Системы тригонометрических уравнений

Размер: px
Начинать показ со страницы:

Download "Системы тригонометрических уравнений"

Транскрипт

1 И. В. Яковлев Материалы по математике MathUs.ru Системы тригонометрических уравнений В данной статье мы рассматриваем тригонометрические системы двух уравнений с двумя неизвестными. Методы решения таких систем и различные специальные приёмы мы будем изучать сразу на конкретных примерах. Может случиться, что одно из уравнений системы содержит тригонометрические функции от неизвестных x и y, а другое уравнение является линейным относительно x и y. В таком случае действуем очевидным образом: одну из неизвестных выражаем из линейного уравнения и подставляем в другое уравнение системы. Задача 1. Решить систему: x + y =, sin x + sin y = 1. Решение. Из первого уравнения выражаем y через x: и подставляем во второе уравнение: y = x, sin x + sin x) = 1 sin x = 1 sin x = 1. Получилось простейшее тригонометрическое уравнение относительно x. Его решения запишем в виде двух серий: x 1 = 6 + n, x = n n Z). Остаётся найти соответствующие значения y: y 1 = x 1 = 5 6 n, y = x = 6 n. Как всегда в случае системы уравнений, ответ даётся в виде перечисления пар x; y). 6 + n; 5 ) 5 6 n, 6 + n; ) 6 n, n Z. Обратите внимание, что x и y связаны друг с другом посредством целочисленного параметра n. А именно, если в выражении для x стоит +n, то в выражении для y автоматически появляется n, причём с тем же самым n. Это следствие «жёсткой» зависимости между x и y, задаваемой уравнением x + y =. Задача. Решить систему: cos x + cos y = 1, x y =. Решение. Здесь имеет смысл сначала преобразовать первое уравнение системы: 1 + cos x cos y = 1 cos x + cos y = 1 cosx + y) cosx y) = 1. 1

2 Таким образом, наша система равносильна следующей системе: cosx + y) cosx y) = 1, x y =. Подставляем x y = в первое уравнение: cosx + y) cos = 1 cosx + y) = 1 x + y = n n Z). В результате приходим к системе: x + y = n, x y =. Складываем эти уравнения, делим на и находим x; вычитаем из первого уравнения второе, делим на и находим y: x = + n, y = + n n Z). + n; + n ), n Z. В ряде случаев тригонометрическую систему удаётся свести к системе алгебраических уравнений подходящей заменой переменных. Задача. Решить систему: sin x + cos y = 1, sin x cos y = 1. Решение. Замена u = sin x, v = cos y приводит к алгебраической системе относительно u и v: u + v = 1, u v = 1. Эту систему вы без труда решите самостоятельно. Решение единственно: u = 1, v = 0. Обратная замена приводит к двум простейшим тригонометрическим уравнениям: sin x = 1, cos y = 0, откуда + k; + n ), k, n Z. x = + k, y = + n k, n Z). Теперь в записи ответа фигурируют два целочисленных параметра k и n. Отличие от предыдущих задач состоит в том, что в данной системе отсутствует «жёсткая» связь между x и y например, в виде линейного уравнения), поэтому x и y в гораздо большей степени независимы друг от друга.

3 В данном случае было бы ошибкой использовать лишь один целочисленный параметр n, записав ответ в виде + n; ) + n. Это привело бы к потере бесконечного множества 5 решений системы. Например, потерялось бы решение ; ), возникающее при k = 1 и n = 0. Задача 4. Решить систему: sin x + sin y = 1, cos x + cos y =. Решение. Преобразуем сначала второе уравнение: 1 sin x + 1 sin y) = sin x + 4 sin y = 1. Теперь делаем замену: u = sin x, v = sin y. Получим систему: u + v = 1, u + 4v = 1. Решениями этой системы служат две пары: u 1 = 0, v 1 = 1/ и u = /, v = 1/6. Остаётся сделать обратную замену: sin x = 0, sin x = sin y = 1 или, sin y = 1 6, и записать ответ. k; 1) n 6 + n ), 1) k arcsin + k; 1)n arcsin 16 + n ), k, n Z. Задача 5. Решить систему: cos x + cos y = 1, sin x sin y = 4. Решение. Здесь для получения алгебраической системы нужно поработать ещё больше. Первое уравнение нашей системы запишем в виде: Во втором уравнении имеем: cos x + y cos x y = 1. = sin x sin y = cosx y) cosx + y) = = cos x y 1 Таким образом, исходная система равносильна системе: cos x + y cos x y = 1, cos x y cos x + y = 4. cos x + y ) 1 = cos x y cos x + y.

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 Делаем замену u = cos x y, v = cos x + y и получаем алгебраическую систему: uv = 1, u v = 4. Решениями этой системы служат две пары: u 1 = 1, v 1 = 1/ и u = 1, v = 1/. Первая пара даёт систему: x y = 1, = k, Отсюда cos x y cos x + y Вторая пара даёт систему: cos x y cos x + y = 1 x + y x = ± + n + k), y = 1, = 1 = ± + n k, n Z). = ± + n k). x y = + k, x + y = ± + n k, n Z). Отсюда x = ± + n + k), y = ± + n k). ± ) + n + k); ± + n k), ± + n + k); ± ) + n k), k, n Z. Однако свести систему тригонометрических уравнений к системе алгебраических уравнений удаётся далеко не всегда. В ряде случаев требуется применять различные специальные приёмы. Иногда удаётся упростить систему путём сложения или вычитания уравнений. Задача 6. Решить систему: sin x cos y = 4, cos x sin y = 1 4. Решение. Складывая и вычитая эти уравнения, получим равносильную систему: sinx + y) = 1, sinx y) = 1. А эта система, в свою очередь, равносильна совокупности двух систем: x + y = + k, x + y = x y = + k, или 6 + n x y = n k, n Z). 4

