования и логарифмирования в решении задач. Московский физико-технический институт Показательные, логарифмические уравнения и неравенства, метод потенциирования и логарифмирования в решении задач. Методическое пособие по подготовке к олимпиадам.

Подробнее

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ. Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ. Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ на проведение практических занятий по теме «Интегральное исчисление» Кривулин Н.П., Мойко Н.В. г. Пенза

Подробнее

Иррациональные уравнения и неравенства 3

Иррациональные уравнения и неравенства 3 Иррациональные уравнения и неравенства Оглавление 4 Метод исключения радикалов в иррациональном уравнении умножением на сопряженный множитель Задание 7 4 5 Выделение полного квадрата (квадрата двучлена)

Подробнее

УЧЕБНО - МЕТОДИЧЕСКИЙ КОМПЛЕКС Элементарная математика и практикум по решению задач. Тригонометрия

УЧЕБНО - МЕТОДИЧЕСКИЙ КОМПЛЕКС Элементарная математика и практикум по решению задач. Тригонометрия УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «Брестский государственный университет имени А.С. Пушкина» Т. В. Пивоварук УЧЕБНО - МЕТОДИЧЕСКИЙ КОМПЛЕКС Элементарная математика и практикум по решению задач. Тригонометрия для

Подробнее

КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ. Т. Ю. Альпин, А. И. Егоров, П. Е. Кашаргин, С. В. Сушков

КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ. Т. Ю. Альпин, А. И. Егоров, П. Е. Кашаргин, С. В. Сушков КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ Т Ю Альпин, А И Егоров, П Е Кашаргин, С В Сушков ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Часть I: Комплексные числа Предел функции Казань 013 Печатается

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ МИНКУЛЬТУРЫ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ КУЛЬТУРЫ ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ Тюмень

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений.

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Линейные уравнения с одной переменной Введение Никита Саруханов 7й класс Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько

Подробнее

Уравнения и неравенства с модулем

Уравнения и неравенства с модулем И В Яковлев Материалы по математике MathUsru Уравнения и неравенства с модулем В данной статье мы рассмотрим алгебраические уравнения и неравенства с модулем и изучим основные приёмы избавления от модуля

Подробнее

9. Первообразная и неопределенный интеграл

9. Первообразная и неопределенный интеграл 9. Первообразная и неопределенный интеграл 9.. Пусть на промежутке I R задана функция f(). Функцию F () называют первообразной функции f() на промежутке I, если F () = f() для любого I, и первообразной

Подробнее

ЗАНЯТИЕ 8 СООТНОШЕНИЯ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА. ТРИГОНОМЕТРИЧЕСКИЕ ПОДСТАНОВКИ.

ЗАНЯТИЕ 8 СООТНОШЕНИЯ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА. ТРИГОНОМЕТРИЧЕСКИЕ ПОДСТАНОВКИ. 7 ( ; 8 ЗАНЯТИЕ 8 СООТНОШЕНИЯ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА ТРИГОНОМЕТРИЧЕСКИЕ ПОДСТАНОВКИ Необходимые сведения из теории Тригономе трия (от греч trigonon треугольник,

Подробнее

4. Решение и исследование квадратных уравнений

4. Решение и исследование квадратных уравнений КВАДРАТНЫЕ УРАВНЕНИЯ Оглавление КВАДРАТНЫЕ УРАВНЕНИЯ... 4. и исследование квадратных уравнений... 4.. Квадратное уравнение с числовыми коэффициентами... 4.. Решить и исследовать квадратные уравнения относительно

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Замена переменной

И. В. Яковлев Материалы по математике MathUs.ru. Замена переменной И В Яковлев Материалы по математике MathUsru Содержание Замена переменной Предварительные преобразования Симметрические уравнения 3 3 Однородные уравнения 4 4 Замена в биномах 4 5 Задачи 5 В ряде случаев

Подробнее

Издание соответствует Федеральному государственному образовательному

Издание соответствует Федеральному государственному образовательному УДК 7:51 ББК 22.1я72 Ш51 Шестаков С. А. ЕГЭ 2015. Математика. Задача 20. Задачи с параметром Под ред. И. В. Ященко Электронное издание М.: МЦНМО, 2015 240 с. ISBN 978-5-449-2122-8 Рабочая тетрадь по математике

