Системы тригонометрических уравнений

Размер: px
Начинать показ со страницы:

Download "Системы тригонометрических уравнений"

Транскрипт

1 И. В. Яковлев Материалы по математике MathUs.ru Системы тригонометрических уравнений В данной статье мы рассматриваем тригонометрические системы двух уравнений с двумя неизвестными. Методы решения таких систем и различные специальные приёмы мы будем изучать сразу на конкретных примерах. Может случиться, что одно из уравнений системы содержит тригонометрические функции от неизвестных x и y, а другое уравнение является линейным относительно x и y. В таком случае действуем очевидным образом: одну из неизвестных выражаем из линейного уравнения и подставляем в другое уравнение системы. Задача 1. Решить систему: x + y =, sin x + sin y = 1. Решение. Из первого уравнения выражаем y через x: и подставляем во второе уравнение: y = x, sin x + sin x) = 1 sin x = 1 sin x = 1. Получилось простейшее тригонометрическое уравнение относительно x. Его решения запишем в виде двух серий: x 1 = 6 + n, x = n n Z). Остаётся найти соответствующие значения y: y 1 = x 1 = 5 6 n, y = x = 6 n. Как всегда в случае системы уравнений, ответ даётся в виде перечисления пар x; y). 6 + n; 5 ) 5 6 n, 6 + n; ) 6 n, n Z. Обратите внимание, что x и y связаны друг с другом посредством целочисленного параметра n. А именно, если в выражении для x стоит +n, то в выражении для y автоматически появляется n, причём с тем же самым n. Это следствие «жёсткой» зависимости между x и y, задаваемой уравнением x + y =. Задача. Решить систему: cos x + cos y = 1, x y =. Решение. Здесь имеет смысл сначала преобразовать первое уравнение системы: 1 + cos x cos y = 1 cos x + cos y = 1 cosx + y) cosx y) = 1. 1

2 Таким образом, наша система равносильна следующей системе: cosx + y) cosx y) = 1, x y =. Подставляем x y = в первое уравнение: cosx + y) cos = 1 cosx + y) = 1 x + y = n n Z). В результате приходим к системе: x + y = n, x y =. Складываем эти уравнения, делим на и находим x; вычитаем из первого уравнения второе, делим на и находим y: x = + n, y = + n n Z). + n; + n ), n Z. В ряде случаев тригонометрическую систему удаётся свести к системе алгебраических уравнений подходящей заменой переменных. Задача. Решить систему: sin x + cos y = 1, sin x cos y = 1. Решение. Замена u = sin x, v = cos y приводит к алгебраической системе относительно u и v: u + v = 1, u v = 1. Эту систему вы без труда решите самостоятельно. Решение единственно: u = 1, v = 0. Обратная замена приводит к двум простейшим тригонометрическим уравнениям: sin x = 1, cos y = 0, откуда + k; + n ), k, n Z. x = + k, y = + n k, n Z). Теперь в записи ответа фигурируют два целочисленных параметра k и n. Отличие от предыдущих задач состоит в том, что в данной системе отсутствует «жёсткая» связь между x и y например, в виде линейного уравнения), поэтому x и y в гораздо большей степени независимы друг от друга.

3 В данном случае было бы ошибкой использовать лишь один целочисленный параметр n, записав ответ в виде + n; ) + n. Это привело бы к потере бесконечного множества 5 решений системы. Например, потерялось бы решение ; ), возникающее при k = 1 и n = 0. Задача 4. Решить систему: sin x + sin y = 1, cos x + cos y =. Решение. Преобразуем сначала второе уравнение: 1 sin x + 1 sin y) = sin x + 4 sin y = 1. Теперь делаем замену: u = sin x, v = sin y. Получим систему: u + v = 1, u + 4v = 1. Решениями этой системы служат две пары: u 1 = 0, v 1 = 1/ и u = /, v = 1/6. Остаётся сделать обратную замену: sin x = 0, sin x = sin y = 1 или, sin y = 1 6, и записать ответ. k; 1) n 6 + n ), 1) k arcsin + k; 1)n arcsin 16 + n ), k, n Z. Задача 5. Решить систему: cos x + cos y = 1, sin x sin y = 4. Решение. Здесь для получения алгебраической системы нужно поработать ещё больше. Первое уравнение нашей системы запишем в виде: Во втором уравнении имеем: cos x + y cos x y = 1. = sin x sin y = cosx y) cosx + y) = = cos x y 1 Таким образом, исходная система равносильна системе: cos x + y cos x y = 1, cos x y cos x + y = 4. cos x + y ) 1 = cos x y cos x + y.