5 Отсюда x = + k + n), x = + k + n), y = или + k n) y = + k n) k + n); ) ) 6 + k n), + k + n); + k n), k, n Z. 6 Иногда можно прийти к решению, умножая уравнения друг на друга. Задача 7. Решить систему: tg x = sin y, ctg x = cos y. Решение. Напомним, что умножить уравнения системы друг на друга это значит записать уравнение вида «произведение левых частей равно произведению правых частей». Полученное уравнение будет следствием исходной системы то есть все решения исходной системы удовлетворяют и полученному уравнению). В данном случае умножение уравнений системы приводит к уравнению: 1 = sin y cos y = sin y, откуда y = /4 + n n Z). Подставлять y в таком виде в систему неудобно лучше разбить на две серии: y 1 = 4 + n, Подставляем y 1 в первое уравнение системы: y = 4 + n. tg x = sin y 1 = 1 x 1 = 4 + k k Z). Легко видеть, что подстановка y 1 во второе уравнение системы приведёт к тому же самому результату. Теперь подставляем y : tg x = sin y = 1 x = 4 + k k Z). 4 + k; ) 4 + n, 4 ) + k; 4 + n, k, n Z. Иногда к результату приводит деление уравнений друг на друга. Задача 8. Решить систему: cos x + cos y = 1, sin x + sin y =. Решение. Преобразуем: cos x + y sin x + y cos x y cos x y = 1, =. 5

6 Введём временно обозначения: α = x + y, β = x y. Тогда полученная система перепишется в виде: cos α cos β = 1, sin α cos β =. Ясно, что cos β 0. Тогда, поделив второе уравнение на первое, придём к уравнению tg α =, которое является следствием системы. Имеем: α = + n n Z), и снова в целях дальнейшей подстановки в систему) нам удобно разбить полученное множество на две серии: α 1 = + n, α = 4 + n. Подстановка α 1 в любое из уравнений системы приводит к уравнению: cos β = 1 β 1 = k k Z). Аналогично, подстановка α в любое из уравнений системы даёт уравнение: cos β = 1 β = + k k Z). Итак, имеем: то есть откуда α 1 = + n, β 1 = k или α = 4 + n, β = + k, x + y = + n, x + y = 4 x y или + n, = k x y = + k, x = + n + k), x = 7 + n + k), y = или + n k) y = + n k). + n + k); ) 7 + n k), + n + k); ) + n k), k, n Z. В некоторых случаях на помощь приходит основное тригонометрическое тождество. Задача 9. Решить систему: sin x = 1 sin y, cos x = cos y. Решение. Возведём обе части каждого уравнения в квадрат: sin x = 1 sin y), cos x = cos y. 6

7 Сложим полученные уравнения: = 1 sin y) + cos y = 1 sin y + sin y + cos y = sin y, откуда sin y = 0 и y = n n Z). Это следствие исходной системы; то есть, для всякой пары x; y), являющейся решением системы, второе число этой пары будет иметь вид n с некоторым целым n. Разбиваем y на две серии: y 1 = n, y = + n. Подставляем y 1 в исходную систему: sin x = 1 sin y1 = 1, cos x = cos y1 = 1 Решением данной системы служит серия sin x = 1, cos x = 1. x 1 = 4 + k k Z). Обратите внимание, что теперь недостаточно было бы подставить y 1 в какое-то одно из уравнений системы. Подстановка y 1 в первое и второе уравнение системы приводит к системе двух разных уравнений относительно x.) Аналогично, подставляем y в исходную систему: Отсюда sin x = 1 sin y = 1, cos x = cos y = 1 x = 4 + k k Z). ) ) 4 + k; n, + k; + n, k, n Z. 4 sin x = 1, cos x = 1. Иногда в ходе преобразований удаётся получить простое соотношение между неизвестными и выразить из этого соотношения одно неизвестное через другое. Задача 10. Решить систему: 5 cos x cos y =, sin x siny x) + cos y = 1. Решение. Во втором уравнении системы преобразуем удвоенное произведение синусов в разность косинусов: cosx y) cos y + cos y = 1 cosx y) = 1 x y = n n Z). Выражаем отсюда y через x: y = x + n, 7

8 и подставляем в первое уравнение системы: 5 cos x cos x = 5 cos x cos x 1) = cos x 5 cos x + = 0. Дальнейшее тривиально. Получаем: cos x = 1, откуда x = ± Остаётся найти y из полученного выше соотношения: + k k Z). y = ± + 4k + n. ± + k; ± + 4k + n ), k, n Z. Разумеется, рассмотренные задачи не охватывают всего многоообразия систем тригонометрических уравнений. В любой сколько-нибудь непростой ситуации требуется проявлять изобретательность, которая вырабатывается только практикой решения разнообразных задач. Во всех ответах предполагается, что k, n Z. Задачи 1. Решите систему: x + y =, cos x cos y = 1. б) x + y =, sin x sin y = 1. + n; n), + n; 4 n) ; б) n; n). Решите систему: x + y = 4, tg x tg y = 1 б) 6. x y = 5, sin x = sin y. arctg 1 + n; arctg 1 n), arctg 1 + n; arctg 1 n) ; б) + n; 6 + n). Решите систему: sin x + sin y = 1, x y = 4 б). x + y =, sin x sin y = n; 6 + n) ; б) 6 + n; 6 n) 8