Подробнее

Министерство образования и науки, молодежи и спорта Украины Государственное высшее учебное заведение «НАЦИОНАЛЬНЫЙ ГОРНЫЙ УНИВЕРСИТЕТ»

Министерство образования и науки, молодежи и спорта Украины Государственное высшее учебное заведение «НАЦИОНАЛЬНЫЙ ГОРНЫЙ УНИВЕРСИТЕТ» Министерство образования и науки, молодежи и спорта Украины Государственное высшее учебное заведение «НАЦИОНАЛЬНЫЙ ГОРНЫЙ УНИВЕРСИТЕТ» ТРИГОНОМЕТРИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЭЛЕМЕНТАРНОЙ МАТЕМАТИКЕ слушателям

Подробнее

МАТЕМАТИКА. Алгебраические уравнения, неравенства, системы уравнений и неравенств

МАТЕМАТИКА. Алгебраические уравнения, неравенства, системы уравнений и неравенств Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение дополнительного образования детей «Заочная физико-техническая школа Московского физико-технического

Подробнее

МАТЕМАТИКА ЕГЭ 2012 Тригонометрические уравнения: методы решений и отбор корней (типовые задания С1)

МАТЕМАТИКА ЕГЭ 2012 Тригонометрические уравнения: методы решений и отбор корней (типовые задания С1) Корянов АГ, Прокофьев АА Тригонометрические уравнения: методы решений и отбор корней МАТЕМАТИКА ЕГЭ 0 Тригонометрические уравнения: методы решений и отбор корней (типовые задания С) Прокофьев АА, Корянов

Подробнее

УДК 51(075.8) ББК 22.1 ISBN

УДК 51(075.8) ББК 22.1 ISBN Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯНКИ КУПАЛЫ» Ю.Ю. Гнездовский, В. Н. Горбузов, П.Ф. Проневич ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАШИНОСТРОЕНИЯ ИИ Поспелов,

Подробнее

Иррациональные уравнения и неравенства

Иррациональные уравнения и неравенства И В Яковлев Материалы по математике MathUsru Иррациональные уравнения и неравенства Мы называем уравнение или неравенство иррациональным, если оно содержит переменную под радикалами, то есть под знаками

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

Комплексные числа и действия над ними

Комплексные числа и действия над ними Комплексные числа и действия над ними Лекция 1 Л. И. Лазарева, И. А. Цехановский Курс: Ряды и комплексный анализ Семестр 3, 2009 год portal.tpu.ru Комплексным числом z называется упорядоченная пара действительных

Подробнее

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде:

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде: Уравнения В алгебре рассматривают два вида равенств тождества и уравнения Тождество это равенство которое выполняется при всех допустимых) значениях входящих в него букв Для тождества используют знаки

Подробнее

ТРИГОНОМЕТРИЯ Тригонометрическая окружность. Окружность с sin y tg единичным радиусом с центром в начале координат называется

ТРИГОНОМЕТРИЯ Тригонометрическая окружность. Окружность с sin y tg единичным радиусом с центром в начале координат называется ТРИГОНОМЕТРИЯ Тригонометрическая окружность. Окружность с sin y tg единичным радиусом с центром в начале координат называется ctgα тригонометрической окружностью. B(;1) Угол и его мера. Мера всей 1 окружности

Подробнее

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА Методические указания Санкт-Петербург 2013

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

Задачи Штурма-Лиувилля в простейшем случае

Задачи Штурма-Лиувилля в простейшем случае Задачи Штурма-Лиувилля в простейшем случае 1 I рода слева I рода справа Решить задачу Штурма-Лиувилля с краевыми условиями I-го рода: { X x + Xx, X X 11 Общее решение уравнения X x + Xx имеет вид Xx c

Подробнее

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Тема. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Элементы теории множеств. Основные понятия Одним из основных понятий современной математики является понятие множества.