4 Делаем замену u = cos x y, v = cos x + y и получаем алгебраическую систему: uv = 1, u v = 4. Решениями этой системы служат две пары: u 1 = 1, v 1 = 1/ и u = 1, v = 1/. Первая пара даёт систему: x y = 1, = k, Отсюда cos x y cos x + y Вторая пара даёт систему: cos x y cos x + y = 1 x + y x = ± + n + k), y = 1, = 1 = ± + n k, n Z). = ± + n k). x y = + k, x + y = ± + n k, n Z). Отсюда x = ± + n + k), y = ± + n k). ± ) + n + k); ± + n k), ± + n + k); ± ) + n k), k, n Z. Однако свести систему тригонометрических уравнений к системе алгебраических уравнений удаётся далеко не всегда. В ряде случаев требуется применять различные специальные приёмы. Иногда удаётся упростить систему путём сложения или вычитания уравнений. Задача 6. Решить систему: sin x cos y = 4, cos x sin y = 1 4. Решение. Складывая и вычитая эти уравнения, получим равносильную систему: sinx + y) = 1, sinx y) = 1. А эта система, в свою очередь, равносильна совокупности двух систем: x + y = + k, x + y = x y = + k, или 6 + n x y = n k, n Z). 4

5 Отсюда x = + k + n), x = + k + n), y = или + k n) y = + k n) k + n); ) ) 6 + k n), + k + n); + k n), k, n Z. 6 Иногда можно прийти к решению, умножая уравнения друг на друга. Задача 7. Решить систему: tg x = sin y, ctg x = cos y. Решение. Напомним, что умножить уравнения системы друг на друга это значит записать уравнение вида «произведение левых частей равно произведению правых частей». Полученное уравнение будет следствием исходной системы то есть все решения исходной системы удовлетворяют и полученному уравнению). В данном случае умножение уравнений системы приводит к уравнению: 1 = sin y cos y = sin y, откуда y = /4 + n n Z). Подставлять y в таком виде в систему неудобно лучше разбить на две серии: y 1 = 4 + n, Подставляем y 1 в первое уравнение системы: y = 4 + n. tg x = sin y 1 = 1 x 1 = 4 + k k Z). Легко видеть, что подстановка y 1 во второе уравнение системы приведёт к тому же самому результату. Теперь подставляем y : tg x = sin y = 1 x = 4 + k k Z). 4 + k; ) 4 + n, 4 ) + k; 4 + n, k, n Z. Иногда к результату приводит деление уравнений друг на друга. Задача 8. Решить систему: cos x + cos y = 1, sin x + sin y =. Решение. Преобразуем: cos x + y sin x + y cos x y cos x y = 1, =. 5

6 Введём временно обозначения: α = x + y, β = x y. Тогда полученная система перепишется в виде: cos α cos β = 1, sin α cos β =. Ясно, что cos β 0. Тогда, поделив второе уравнение на первое, придём к уравнению tg α =, которое является следствием системы. Имеем: α = + n n Z), и снова в целях дальнейшей подстановки в систему) нам удобно разбить полученное множество на две серии: α 1 = + n, α = 4 + n. Подстановка α 1 в любое из уравнений системы приводит к уравнению: cos β = 1 β 1 = k k Z). Аналогично, подстановка α в любое из уравнений системы даёт уравнение: cos β = 1 β = + k k Z). Итак, имеем: то есть откуда α 1 = + n, β 1 = k или α = 4 + n, β = + k, x + y = + n, x + y = 4 x y или + n, = k x y = + k, x = + n + k), x = 7 + n + k), y = или + n k) y = + n k). + n + k); ) 7 + n k), + n + k); ) + n k), k, n Z. В некоторых случаях на помощь приходит основное тригонометрическое тождество. Задача 9. Решить систему: sin x = 1 sin y, cos x = cos y. Решение. Возведём обе части каждого уравнения в квадрат: sin x = 1 sin y), cos x = cos y. 6

7 Сложим полученные уравнения: = 1 sin y) + cos y = 1 sin y + sin y + cos y = sin y, откуда sin y = 0 и y = n n Z). Это следствие исходной системы; то есть, для всякой пары x; y), являющейся решением системы, второе число этой пары будет иметь вид n с некоторым целым n. Разбиваем y на две серии: y 1 = n, y = + n. Подставляем y 1 в исходную систему: sin x = 1 sin y1 = 1, cos x = cos y1 = 1 Решением данной системы служит серия sin x = 1, cos x = 1. x 1 = 4 + k k Z). Обратите внимание, что теперь недостаточно было бы подставить y 1 в какое-то одно из уравнений системы. Подстановка y 1 в первое и второе уравнение системы приводит к системе двух разных уравнений относительно x.) Аналогично, подставляем y в исходную систему: Отсюда sin x = 1 sin y = 1, cos x = cos y = 1 x = 4 + k k Z). ) ) 4 + k; n, + k; + n, k, n Z. 4 sin x = 1, cos x = 1. Иногда в ходе преобразований удаётся получить простое соотношение между неизвестными и выразить из этого соотношения одно неизвестное через другое. Задача 10. Решить систему: 5 cos x cos y =, sin x siny x) + cos y = 1. Решение. Во втором уравнении системы преобразуем удвоенное произведение синусов в разность косинусов: cosx y) cos y + cos y = 1 cosx y) = 1 x y = n n Z). Выражаем отсюда y через x: y = x + n, 7