9 4. Решите систему: sin x + cos y = 0, sin x + cos y = 1. б) sin x + cos y = 1, sin x cos y =. 1) k 6 + k; ± + n), 1) k k; ± + n) ; б) 1) k 4 + k; + n) 5. Решите систему: cos x + cos y = 1, tg x + tg y =, sin x sin y = б) 4. ctg x + ctg y = 9 5. ± + k; n) ; б) arctg 5 + k; arctg 1 + n), arctg 1 + k; arctg 5 + n) 6. Решите систему: sin x + cos y = 1, cos x cos y = 1. б) sin x + cos x = + sin y + cos y, sin x + sin y = 0. 1) k 6 + k; ± + n) ; б) 4 ± 4 + k; 5 4 ± 4 + n) 7. Решите систему: sin x + sin y =, cos x cos y = 1. 1) k 4 + k + n); 1)k 4 + k n)), 1) k k + n + 1); 1)k k n 1)) 8. Решите систему: sin x sin y = 1 4, tg x tg y =, cos x cos y = б) 4. sin x sin y = 4. ± 6 + k + n); ± 6 + k n)) ; б) ± + k + n); ± + k n)) 9. Решите систему: 4 sin x cos y = 1, tg x = tg y. б) sin x = cos x cos y, cos x = sin x sin y )k n k ) ; 1) k 1 + n + k )) ; б) ) 4 + k ; 4 + k + n 9

10 10. Решите систему: cos x = tg cos y = tg y + ), 4 x + ). 4 k; n), 4 + k; 4 + n), + k; + n) 11. Решите систему: ) tg 4 + x = cos y, ) tg 4 x = sin y. k; 4 + n), + k; 4 + n) 1. Решите систему: sin x + sin y = 1, cos x cos y =. 6 + n + k); n k)), 6 + n + k); n k)) 1. Решите систему: tg x + tg y =, cos x cos y = n + k); 4 + n k)) 14. Решите систему: sin x = sin y, cos x = cos y. 6 + k; 4 + n), 6 + k; 4 + n), k; 4 + n), k; 4 + n) 15. Решите систему: 6 cos x + 4 cos y = 5, sin x + sin y = 0. arccos 4 + k; arccos n), arccos 4 + k; arccos n) 16. Решите систему: 4 tg x = tg y, sin x cosx y) = sin y. б) ctg x + sin y = sin x, sin x sinx + y) = cos y. k; n); б) ) 4 + k ; n, + k; + n) 10

11 17. «Физтех», 010 ) Решить систему уравнений 5 sin x cos y =, sin y + cos x =. 4 + k, 6 + n) ; k, n Z 18. МГУ, экз. для иностр. гр-н, 01 ) Решите систему уравнений: 4 + cos x = 7 sin y, y x = y 4. + n; 6 + n), + n; n), + n; 6 n), + n; 5 6 n), n Z 19. МГУ, ВМК, 005 ) Найдите все решения системы уравнений sin x + y) = 1, xy = 9. xn, 4 + n ) xn, где xn = 8 + n ± n) 6, n Z, n, 1, 0, 1 0. МГУ, географич. ф-т, 005 ) Решите систему уравнений 1 sin x sin y =, 6 sin x + cos y =. 1) n n, k), k, n Z 1. МГУ, ф-т гос. управления, 005 ) Решите систему уравнений sin x sin 1 = 0, cos x cos 1 = n, n Z. МФТИ, 199 ) Решите систему уравнений 10 cos x = 7 cos x cos y, sin x = cos x sin y. arccos + n, 1)k arcsin 5 ); 6 + k arccos + n, 1)k+1 arcsin 5 ), 6 + k k, n Z 11

12 . МФТИ, 199 ) Решите систему уравнений tg x 4 ctg x = tg y, 4 sin x = sin x cos y. arctg 4 + n, arccos 4 + k) ; + arctg 4 + n, + arccos 4 + k), k, n Z 4. МФТИ, 1996 ) Решите систему уравнений sin x = sin y, cos y + cos x sin x = 4. ± 6 + n, 1)k k) ; k, n Z 5. МФТИ, 1996 ) Решите систему уравнений sin x + ) = sin y cos y, 4 sin y + sin x = 4 + sin x. 1) n 1 + n, 4 + 1)k 4 + k) ; k, n Z 6. МФТИ, 1997 ) Решите систему уравнений 9 cos x cos y 5 sin x sin y = 6, 7 cos x cos y sin x sin y = 4. ± n + k, ± 6 + n + k) ; k, n Z 1

Тригонометрические уравнения. 2

Тригонометрические уравнения. 2 И. В. Яковлев Материалы по математике MathUs.ru Тригонометрические уравнения. В статье «Тригонометрические уравнения. 1» мы рассмотрели стандартные методы решения весьма простых тригонометрических уравнений.