Подробнее

Комплексные числа. yξ + xη = 0 которая в силу невырожденности (определитель системы x 2 + y 2 0) имеет единственное. 2 x 2 + y. 2

Комплексные числа. yξ + xη = 0 которая в силу невырожденности (определитель системы x 2 + y 2 0) имеет единственное. 2 x 2 + y. 2 Комплексные числа Традиционно под комплексными числами понимают числа z вида x + iy, где x, y R и i мнимая единица число, обладающее свойством i = 1. Множество комплексных чисел принято обозначать C. Число

Подробнее

11 класс, базовый уровень. Задание 1. Вариант 0 (демонстрационный, с решениями)

11 класс, базовый уровень. Задание 1. Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Разложите на множители: 3 11 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) b 3 + 1 Найдите числа A, B, C, при которых справедливо

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Алгебраические уравнения с параметром.

Алгебраические уравнения с параметром. Вебинар (06-07) Тема: Тригонометрические выражения, уравнения Алгебраические уравнения с параметром ЕГЭ Профиль Подготовка к заданиям и Преобразование тригонометрических выражений Формулы приведения Вычислить

Подробнее

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ. 11 класс

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ. 11 класс Санкт Петербургский государственный университет 5 6 учебный год, январь Вариант 1 1 Сравните числа ( 6 5 + 4) 1 и ( 8 + 7 6) 1 + 1 Решите уравнение + + + 1= log log Решите неравенство + 6 4 Изобразите

Подробнее

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики ФУНКЦИЯ И ЕЕ

Подробнее

Рабочая программа Заочной математической школы. 10 класс (набор 2009 года) Базовый уровень. Занятие 1.

Рабочая программа Заочной математической школы. 10 класс (набор 2009 года) Базовый уровень. Занятие 1. Рабочая программа Заочной математической школы 10 класс (набор 2009 года) Базовый уровень Занятие 1. Алгебраические преобразования. Рациональные дроби 1. Формулы сокращенного умножения. 2. Разложение многочленов

Подробнее

Тема 1-5: Системы линейных уравнений

Тема 1-5: Системы линейных уравнений Тема 1-5: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Комплексные числа. 1) Изображение комплексного числа на плоскости. Комплексное число изображается на плоскости O

Комплексные числа. 1) Изображение комплексного числа на плоскости. Комплексное число изображается на плоскости O Комплексные числа I Комплексные числа в алгебраической форме Определение Комплексным числом называется выражение вида где и действительные числа число называется мнимой единицей: Числа и называются соответственно

Подробнее

1. Геометрия комплексных чисел

1. Геометрия комплексных чисел . Геометрия комплексных чисел В первой главе комплексные числа изучались с алгебраической точки зрения. Мы рассмотрели основные алгебраические операции и свойства комплексных чисел. Но комплексные числа

Подробнее

В помощь учителю. Тесты по алгебре 11 класс

В помощь учителю. Тесты по алгебре 11 класс В помощь учителю Тесты по алгебре 11 класс Тесты составлены учителем математики высшей категории ГУО «Средняя школа 1 г. Кировска» Автушкевич Тамарой Александровной. В методичке представлены тесты на соответствие

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В.В. Конев КОМПЛЕКСНЫЕ ЧИСЛА Издательство Томского

Подробнее

Типовые задачи c решениями.

Типовые задачи c решениями. Типовые задачи c решениями. Формальное суммирование рядов. Формула рекурсии k a k a + a k k Формула умножения λ a k λa k Формула сложения k k k a k + b k a k + k b k k Пример Геометрическая прогрессия.

Подробнее

Корянов А.Г., Прокофьев А.А. Уравнения и неравенства с параметрами: количество решений. МАТЕМАТИКА ЕГЭ 2011 (типовые задания С5)

Корянов А.Г., Прокофьев А.А. Уравнения и неравенства с параметрами: количество решений. МАТЕМАТИКА ЕГЭ 2011 (типовые задания С5) Корянов АГ, Прокофьев АА Уравнения и неравенства с параметрами: количество решений ФДП МАТЕМАТИКА ЕГЭ (типовые задания С5) Уравнения и неравенства с параметрами: количество решений Корянов АГ, г Брянск,

Подробнее

МАТЕМАТИКА ЕГЭ 2011 (типовые задания С5)