8 и подставляем в первое уравнение системы: 5 cos x cos x = 5 cos x cos x 1) = cos x 5 cos x + = 0. Дальнейшее тривиально. Получаем: cos x = 1, откуда x = ± Остаётся найти y из полученного выше соотношения: + k k Z). y = ± + 4k + n. ± + k; ± + 4k + n ), k, n Z. Разумеется, рассмотренные задачи не охватывают всего многоообразия систем тригонометрических уравнений. В любой сколько-нибудь непростой ситуации требуется проявлять изобретательность, которая вырабатывается только практикой решения разнообразных задач. Во всех ответах предполагается, что k, n Z. Задачи 1. Решите систему: x + y =, cos x cos y = 1. б) x + y =, sin x sin y = 1. + n; n), + n; 4 n) ; б) n; n). Решите систему: x + y = 4, tg x tg y = 1 б) 6. x y = 5, sin x = sin y. arctg 1 + n; arctg 1 n), arctg 1 + n; arctg 1 n) ; б) + n; 6 + n). Решите систему: sin x + sin y = 1, x y = 4 б). x + y =, sin x sin y = n; 6 + n) ; б) 6 + n; 6 n) 8

9 4. Решите систему: sin x + cos y = 0, sin x + cos y = 1. б) sin x + cos y = 1, sin x cos y =. 1) k 6 + k; ± + n), 1) k k; ± + n) ; б) 1) k 4 + k; + n) 5. Решите систему: cos x + cos y = 1, tg x + tg y =, sin x sin y = б) 4. ctg x + ctg y = 9 5. ± + k; n) ; б) arctg 5 + k; arctg 1 + n), arctg 1 + k; arctg 5 + n) 6. Решите систему: sin x + cos y = 1, cos x cos y = 1. б) sin x + cos x = + sin y + cos y, sin x + sin y = 0. 1) k 6 + k; ± + n) ; б) 4 ± 4 + k; 5 4 ± 4 + n) 7. Решите систему: sin x + sin y =, cos x cos y = 1. 1) k 4 + k + n); 1)k 4 + k n)), 1) k k + n + 1); 1)k k n 1)) 8. Решите систему: sin x sin y = 1 4, tg x tg y =, cos x cos y = б) 4. sin x sin y = 4. ± 6 + k + n); ± 6 + k n)) ; б) ± + k + n); ± + k n)) 9. Решите систему: 4 sin x cos y = 1, tg x = tg y. б) sin x = cos x cos y, cos x = sin x sin y )k n k ) ; 1) k 1 + n + k )) ; б) ) 4 + k ; 4 + k + n 9

10 10. Решите систему: cos x = tg cos y = tg y + ), 4 x + ). 4 k; n), 4 + k; 4 + n), + k; + n) 11. Решите систему: ) tg 4 + x = cos y, ) tg 4 x = sin y. k; 4 + n), + k; 4 + n) 1. Решите систему: sin x + sin y = 1, cos x cos y =. 6 + n + k); n k)), 6 + n + k); n k)) 1. Решите систему: tg x + tg y =, cos x cos y = n + k); 4 + n k)) 14. Решите систему: sin x = sin y, cos x = cos y. 6 + k; 4 + n), 6 + k; 4 + n), k; 4 + n), k; 4 + n) 15. Решите систему: 6 cos x + 4 cos y = 5, sin x + sin y = 0. arccos 4 + k; arccos n), arccos 4 + k; arccos n) 16. Решите систему: 4 tg x = tg y, sin x cosx y) = sin y. б) ctg x + sin y = sin x, sin x sinx + y) = cos y. k; n); б) ) 4 + k ; n, + k; + n) 10

11 17. «Физтех», 010 ) Решить систему уравнений 5 sin x cos y =, sin y + cos x =. 4 + k, 6 + n) ; k, n Z 18. МГУ, экз. для иностр. гр-н, 01 ) Решите систему уравнений: 4 + cos x = 7 sin y, y x = y 4. + n; 6 + n), + n; n), + n; 6 n), + n; 5 6 n), n Z 19. МГУ, ВМК, 005 ) Найдите все решения системы уравнений sin x + y) = 1, xy = 9. xn, 4 + n ) xn, где xn = 8 + n ± n) 6, n Z, n, 1, 0, 1 0. МГУ, географич. ф-т, 005 ) Решите систему уравнений 1 sin x sin y =, 6 sin x + cos y =. 1) n n, k), k, n Z 1. МГУ, ф-т гос. управления, 005 ) Решите систему уравнений sin x sin 1 = 0, cos x cos 1 = n, n Z. МФТИ, 199 ) Решите систему уравнений 10 cos x = 7 cos x cos y, sin x = cos x sin y. arccos + n, 1)k arcsin 5 ); 6 + k arccos + n, 1)k+1 arcsin 5 ), 6 + k k, n Z 11