Подробнее

Минимаксные задачи в тригонометрии

Минимаксные задачи в тригонометрии И. В. Яковлев Материалы по математике MathUs.ru Минимаксные задачи в тригонометрии В настоящем листке рассматриваются уравнения, для решения которых используются оценки правой и левой частей. Чтобы стало

Подробнее

уч. год. 3, 11 кл. Математика. Тригонометрические уравнения, системы, неравенства. 5. Системы тригонометрических уравнений

уч. год. 3, 11 кл. Математика. Тригонометрические уравнения, системы, неравенства. 5. Системы тригонометрических уравнений 008-009 уч. год., кл. Математика. Тригонометрические уравнения, системы, неравенства. Системы тригонометрических уравнений В этом параграфе мы ограничимся рассмотрением нескольких типов систем тригонометрических

Подробнее

Тригонометрические преобразования и вычисления

Тригонометрические преобразования и вычисления И. В. Яковлев Материалы по математике MathUs.ru Тригонометрические преобразования и вычисления Задачи, связанные с тригонометрическими вычислениями, обычно сводятся к стандартным манипуляциям с тригонометрическими

Подробнее

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год)

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год) Федеральное агентство по образованию Федеральная заочная физико-техническая школа при Московском физико техническом институте (государственном университете) МАТЕМАТИКА Тригонометрические уравнения, системы,

Подробнее

уч. год. 3, 11 кл. Математика. Тригонометрические уравнения, системы, неравенства

уч. год. 3, 11 кл. Математика. Тригонометрические уравнения, системы, неравенства 008-009 уч. год. 3, 11 кл. Математика. Тригонометрические уравнения, системы, неравенства 3. Методы решений некоторых уравнений 3.1. Уравнение вида sin k ± cos m = 0 Также уравнения решаются сведением

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Тригонометрические уравнения

Тригонометрические уравнения И. В. Яковлев, А. Г. Малкова. Подготовка к ЕГЭ по математике. Материалы сайта http://www.ege-study.ru Тригонометрические уравнения В данной статье мы расскажем об основных типах тригонометрических уравнений

Подробнее

Системы алгебраических уравнений

Системы алгебраических уравнений Содержание И. В. Яковлев Материалы по математике MathUs.ru Системы алгебраических уравнений Двойная замена...................................... Симметрические системы.................................

Подробнее

Обратные тригонометрические функции. 2

Обратные тригонометрические функции. 2 И. В. Яковлев Материалы по математике MathUs.ru Обратные тригонометрические функции. Перед этим листком следует повторить статью «Обратные тригонометрические функции.», в которой приводятся определения

Подробнее

Тригонометрические преобразования и вычисления

Тригонометрические преобразования и вычисления И. В. Яковлев Материалы по математике MathUs.ru Тригонометрические преобразования и вычисления Задачи, связанные с тригонометрическими преобразованиями и вычислениями, как правило, не сложны и потому нечасто

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Мы приступаем к изучению тригонометрических уравнений центральной темы всего тригонометрического

И. В. Яковлев Материалы по математике MathUs.ru. Мы приступаем к изучению тригонометрических уравнений центральной темы всего тригонометрического И. В. Яковлев Материалы по математике MathUs.ru Простейшие тригонометрические уравнения Мы приступаем к изучению тригонометрических уравнений центральной темы всего тригонометрического раздела. Пусть a

Подробнее

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год)

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Задание для -х классов (05 06 учебный

Подробнее

Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественнонаучная школа при КрасГУ

Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественнонаучная школа при КрасГУ Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественнонаучная школа при КрасГУ Математика: Модуль для 0 класса Учебно-методическая часть/ Сост:

Подробнее

ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ ТРИГОНОМЕТРИЧЕСКИХ ВЫРАЖЕНИЙ

ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ ТРИГОНОМЕТРИЧЕСКИХ ВЫРАЖЕНИЙ ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ ТРИГОНОМЕТРИЧЕСКИХ ВЫРАЖЕНИЙ Комментарий Цель данного раздела - поработать выполнение заданий на тождественные преобразования тригонометрических выражений, поскольку они встречаются

Подробнее

Тренировочные задачи

Тренировочные задачи И. В. Яковлев Материалы по математике MathUs.ru Тренировочные задачи Симметрия в задачах с параметрами 1. (МГУ, ф-т почвоведения, 001 ) При каких значениях b уравнение имеет ровно один корень? tg b = log

Подробнее

МАТЕМАТИКА ЕГЭ Способы отбора корней в тригонометрических

МАТЕМАТИКА ЕГЭ Способы отбора корней в тригонометрических МАТЕМАТИКА ЕГЭ 0 Отбор корней в тригонометрических уравнениях (типовые задания С) Корянов А Г г Брянск akoryanov@mailru Прокофьев АА г Москва aaprokof@yanderu СОДЕРЖАНИЕ Способы отбора корней в тригонометрических

Подробнее

МАТЕМАТИКА ЕГЭ Способы отбора корней в тригонометрических. Отбор корней в тригонометрических

МАТЕМАТИКА ЕГЭ Способы отбора корней в тригонометрических. Отбор корней в тригонометрических Корянов АГ, Прокофьев АА Отбор корней в тригонометрических уравнениях МАТЕМАТИКА ЕГЭ 0 Отбор корней в тригонометрических уравнениях (типовые задания С) Корянов АГ, г Брянск akoryanov@mailru Прокофьев АА,

Подробнее

c a в Основные тригонометрические тождества sin cos 1 ctg 1 tg sec

c a в Основные тригонометрические тождества sin cos 1 ctg 1 tg sec Занятие. Тригонометрические функции числового аргумента (определение, значения, знаки, чётность, нечётность, периодичность, ограниченность, основные тождества). Формулы приведения. Любой угол измеряется

Подробнее

тригонометрические уравнения (типовые задания 13(С1))

тригонометрические уравнения (типовые задания 13(С1)) тригонометрические уравнения (типовые задания 13(С1)) Отбор корней в тригонометрических уравнениях. (типовые задания С1) СОДЕРЖАНИЕ 1. Способы отбора корней в тригонометрических ур-ях. 1 2. Отбор общих

Подробнее

Инвариантность и задачи с параметрами

Инвариантность и задачи с параметрами Инвариантность и задачи с параметрами Г.И. Фалин, А.И. Фалин МГУ им.м.в.ломоносова http://mech.math.msu.su/ falin 1 Введение В современной математике важную роль играет понятие инвариантности, т.е. неизменности

Подробнее

Урок алгебры в 10 классе. Тема урока: Способы решения тригонометрических уравнений. Цель урока: Обобщение и систематизация знаний учащихся по теме.