МАТЕМАТИКА ЕГЭ 2011 (типовые задания С5) Корянов АГ, Прокофьев АА Уравнения и неравенства с параметрами: количество решений МАТЕМАТИКА ЕГЭ (типовые задания С5) Уравнения и неравенства с параметрами: количество решений Корянов А Г, г Брянск, korynov@milru

Подробнее

Пояснительная записка Рабочая программа ориентирована на учащихся классов и реализуется на основе следующих документов:

Пояснительная записка Рабочая программа ориентирована на учащихся классов и реализуется на основе следующих документов: Пояснительная записка Рабочая программа ориентирована на учащихся 10 11 классов и реализуется на основе следующих документов: Федерального компонента государственного образовательного Стандарта среднего

Подробнее

Тема урока: «Синус, косинус и тангенс двойного угла».

Тема урока: «Синус, косинус и тангенс двойного угла». МОУ «Осташевская средняя общеобразовательная школа» Тема урока: «Синус, косинус и тангенс двойного угла» Класс: 10 Предмет: Алгебра и начала математического анализа Учитель: Шорникова СП 2014 г Открытый

Подробнее

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е.

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е. Приложение. Определение первообразной функции Определение. Дифференцируемая функция F() называется первообразной для функции f() на заданном промежутке, если для всех из этого промежутка. справедливо равенство

Подробнее

1. Общие требования. в) уверенное владение математическими знаниями и навыками, предусмотренными программой, умение применять их при решении задач.

1. Общие требования. в) уверенное владение математическими знаниями и навыками, предусмотренными программой, умение применять их при решении задач. 3 Принята на заседании приемной комиссии ВолгГТУ протокол 30 от 22.09.2014 Программа вступительного испытания по математике в Волгоградский государственный технический университет Программа сформирована

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

Тематика внеаудиторных самостоятельных работ по дисциплине ОУД.03. «МАТЕМАТИКА: алгебра и начала математического анализа, геометрия»

Тематика внеаудиторных самостоятельных работ по дисциплине ОУД.03. «МАТЕМАТИКА: алгебра и начала математического анализа, геометрия» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КРАСНОДАРСКОГО КРАЯ государственное бюджетное профессиональное образовательное учреждение Краснодарского края «Краснодарский информационно-технологический техникум» Тематика

Подробнее

Теоретический материал.

Теоретический материал. 0.5 Логарифмические уравнения и неравенства. Используемая литература:. Алгебра и начала анализа 0- под редакцией А.Н.Колмогорова. Самостоятельные и контрольные работы по алгебре 0- под редакцией Е.П.Ершова

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

ПРИЛОЖЕНИЕ 7.1 К КУРСУ О.Ю.ШВЕДОВА «УРАВНЕНИЯ И НЕРАВЕНСТВА»

ПРИЛОЖЕНИЕ 7.1 К КУРСУ О.Ю.ШВЕДОВА «УРАВНЕНИЯ И НЕРАВЕНСТВА» ПРИЛОЖЕНИЕ 7.1 К КУРСУ О.Ю.ШВЕДОВА «УРАВНЕНИЯ И НЕРАВЕНСТВА» задания для разбора с преподавателем Москва Курск Орел Рязань, 2010 г. Приложение 7.1 2 1. Уравнения и неравенства с модулями У1a.1 (Сканави,

Подробнее

Выражения и их преобразования Числовые выражения. Алгебраические выражения. Тождественно равные выражения. Формулы сокращенного умножения:

Выражения и их преобразования Числовые выражения. Алгебраические выражения. Тождественно равные выражения. Формулы сокращенного умножения: 7. Структура теста Числа и вычисления 4 задания (13,3 %). Выражения и их преобразования 3 задания (10 %). Уравнения и неравенства 11 заданий (36,7 %). Функции 4 задания (13,3 %). Геометрия 8 заданий (26,7

Подробнее

Дифференциальные уравнения первого порядка (продолжение)

Дифференциальные уравнения первого порядка (продолжение) Занятие 12 Дифференциальные уравнения первого порядка (продолжение) 12.1 Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли. Линейным дифференциальным уравнением первого порядка называется

Подробнее

Лабораторная работа 3 Числовые функции

Лабораторная работа 3 Числовые функции Лабораторная работа Числовые функции Необходимые понятия и теоремы: область определения, область значений, графики элементарных функций, сдвиги Литература: [] с. 8, [] c. 7 84, [] с.. Найти область определения

Подробнее

Киселёв А.П. Кочетковы 9 класс Выготский М.И. Сканави.Теория. Арифметическая и геометрическая прогрессии. В следующих задачах (тема VII) предполагается N {1,, 3,...} если

Подробнее

Непосредственное интегрирование.