12 . МФТИ, 199 ) Решите систему уравнений tg x 4 ctg x = tg y, 4 sin x = sin x cos y. arctg 4 + n, arccos 4 + k) ; + arctg 4 + n, + arccos 4 + k), k, n Z 4. МФТИ, 1996 ) Решите систему уравнений sin x = sin y, cos y + cos x sin x = 4. ± 6 + n, 1)k k) ; k, n Z 5. МФТИ, 1996 ) Решите систему уравнений sin x + ) = sin y cos y, 4 sin y + sin x = 4 + sin x. 1) n 1 + n, 4 + 1)k 4 + k) ; k, n Z 6. МФТИ, 1997 ) Решите систему уравнений 9 cos x cos y 5 sin x sin y = 6, 7 cos x cos y sin x sin y = 4. ± n + k, ± 6 + n + k) ; k, n Z 1

И. В. Яковлев Материалы по математике MathUs.ru. Задачник ЕГЭ-15

И. В. Яковлев Материалы по математике MathUs.ru. Задачник ЕГЭ-15 И В Яковлев Материалы по математике MathUsru Задачник ЕГЭ-15 Здесь приведены задачи 15 в прошлом С1, которые предлагались на ЕГЭ по математике, а также на диагностических, контрольных и тренировочных работах

Подробнее

Баллы 0-4 5 6-7 8-9 Оценка «2» «3» «4» «5»

Баллы 0-4 5 6-7 8-9 Оценка «2» «3» «4» «5» МАТЕМАТИКА, класс Ответы и критерии, Ноябрь 0 Вариант/ задания ОТВЕТЫ В В В В В В В7 С 90, 0 0 0,8 0, arcsi 7, 00 0-0, +, +, ( + +, 0-0, 0, 9 Отрезку принадлежат корни 78,8 79 700 9, - 0, 0, arccos 8 7,

Подробнее

МАТЕМАТИКА ЕГЭ 2012 Тригонометрические уравнения: методы решений и отбор корней (типовые задания С1)

МАТЕМАТИКА ЕГЭ 2012 Тригонометрические уравнения: методы решений и отбор корней (типовые задания С1) Корянов АГ, Прокофьев АА Тригонометрические уравнения: методы решений и отбор корней МАТЕМАТИКА ЕГЭ 0 Тригонометрические уравнения: методы решений и отбор корней (типовые задания С) Прокофьев АА, Корянов

Подробнее

Задачи Штурма-Лиувилля в простейшем случае

Задачи Штурма-Лиувилля в простейшем случае Задачи Штурма-Лиувилля в простейшем случае 1 I рода слева I рода справа Решить задачу Штурма-Лиувилля с краевыми условиями I-го рода: { X x + Xx, X X 11 Общее решение уравнения X x + Xx имеет вид Xx c

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ. 11 класс

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ. 11 класс Санкт Петербургский государственный университет 5 6 учебный год, январь Вариант 1 1 Сравните числа ( 6 5 + 4) 1 и ( 8 + 7 6) 1 + 1 Решите уравнение + + + 1= log log Решите неравенство + 6 4 Изобразите

Подробнее

Теоретический материал.

Теоретический материал. 0.5 Логарифмические уравнения и неравенства. Используемая литература:. Алгебра и начала анализа 0- под редакцией А.Н.Колмогорова. Самостоятельные и контрольные работы по алгебре 0- под редакцией Е.П.Ершова

Подробнее

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ БИЛЕТ 2. Высшая математика. ; в) dx. dx x dx. УТВЕРЖДАЮ: Зав. кафедрой профессор А-В. А.

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ БИЛЕТ 2. Высшая математика. ; в) dx. dx x dx. УТВЕРЖДАЮ: Зав. кафедрой профессор А-В. А. БИЛЕТ Факультет Нефтетехнологический специальность МАПП семестр IV Понятие неопределенного интеграла и его основные свойства Найти неопределенный интеграл: + а) d ; sin б) + cos d ; в) 5 arcsin d Вычислить

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Лекция 7: Прямая на плоскости

Лекция 7: Прямая на плоскости Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта и следующие две лекции посвящены изучению прямых и плоскостей.

Подробнее

Оформление решения рационального неравенства следующее: xx x x x x. Итак: план решения рационального неравенства:

Оформление решения рационального неравенства следующее: xx x x x x. Итак: план решения рационального неравенства: РЕШЕНИЕ НЕРАВЕНСТВ МЕТОДОМ ИНТЕРВАЛОВ. I) х - 5> линейное неравенство. Решаем методом переноса: х>5, т.е. х>5, и т.д. II) х > можно решить перебором чисел. III) Более сложные неравенства (квадратные, дробные,

Подробнее

Лекция 1: Комплексные числа

Лекция 1: Комплексные числа Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В школьном курсе математики понятие числа постепенно расширяется.