Урок алгебры в 10 классе. Тема урока: Способы решения тригонометрических уравнений. Цель урока: Обобщение и систематизация знаний учащихся по теме. Урок алгебры в 10 классе Тема урока: Способы решения тригонометрических уравнений Цель урока: Обобщение и систематизация знаний учащихся по теме. Задачи урока: 1) Образовательные - Расширить и углубить

Подробнее

Исследование тригонометрических функций

Исследование тригонометрических функций И. В. Яковлев Материалы по математике MthUs.ru Исследование тригонометрических функций Напомним, что функция fx) называется периодической, если существует такое число T 0, что для любого x из области определения

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова. Галеев Э. М., Галеева А.Э. Подготовка к вступительным экзаменам

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова. Галеев Э. М., Галеева А.Э. Подготовка к вступительным экзаменам МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова Галеев Э. М., Галеева А.Э. Подготовка к вступительным экзаменам по математике в МГУ и ЕГЭ типы задач и методы их решений Часть Тригонометрия

Подробнее

уч. год. 1, 11 кл. Математика. Алгебраические уравнения, неравенства, системы уравнений и неравенств.

уч. год. 1, 11 кл. Математика. Алгебраические уравнения, неравенства, системы уравнений и неравенств. - уч год кл Математика Алгебраические уравнения неравенства системы уравнений и неравенств Системы уравнений Самым распространенным методом решений систем является метод последовательного исключения неизвестных:

Подробнее

Тригонометрические уравнения. Подготовка к ЕГЭ (задание 9; 13; 18) Тема: Преобразование тригонометрических выражений. Тригонометрический круг

Тригонометрические уравнения. Подготовка к ЕГЭ (задание 9; 13; 18) Тема: Преобразование тригонометрических выражений. Тригонометрический круг Тема: Преобразование тригонометрических выражений Тригонометрические уравнения Подготовка к ЕГЭ (задание 9; ; 8) Тригонометрический круг Основные тригонометрические формулы sin cos tg cos sin sin cos sin

Подробнее

ТРИГОНОМЕТРИЯ Н.В. ЛАТЫПОВА

ТРИГОНОМЕТРИЯ Н.В. ЛАТЫПОВА ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ДЕТЕЙ "ЦЕНТР

Подробнее

Учебный центр «Резольвента»

Учебный центр «Резольвента» ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 509-8-0 Учебный центр «Резольвента» К. Л. САМАРОВ, С.С. САМАРОВА ТРИГОНОМЕТРИЯ В ЕГЭ ПО МАТЕМАТИКЕ Учебно-методическое пособие для подготовки

Подробнее

Корянов А.Г., Прокофьев А.А. Отбор корней в тригонометрических уравнениях

Корянов А.Г., Прокофьев А.А. Отбор корней в тригонометрических уравнениях Корянов АГ, Прокофьев АА Отбор корней в тригонометрических уравнениях 00 ФДП МАТЕМАТИКА ЕГЭ 0 Отбор корней в тригонометрических уравнениях (типовые задания С) Корянов Анатолий Георгиевич, методист по математике,

Подробнее

Тема 5 Рациональные системы уравнений

Тема 5 Рациональные системы уравнений Тема 5 Рациональные системы уравнений F ( x, x,..., ) 0, F ( x, x,..., ) 0, Система уравнений вида где... Fk ( x, x,..., ) 0, F i( x, x,..., ), i,..., k, некоторые многочлены, называется системой рациональных

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

Иррациональные неравенства

Иррациональные неравенства Содержание И. В. Яковлев Материалы по математике MathUs.ru Иррациональные неравенства Учёт ОДЗ.......................................... Равносильные преобразования.............................. Двукратное

Подробнее

Математика АРИФМЕТИКА. Действия с натуральными числами и обыкновенными дробями. 4. Техника обращения неправильной дроби в смешанное число

Математика АРИФМЕТИКА. Действия с натуральными числами и обыкновенными дробями. 4. Техника обращения неправильной дроби в смешанное число АРИФМЕТИКА Действия с натуральными числами и обыкновенными дробями. Порядок действий ) Если нет скобок, то сначала выполняются действия -й степени (возведение в натуральную степень), затем -й степени (умножение

Подробнее

URSS. Содержание. От автора... 4 Раздел 1. Метод функциональной подстановки... 5 Раздел 2. Метод тригонометрической подстановки...