Непосредственное интегрирование. Непосредственное интегрирование. Метод интегрирования, при котором интеграл путём тождественных преобразований подинтегральной функции (или выражения) и применения свойств неопределённого интеграла приводится

Подробнее

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ.

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Московский государственный технический университет имени Н.Э.Баумана Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Часть Методические указания к выполнению домашнего задания

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ, ПРОВОДИМЫХ УНИВЕРСИТЕТОМ САМОСТОЯТЕЛЬНО

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ, ПРОВОДИМЫХ УНИВЕРСИТЕТОМ САМОСТОЯТЕЛЬНО Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Калужский государственный университет им. К.Э. Циолковского»

Подробнее

Тема урока. Использова ние ИКТ. Повторение. Дата Дата контр урока оля

Тема урока. Использова ние ИКТ. Повторение. Дата Дата контр урока оля Вид Дата Дата контр урока оля Тема урока Использова ние ИКТ Повторение 1 четверть (34 часа). Повторение (5 часов). 1 Повторение. Решение квадратных уравнений. 2 Повторение. Графики элементарных функций.

Подробнее

Тема урока: Решение тригонометрических уравнений.

Тема урока: Решение тригонометрических уравнений. Тема урока: Решение тригонометрических уравнений Урок обобщения и систематизации знаний с использованием индивидуальной фронтальной групповой и коллективной форм работы Используются разноуровневые задания

Подробнее

Негосударственная образовательная организация среднего профессионального образования некоммерческое партнерство

Негосударственная образовательная организация среднего профессионального образования некоммерческое партнерство Негосударственная образовательная организация среднего профессионального образования некоммерческое партнерство «Тульский колледж технологий, экономики и права» ПРОГРАММА вступительных испытаний по математике

Подробнее

Рабочая программа учебного курса по алгебре для 7 А класса

Рабочая программа учебного курса по алгебре для 7 А класса Государственное бюджетное общеобразовательное учреждение Республики Хакасия «Хакасская национальная гимназия интернат им. Н.Ф.Катанова» «СОГЛАСОВАНО» на заседании кафедры математики и информатики Протокол

Подробнее

Алгебраические уравнения

Алгебраические уравнения Алгебраические уравнения где Определение. Алгебраическим называется уравнение вида 0, P () 0,,, некоторые действительные числа. 0 0 При этом переменная величина называется неизвестным, а числа 0,,, коэффициентами

Подробнее

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр -е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: ( 89 ( ) n n (n!) ) p (n + )! n= Ряд Тейлора f(x)

Подробнее

МАТЕМАТИКА. Многочлены. Простейшие уравнения и неравенства с модулем. Задание 3 для 9-х классов. ( учебный год)

МАТЕМАТИКА. Многочлены. Простейшие уравнения и неравенства с модулем. Задание 3 для 9-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Многочлены. Простейшие уравнения и

Подробнее

x 2 10x > x 2 10x = x(x 10) > x2 x x 2 /2 = 2 x. x 2 10x < x+ x 2 10x = 0. x 0. > 0k N : 0 < x k < и f(x k ) A = A > 0,

x 2 10x > x 2 10x = x(x 10) > x2 x x 2 /2 = 2 x. x 2 10x < x+ x 2 10x = 0. x 0. > 0k N : 0 < x k < и f(x k ) A = A > 0, Пределы Предел функции Определение предела Пусть a точка числовой прямой, a b c) Пусть функция f) опре- делена на множестве E : { b c)\{a}} Число a называется пределом функции f) при, стремящемся к a обо-

Подробнее