Подробнее

Векторы в пространстве и метод координат. Задача C2

Векторы в пространстве и метод координат. Задача C2 А. Г. Малкова. Подготовка к ЕГЭ по математике. Материалы сайта EGE-Study.ru Векторы в пространстве и метод координат. Задача C Существует два способа решения задач по стереометрии. Первый классический

Подробнее

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16.1. Математическое описание какого-либо процесса нередко сопровождается выделением набора числовых его характеристик и заданием

Подробнее

Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс)

Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс) Задача 1 Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс) Найдите все простые числа p и q такие, что выражение целого числа является квадратом 1 Очевидно, что при q

Подробнее

Т.А.Спасская. Сравнения первой степени

Т.А.Спасская. Сравнения первой степени ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное общеобразовательное учреждение высшего профессионального образования «Тверской государственный университет» Математический факультет Кафедра алгебры

Подробнее

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Министерство образования Российской Федерации Московский физико-технический институт Кафедра высшей математики РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Методические указания и оптимальные

Подробнее

24. p-адические числа

24. p-адические числа 24. p-адические числа На этой лекции мы разберем важные примеры пространств, свойства которых в некотором отношении противоположны свойствам R и прочих связных пространств. Определение 24.1. Топологическое

Подробнее

Вычислить (с точностью до трех знаков после запятой) площадь фигуры, ограниченной указанными линиями.

Вычислить (с точностью до трех знаков после запятой) площадь фигуры, ограниченной указанными линиями. Вариант Вычислить с точностью до трех знаков после ) + ; ) y ln( y ) dy ; + + ) ; + ) ; 6) + / cos ) ) ; / sin Вычислить (с точностью до трех знаков после ) площадь фигуры, ограниченной ) ρ = cos ϕ ) =

Подробнее

Определенный интеграл

Определенный интеграл Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

УЧИМСЯ СЧИТАТЬ БЫСТРО:

УЧИМСЯ СЧИТАТЬ БЫСТРО: Г. И. Просветов УЧИМСЯ СЧИТАТЬ БЫСТРО: ЗАДАЧИ И РЕШЕНИЯ Учебно-практическое пособие Москва Альфа-Пресс 2008 УДК 51(07) ББК 22.1 П 82 ПРЕДИСЛОВИЕ Нетрудно свести лошадь к воде. Но если Вы заставите плавать

Подробнее

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы Лекция 3: Однородные и неоднородные системы линейных уравнений Система линейных уравнений Определение Линейным уравнением (или уравнением первого порядка) с n неизвестными x 1, x 2,..., x n называется

Подробнее

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература...

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература... ОГЛАВЛЕНИЕ Введение................................................ 3 Глава. Неопределенный интеграл.......................... 6.. Понятие первообразной функции и неопределенного интеграла........................

Подробнее

Лекция 17: Евклидово пространство

Лекция 17: Евклидово пространство Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

Подробнее

ВОЗМОЖНОСТИ ПРОГРАММЫ MATHEMATICOS. Можно убедиться в правильности или ошибочности своих действий на любом шаге решения

ВОЗМОЖНОСТИ ПРОГРАММЫ MATHEMATICOS. Можно убедиться в правильности или ошибочности своих действий на любом шаге решения ВОЗМОЖНОСТИ ПРОГРАММЫ MATHEMATICOS Можно убедиться в правильности или ошибочности своих действий на любом шаге решения через вызов «ПРОВЕРКИ». Программа проводит экспертный анализ и выдает свой вердикт.

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B).

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B). ЛАБОРАТОРНАЯ РАБОТА ТЕОРЕМА ФУБИНИ. ПРОСТРАНСТВА Lp, I. О с н о в н ы е п о н я т и я и т е о р е м ы Определение. Пусть и Y множества, и Y меры, заданные на полукольцах S и S Y подмножеств множеств и

Подробнее

= 22 1 2 2 +1 2 4 +1 2 8 +1 2 16 +1 2 32 +1

= 22 1 2 2 +1 2 4 +1 2 8 +1 2 16 +1 2 32 +1 0 класс 6. Дана функция F x = x + + 5. Вычислить значение этой функции в точке x = + + 4 + 8 + 6 + 3 + Преобразуем выражение для x: + + 4 + 8 + 6 + 3 + = + 4 + 8 + 6 + 3 + 4 4 + 8 + 6 + 3 + = = 64. = 6

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее

Лекция 4: Решение систем линейных уравнений методом Гаусса

Лекция 4: Решение систем линейных уравнений методом Гаусса Лекция 4: Решение систем линейных уравнений методом Гаусса Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Данная

Подробнее

высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1

высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1 Негосударственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1 Линейная алгебра. Аналитическая

Подробнее

Лекция 9: Прямая в пространстве

Лекция 9: Прямая в пространстве Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению прямой в пространстве. Излагаемый

Подробнее

Решение уравнений с параметром

Решение уравнений с параметром Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Алгебра Решение уравнений с параметром Елисеев Юрий, МОУ «Лицей» г. Перми, кл. Сидорова Елена Борисовна,

Подробнее

Задача С6 на ЕГЭ по математике

Задача С6 на ЕГЭ по математике И. В. Яковлев Материалы по математике MathUs.ru Содержание Задача С6 на ЕГЭ по математике 1 Необходимая теория 2 1.1 Числовые множества................................... 2 1.2 Делимость.........................................