URSS. Содержание. От автора... 4 Раздел 1. Метод функциональной подстановки... 5 Раздел 2. Метод тригонометрической подстановки... Содержание От автора... Раздел. Метод функциональной подстановки... 5 Раздел. Метод тригонометрической подстановки... Раздел. Методы, основанные на использовании численных неравенств... 6 Раздел. Методы,

Подробнее

ОТВЕТЫ ,5-0, arcsin ,

ОТВЕТЫ ,5-0, arcsin , АЛГЕБРА И НАЧАЛА АНАЛИЗА, класс Ответы и критерии, Апрель ОТВЕТЫ Вариант/ задания А А В В В В4 В5 С 6,5-4 8 arcsin 4 4,5 -,8 arcsin + k, 4,5 8-6 arccos 5 4 4,5, 5 arc tg9 + k, 5 4, -,4 6 6 8-7,5 7 6 855,4

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

Доклад по теме: Решение задач с параметрами при подготовке к ЕГЭ по математике

Доклад по теме: Решение задач с параметрами при подготовке к ЕГЭ по математике Доклад по теме: задач с параметрами при подготовке к ЕГЭ по математике Выполнила Яценко Ирина Алексеевна Учитель математики МОУ СОШ 16 г. Щелково Щелково 2011 г. Содержание Знакомство с параметрами...

Подробнее

Баллы 0-4 5 6-7 8-9 Оценка «2» «3» «4» «5»

Баллы 0-4 5 6-7 8-9 Оценка «2» «3» «4» «5» МАТЕМАТИКА, класс Ответы и критерии, Ноябрь 0 Вариант/ задания ОТВЕТЫ В В В В В В В7 С 90, 0 0 0,8 0, arcsi 7, 00 0-0, +, +, ( + +, 0-0, 0, 9 Отрезку принадлежат корни 78,8 79 700 9, - 0, 0, arccos 8 7,

Подробнее

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений».

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений». Тема 14 «Алгебраические уравнения и системы нелинейных уравнений» Многочленом степени n называется многочлен вида P n () a 0 n + a 1 n-1 + + a n-1 + a n, где a 0, a 1,, a n-1, a n заданные числа, a 0,

Подробнее

l : y y 0 = f (x 0 )(x x 0 ). n : y y 0 = 1 f (x 0 ) (x x 0). y (n) = y (n 1)) dx n.

l : y y 0 = f (x 0 )(x x 0 ). n : y y 0 = 1 f (x 0 ) (x x 0). y (n) = y (n 1)) dx n. Занятие 4 Вычисление производных-1 4.1 Определение производной Производной функции y = f(x) в точке x 0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента

Подробнее

71 Тригонометрические уравнения и неравенства

71 Тригонометрические уравнения и неравенства 7 Тригонометрические уравнения и неравенства Комментарий Устойчивым является заблуждение абитуриентов о том что при решении тригонометрических уравнений не нужна проверка Это так далеко не всегда При решении

Подробнее

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА Пензенский государственный университет Физико-математический факультет «Очно-заочная физико-математическая школа» МАТЕМАТИКА Тождественные преобразования. Решение уравнений. Треугольники Задание 1 для

Подробнее

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год)

МАТЕМАТИКА. Тригонометрические уравнения, системы, неравенства. Задание 3 для 11-х классов. ( учебный год) Министерство образования и науки Российской Федерации Федеральная заочная физико-техническая школа при Московском физико-техническом институте (государственном университете) МАТЕМАТИКА Тригонометрические

Подробнее

Образовательный портал «Физ/Мат класс» МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ

Образовательный портал «Физ/Мат класс» МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ wwwfmclassru МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ Анализ величин, использование формул а) Сравните числа 6 6 и 5 7 5 4 8 6 б) Сравните числа ( + )( + )( + )( + )( + ) и 999 999 999 в) Сравните числа si0 cos0 и si 40

Подробнее

Тема 12 «Системы двух уравнений с двумя неизвестными».

Тема 12 «Системы двух уравнений с двумя неизвестными». Тема 1 «Системы двух уравнений с двумя неизвестными». Системой уравнений называется некоторое количество уравнений, которые должны выполняться одновременно. Решением системы уравнений с двумя переменными

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Уравнения с модулем

И. В. Яковлев Материалы по математике MathUs.ru. Уравнения с модулем И В Яковлев Материалы по математике MathUsru Содержание Уравнения с модулем 1 Определение модуля 1 Замена переменной 3 Перебор промежутков Равносильные переходы 5 5 Задачи 6 В данной статье мы изучаем

Подробнее

Подготовка к вступительным экзаменам

Подготовка к вступительным экзаменам МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова Галеев Э. М. Подготовка к вступительным экзаменам по математике в МГУ и ЕГЭ (типы задач и методы их решений) Часть Тригонометрические уравнения

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

2-е занятие. Показательная форма комплексного числа Матем. анализ, прикл. матем., 4-й семестр

2-е занятие. Показательная форма комплексного числа Матем. анализ, прикл. матем., 4-й семестр стр. 1 из 14 2-е занятие. Показательная форма комплексного числа Матем. анализ, прикл. матем., 4-й семестр A1 Найти модули и аргументы следующих комплексных чисел и записать эти числа в форме z = ρe iϕ,

Подробнее

УРАВНЕНИЯ И НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

УРАВНЕНИЯ И НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ С Шестаков, М Галицкий, Москва УРАВНЕНИЯ И НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов

Подробнее

cos t = Re(e it ); sin t = Im(e it ): cos x = 1 x2 2! + x 4 4! x 6 7 sin x = x x3 3! + x 5! x n E n) = cos x; n E n) = sin x: cos x = lim

cos t = Re(e it ); sin t = Im(e it ): cos x = 1 x2 2! + x 4 4! x 6 7 sin x = x x3 3! + x 5! x n E n) = cos x; n E n) = sin x: cos x = lim 4. Тригонометрия Теперь все готово для того, чтобы дать строгие определения тригонометрических функций. На первый взгляд они, видимо, покажутся довольно странными; тем не менее мы покажем, что определенные

Подробнее

Показательные, логарифмические уравнения и неравенства, метод потенциирования и логарифмирования в решении задач.

Показательные, логарифмические уравнения и неравенства, метод потенциирования и логарифмирования в решении задач. Московский физико-технический институт Показательные, логарифмические уравнения и неравенства, метод потенциирования и логарифмирования в решении задач. Методическое пособие по подготовке к олимпиадам.

Подробнее

Иррациональные уравнения и неравенства 3

Иррациональные уравнения и неравенства 3 Иррациональные уравнения и неравенства Оглавление 4 Метод исключения радикалов в иррациональном уравнении умножением на сопряженный множитель Задание 7 4 5 Выделение полного квадрата (квадрата двучлена)

Подробнее

Готовим к ЕГЭ хорошистов и отличников

Готовим к ЕГЭ хорошистов и отличников А.Г. КОРЯНОВ, А.А. ПРОКОФЬЕВ Готовим к ЕГЭ хорошистов и отличников Лекции Москва Педагогический университет «Первое сентября» 0 Анатолий Георгиевич Корянов, Александр Александрович Прокофьев Материалы

Подробнее

2. Действия над комплексными числами

2. Действия над комплексными числами Действия над комплексными числами Словарь: произведение комплексных чисел комплексная плоскость радиус-вектор формула Муавра Обратите внимание: Действия (над чем? над числами Извлечение (чего? корня Действия

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Н.Е. ДЕМИДОВА ОСНОВЫ ТРИГОНОМЕТРИИ. Учебное пособие для иностранных граждан

Н.Е. ДЕМИДОВА ОСНОВЫ ТРИГОНОМЕТРИИ. Учебное пособие для иностранных граждан НЕ ДЕМИДОВА ОСНОВЫ ТРИГОНОМЕТРИИ Учебное пособие для иностранных граждан Министерство образования и науки Российской Федерации Федеральное государственное образовательное бюджетное учреждение высшего профессионального

Подробнее

ФДП МАТЕМАТИКА ЕГЭ 2012

ФДП МАТЕМАТИКА ЕГЭ 2012 Корянов АГ, Прокофьев АА Тригонометрические уравнения: методы решений и отбор корней ФДП МАТЕМАТИКА ЕГЭ 0 Тригонометрические уравнения: методы решений и отбор корней (типовые задания С) Прокофьев АА, СОДЕРЖАНИЕ

Подробнее

Математика 8 класс Многочлены

Математика 8 класс Многочлены МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 8 класс Многочлены Новосибирск Многочлены Рациональными

Подробнее

ОТВЕТЫ НОРМЫ ВЫСТАВЛЕНИЯ ОЦЕНОК

ОТВЕТЫ НОРМЫ ВЫСТАВЛЕНИЯ ОЦЕНОК АЛГЕБРА И НАЧАЛА АНАЛИЗА, 0 класс Ответы и критерии, Январь 0 Вариант/ ОТВЕТЫ задания А А В В В В4 В С 4 00 00 0-0, 0, arcsin + πk, 9 0-0, 0, arccos + πk, πk, 000 0000-0, - 0, arcsin + πk, 4 4 49,6 4000-0,

Подробнее

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ. Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ. Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ на проведение практических занятий по теме «Интегральное исчисление» Кривулин Н.П., Мойко Н.В. г. Пенза

Подробнее

Глава 6 КООРДИНАТЫ И ВЕКТОРЫ

Глава 6 КООРДИНАТЫ И ВЕКТОРЫ Глава 6 КООРДИНАТЫ И ВЕКТОРЫ 6.1. КООРДИНАТЫ И ВЕКТОРЫ НА ПРЯМОЙ 6.1.1. Координатная ось. Координата точки на оси. Длина отрезка с заданными координатами концов. Координата точки, делящей отрезок в заданном

Подробнее

Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: В.П.Белкин

Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: В.П.Белкин Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: ВПБелкин Лекция Неопределенный интеграл Основные понятия Свойства неопределенного интеграла 3 Основная таблица первообразных 3 4 Типовые примеры 3 5 Простейшие

Подробнее

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ Указания, решения, ответы УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ. Уравнение с одной неизвестной.. Решение. Подставим в уравнение. Получим равенство ( 4a b 4) (a b 8) 0. Равенство A B 0, где А и В целые, выполняется,

Подробнее

Математика. Собрание заданий (09 апреля 2013).

Математика. Собрание заданий (09 апреля 2013). Математика Собрание заданий (09 апреля 013) Задачи с параметром-1 Задача 1 (006 г, Тихов МС, Авдонин АА) Найти все значения параметра a, при каждом из которых система 3 x + ( a 4) x + (5 3 a) x + a 0 (1)

Подробнее

Иррациональные уравнения и неравенства 2

Иррациональные уравнения и неравенства 2 Иррациональные уравнения и неравенства Оглавление Иррациональные уравнения Метод возведения обеих частей уравнения в одну и ту же степень Задание Задание Задание Замена иррационального уравнения смешанной

Подробнее

lim ПРЕДЕЛ ФУНКЦИИ Методические указания

lim ПРЕДЕЛ ФУНКЦИИ Методические указания Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) ПРЕДЕЛ ФУНКЦИИ Методические

Подробнее

,, -- данные углы. Так как все они положительны, а сумма. + ) = sin cos + cos sin < cos + cos, а значит cos cos + cos.