Подробнее

УСРЕДНЕНИЕ ТРЁХМЕРНОГО ПОЛЯ НАПРАВЛЕНИЙ

УСРЕДНЕНИЕ ТРЁХМЕРНОГО ПОЛЯ НАПРАВЛЕНИЙ 9 Компьютерная оптика том УСРЕДНЕНИЕ ТРЁХМЕРНОГО ПОЛЯ НАПРАВЛЕНИЙ АВ Устинов Учреждение Российской академии наук Институт систем обработки изображений РАН Аннотация В данной статье описан метод усреднения

Подробнее

Тренировочная работа 1 по МАТЕМАТИКЕ

Тренировочная работа 1 по МАТЕМАТИКЕ Тренировочная работа по МАТЕМАТИКЕ класс Вариант Математика класс Вариант 2 Инструкция по выполнению работы На выполнение экзаменационной работы по математике дается 4 часа (24 мин) Работа состоит из двух

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

Все члены уравнения Шредингера для атома водорода (и водородоподобных

Все члены уравнения Шредингера для атома водорода (и водородоподобных Лекция Решение уравнения Шредингера для атома водорода и водородоподобных атомов Уравнение Шредингера для атома водорода Все члены уравнения Шредингера для атома водорода и водородоподобных атомов имеющих

Подробнее

Многогранники в задаче 16

Многогранники в задаче 16 И. В. Яковлев Материалы по математике MathUs.ru Стереометрия на ЕГЭ по математике Многогранники в задаче 16 Цель данного пособия помочь школьнику научиться решать задачи 16 (в прошлом С) единого госэкзамена

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

Лекция 2: Многочлены

Лекция 2: Многочлены Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Понятие многочлена Определения Многочленом от одной переменной называется выражение вида

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

Глава 7. Определенный интеграл

Глава 7. Определенный интеграл 68 Глава 7 Определенный интеграл 7 Определение и свойства К понятию определенного интеграла приводят разнообразные задачи вычисления площадей, объемов, работы, объема производства, денежных потоков и тп

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

Учебный центр «Резольвента»

Учебный центр «Резольвента» ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 509-8-10 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ РЕШЕНИЕ ИРРАЦИОНАЛЬНЫХ НЕРАВЕНСТВ Учебно-методическое

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Календарно-тематическое планирование по математике 2 класс (Демидова Т.Е., Козлова С.А.)

Календарно-тематическое планирование по математике 2 класс (Демидова Т.Е., Козлова С.А.) Календарно-тематическое планирование по математике 2 класс (Демидова Т.Е., Козлова С.А.) п/п Тема урока Кол-во часов Характеристика деятельности учащихся Дата проведения Числа от до 0.(5ч) 5 Действия сложения

Подробнее

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли Установить совместность и решить систему линейных уравнений 5xx x xx 5x 0 x4x x 0 а) по формулам Крамера, б) матричным способом, в) методом Гаусса Совместность Совместность системы можно установить: а)

Подробнее

Лекция 5 Парабола, эллипс, гипербола

Лекция 5 Парабола, эллипс, гипербола Лекция 5 Парабола, эллипс, гипербола 1. ПАРАБОЛА Парабола эта линия, которая в некоторой прямоугольной декартовой системе координат O координат имеет уравнение = p. (1) Указанная система координат называется

Подробнее

ПОЛЯ: ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ПОЛЕ РАЗЛОЖЕНИЯ МНОГОЧЛЕНА

ПОЛЯ: ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ПОЛЕ РАЗЛОЖЕНИЯ МНОГОЧЛЕНА ЛЕКЦИЯ 15 ПОЛЯ: ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ХАРАКТЕРИСТИКА ПОЛЯ РАСШИРЕНИЯ ПОЛЕЙ ПОЛЕ РАЗЛОЖЕНИЯ МНОГОЧЛЕНА 1 ПРИМЕРЫ ПОЛЕЙ Пример 1. Числовые поля Q, R, C являются основными примерами полей для нас. Пример

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Методические рекомендации к практическим занятиям по курсу математики.

Методические рекомендации к практическим занятиям по курсу математики. Методические рекомендации к практическим занятиям по курсу математики. Составные части задачи и этапы её решения в школьном курсе. При обучении решению задач необходимо научить учащихся разбираться в условии

Подробнее

1. Производная и её свойства

1. Производная и её свойства ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ 1. Производная и её свойства Определение 1. Пусть функция y = f(x) определена в интервале (a,b) и x 0 точка этого интервала. Пусть x такая величина, что x 0 ± x (a,b),

Подробнее

Лекция 6: Крамеровские системы линейных уравнений

Лекция 6: Крамеровские системы линейных уравнений Лекция 6: Крамеровские системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы Международный консорциум «Электронный университет» Московский государственный университет экономики, статистики и информатики Евразийский открытый институт КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ АН Малахов Неопределенный

Подробнее

Лекция 11: Обратная матрица

Лекция 11: Обратная матрица Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение обратной матрицы Определение Пусть A произвольная матрица. Матрица B называется

Подробнее

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа ВВ Колыбасова, НЧ Крутицкая В В Колыбасова, Н Ч Крутицкая Достаточные условия существования решения задачи об условном

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

Определенный интеграл. Графический смысл перемещения.

Определенный интеграл. Графический смысл перемещения. Определенный интеграл. Графический смысл перемещения. Если тело движется прямолинейно и равномерно, то для определения перемещения тела достаточно знать его скорость и время движения. Но как подойти к

Подробнее

Лекция 9: Подпространства

Лекция 9: Подпространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение подпространства. Примеры подпространств (1) Определение Непустое подмножество

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция: Функции конечнозначных логик. Элементарные функции k-значной логики. Способы задания функций k-значной логики: таблицы, формулы, I-я и II-я формы, полиномы. Полнота. Лектор - доцент Селезнева Светлана

Подробнее

Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ. Практикум

Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ. Практикум МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Костромской государственный университет имени Н. А. Некрасова Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ Практикум Кострома

Подробнее

ПОРЯДОК ПРОИЗВЕДЕНИЯ ЭЛЕМЕНТОВ. ЦИКЛИЧЕСКИЕ ГРУППЫ И ПОДГРУП- ПЫ. ТЕОРЕМА ЛАГРАНЖА И СЛЕДСТВИЯ ЦЕНТР И ЦЕНТРАЛИЗАТОР

ПОРЯДОК ПРОИЗВЕДЕНИЯ ЭЛЕМЕНТОВ. ЦИКЛИЧЕСКИЕ ГРУППЫ И ПОДГРУП- ПЫ. ТЕОРЕМА ЛАГРАНЖА И СЛЕДСТВИЯ ЦЕНТР И ЦЕНТРАЛИЗАТОР ЛЕКЦИЯ 2 ПОРЯДОК ПРОИЗВЕДЕНИЯ ЭЛЕМЕНТОВ. ПОДГРУППЫ ГРУППЫ. ЦИКЛИЧЕСКИЕ ГРУППЫ И ПОДГРУП- ПЫ. СМЕЖНЫЕ КЛАССЫ. ТЕОРЕМА ЛАГРАНЖА И СЛЕДСТВИЯ ЦЕНТР И ЦЕНТРАЛИЗАТОР 1 ПОРЯДОК ПРОИЗВЕДЕНИЯ ДВУХ ЭЛЕМЕНТОВ ГРУППЫ

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

1. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы

1. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы ЛАБОРАТОРНАЯ РАБОТА СПЕКТР ОПЕРАТОРА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Пусть : ограниченный линейный оператор в банаховом пространстве над полем. C. Определение. Точка C называется регулярной

Подробнее

Лекция 15: Собственные значения и собственные векторы. оператора

Лекция 15: Собственные значения и собственные векторы. оператора Лекция 15: Собственные значения и собственные векторы линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Преобразуем уравнение. Обозначим Тогда

Преобразуем уравнение. Обозначим Тогда Задача 1 Решения задач по математике «Плехановской олимпиады школьников» (очный тур 11 класс) Если двухзначное число разделить на некоторое целое число, то в частном получится 3 и в остатке 8 Если в делимом

Подробнее

Тема 2-2: Линейная зависимость

Тема 2-2: Линейная зависимость Тема 2-2: Линейная зависимость А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

Именование числа в курсе математики факультетов подготовки учителей начальных классов

Именование числа в курсе математики факультетов подготовки учителей начальных классов Именование числа в курсе математики факультетов подготовки учителей начальных классов А.П. Тонких Понятие величины является важнейшим понятием математики. В курсе математики начальных классов учащиеся

Подробнее

Инструкция для участников ЕГЭ, зачитываемая организатором в аудитории перед началом экзамена с использованием технологии печати КИМ в аудиториях ППЭ

Инструкция для участников ЕГЭ, зачитываемая организатором в аудитории перед началом экзамена с использованием технологии печати КИМ в аудиториях ППЭ Инструкция для участников ЕГЭ, зачитываемая организатором в аудитории перед началом экзамена с использованием технологии печати КИМ в аудиториях ППЭ Текст, который выделен жирным шрифтом должен быть прочитан

Подробнее

ПРЯМАЯ НА ПЛОСКОСТИ ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

ПРЯМАЯ НА ПЛОСКОСТИ ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ Федеральное агентство по образованию Троицкий филиал государственного образовательного учреждения высшего профессионального образования «Челябинский государственный университет» ПРЯМАЯ НА ПЛОСКОСТИ ПРЯМАЯ

Подробнее

Лекция: Группы. Изоморфизм групп. Симметрическая группа перестановок. Подгруппы. Теорема Кэли.

Лекция: Группы. Изоморфизм групп. Симметрическая группа перестановок. Подгруппы. Теорема Кэли. Лекция: Группы. Изоморфизм групп. Симметрическая группа перестановок. Подгруппы. Теорема Кэли. Лектор - доцент Селезнева Светлана Николаевна Лекции по Избранным вопросам дискретной математики. 3-й курс,

Подробнее

Условия Коши-Римана.

Условия Коши-Римана. Условия Коши-Римана. ) Проверить выполнение условий Коши-Римана для функции w zi e. Функция, имеющая производную в точке z, называется дифференцируемой в этой точке. Условия Коши - Римана (Даламбера -

Подробнее

Лекция 5: Определители

Лекция 5: Определители Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии уже говорилось об определителях

Подробнее

28. Фундаментальная система решений однородной системы линейных уравнений

28. Фундаментальная система решений однородной системы линейных уравнений 28. Фундаментальная система решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Размерность

Подробнее

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА ЛАБОРАТОРНАЯ РАБОТА 5 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Интегральным уравнением Фредгольма рода называется уравнение x ( s, ds f (.

Подробнее

Лекция 8 Модель льда и коммутирующие трансфер-матрицы

Лекция 8 Модель льда и коммутирующие трансфер-матрицы Лекция 8 Модель льда и коммутирующие трансфер-матрицы Рассмотрим другую модель классической статистической механики шестивершинную модель или модель льда Пусть на ребрах квадратной решетки живут «спины»

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

14. Гармонические формы

14. Гармонические формы 14. Гармонические формы В этой лекции мы под дифференциальными формами будем (до поры до времени) понимать дифференциальные формы класса C. Мы разрешаем дифференциальным формам быть комплекснозначными.

Подробнее

Лекция 3. Можно ли вывести матрицы Дирака?

Лекция 3. Можно ли вывести матрицы Дирака? Лекция 3. Можно ли вывести матрицы Дирака? А. А. Кецарис (5 июня 2003 г.) В этой лекции мы попытаемся вывести матрицы Дирака из правил умножения в алгебре Клиффорда. I. ВВЕДЕНИЕ Мы предположили, что структурные

Подробнее

Путилов Виктор Васильевич МАОУ СОШ 146 Системы логических уравнений.

Путилов Виктор Васильевич МАОУ СОШ 146 Системы логических уравнений. Путилов Виктор Васильевич МАОУ СОШ 46 Системы логических уравнений. Оглавление Замечание о замене переменных.... Задачи содержащие импликацию или ее эквивалентную запись....2 Наличие дополнительного условия...6

Подробнее

а соответствующая характеристика, как видим, представляет собой площадь поперечного сечения элемента.

а соответствующая характеристика, как видим, представляет собой площадь поперечного сечения элемента. Понятие о геометрических характеристиках однородных поперечных сечений Центр тяжести; статические моменты; моменты инерции осевые, центробежный, полярный; моменты сопротивления; радиусы инерции Главные

Подробнее

Интегралы Определенные и Неопределенные

Интегралы Определенные и Неопределенные 1 Интегралы Определенные и Неопределенные Опр. Интеграл функции это естественный аналог суммы последовательности. Опр. Интегрирование процесс нахождения интеграла. Зам. Интегрирование это операция обратная

Подробнее

КУРС ЛЕКЦИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

КУРС ЛЕКЦИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Московский физико-технический институт (государственный университет) О.В. Бесов КУРС ЛЕКЦИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Москва, 2004 Составитель О.В.Бесов УДК 517. Методические указания по математическому

Подробнее

Алгоритм решения систем линейных уравнений в кольцах вычетов

Алгоритм решения систем линейных уравнений в кольцах вычетов Авдошин С.М., Савельева А.А. Алгоритм решения систем линейных уравнений в кольцах вычетов Разработан эффективный алгоритм решения систем линейных уравнений в кольцах вычетов [], эквивалентный по сложности

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Делимость. 1

И. В. Яковлев Материалы по математике MathUs.ru. Делимость. 1 И. В. Яковлев Материалы по математике MathUs.ru Делимость. 1 Говоря о делимости, мы имеем в виду целые числа. Определение. Число a делится на число b, если существует такое число c, что a = bc. При этом

Подробнее

e-mail: melnikov@k66.ru, melnikov@r66.ru сайты: http://melnikov.k66.ru, http://melnikov.web.ur.ru

e-mail: melnikov@k66.ru, melnikov@r66.ru сайты: http://melnikov.k66.ru, http://melnikov.web.ur.ru Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Работа с символами суммирования и произведения Раздел электронного учебника для сопровождения практического

Подробнее

Лекция 2. Инварианты плоских кривых

Лекция 2. Инварианты плоских кривых Лекция 2. Инварианты плоских кривых План лекции. Гладкие кривые на плоскости, число вращения, классификация кривых с точностью до гладкой гомотопии, точки самопересечения, число Уитни, теорема Уитни..1

Подробнее

Интегрирование. Неопределенный интеграл. Определенный интеграл и его применение.

Интегрирование. Неопределенный интеграл. Определенный интеграл и его применение. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений dx d ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2004 Электронный журнал, рег. N П23275 от 07.03.97 hp://www.neva.ru/journal e-mail: diff@osipenko.su.neva.ru Теория обыкновенных дифференциальных

Подробнее