,, -- данные углы. Так как все они положительны, а сумма. + ) = sin cos + cos sin < cos + cos, а значит cos cos + cos. Задача 1 Сумма трѐх положительных углов равна 90 o. Может ли сумма косинусов двух из них быть равна косинусу третьего? Пусть,, -- данные углы. Так как все они положительны, а сумма равна 90 o, все они

Подробнее

Инструкция к практическому занятию: Решение однородных тригонометрических уравнений

Инструкция к практическому занятию: Решение однородных тригонометрических уравнений Молодечненский государственный политехнический техникум Инструкция к практическому занятию: Решение однородных тригонометрических уравнений Разработчик: И. А. Кочеткова, Ж. И. Тимошко Цель работы: 1) Повторить

Подробнее

13. ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ. 1. Интегрирование произведения синусов и косинусов различных аргументов

13. ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ. 1. Интегрирование произведения синусов и косинусов различных аргументов ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ Интегрирование произведения синусов и косинусов различных аргументов Тригонометрические формулы k m [ ( m k ( m k ], ( k m [ ( m k ( m k ], ( k m [ ( m k ( m k

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение дополнительного образования детей «Заочная физико-техническая школа Московского физико-технического

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений.

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Линейные уравнения с одной переменной Введение Никита Саруханов 7й класс Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько

Подробнее

ЗАНЯТИЕ 8 СООТНОШЕНИЯ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА. ТРИГОНОМЕТРИЧЕСКИЕ ПОДСТАНОВКИ.

ЗАНЯТИЕ 8 СООТНОШЕНИЯ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА. ТРИГОНОМЕТРИЧЕСКИЕ ПОДСТАНОВКИ. 7 ( ; 8 ЗАНЯТИЕ 8 СООТНОШЕНИЯ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА ТРИГОНОМЕТРИЧЕСКИЕ ПОДСТАНОВКИ Необходимые сведения из теории Тригономе трия (от греч trigonon треугольник,

Подробнее

9. Первообразная и неопределенный интеграл

9. Первообразная и неопределенный интеграл 9. Первообразная и неопределенный интеграл 9.. Пусть на промежутке I R задана функция f(). Функцию F () называют первообразной функции f() на промежутке I, если F () = f() для любого I, и первообразной

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

Симметрия в задачах с параметрами

Симметрия в задачах с параметрами И. В. Яковлев Материалы по математике MathUs.ru Симметрия в задачах с параметрами Симметрия одно из ключевых понятий математики и физики. Вы знакомы с геометрической симметрией фигур и вообще различных

Подробнее

Перечень вопросов для подготовки к экзамену по дисциплине Математика

Перечень вопросов для подготовки к экзамену по дисциплине Математика Перечень вопросов для подготовки к экзамену по дисциплине Математика Курс I Семестр Профессия.0.0. Автомеханик. Иррациональные уравнения. х х. х х. х х. х 7 7 х. х х 0. х х. х х. х 8 х. х х. 7 х х. х х

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Замена переменной

И. В. Яковлев Материалы по математике MathUs.ru. Замена переменной И В Яковлев Материалы по математике MathUsru Содержание Замена переменной Предварительные преобразования Симметрические уравнения 3 3 Однородные уравнения 4 4 Замена в биномах 4 5 Задачи 5 В ряде случаев

Подробнее

ОТВЕТЫ ,5 0,4 ( 1) ,6 ( )

ОТВЕТЫ ,5 0,4 ( 1) ,6 ( ) МАТЕМАТИКА, 0 класс Ответы и критерии, Январь 0 Вариант/ ОТВЕТЫ задания В В В В В5 В6 В7 С 57 0, ; ; ; k 560 5,5 0, ( ) arccos + k, 96 0 0,6 ( ) 900 9 6 0,75 5 500 9 5 0,5 6 79 8,5 0,6 7 05,9 7 8 0,5 (

Подробнее

Дистанционная подготовка Abitu.ru МАТЕМАТИКА. Статья 3. Системы уравнений.

Дистанционная подготовка Abitu.ru МАТЕМАТИКА. Статья 3. Системы уравнений. Дистанционная подготовка Abituru МАТЕМАТИКА Статья 3 Системы уравнений Теоретический материал Методы решения систем уравнений 1 Метод подстановки Этот метод заключается в том, что из одного любого уравнения

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 1 Линейная алгебра Решить матричное уравнение ( ( 3 1 2 1 X + 2 4 2 3 3 ( 1 0 = 3 2 3 Выполним вначале умножение матриц на

Подробнее

Простейшие неопределенные интегралы

Простейшие неопределенные интегралы Простейшие неопределенные интегралы Примеры решения задач Следующие интегралы сводятся к табличным путем тождественного преобразования подынтегрального выражения. 1. dx = dx = 2x 2/3 /3 + 2x 1/2 + C. >2.

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

МАВ(С)ОУ «ЦО 1» Математика. 10 класс. Тригонометрия. ЗАЧЁТ 1, 2 Таблицы, контрольные работы, зачёты

МАВ(С)ОУ «ЦО 1» Математика. 10 класс. Тригонометрия. ЗАЧЁТ 1, 2 Таблицы, контрольные работы, зачёты МАВ(С)ОУ «ЦО 1» Математика 1 класс Тригонометрия ЗАЧЁТ 1, Таблицы, контрольные работы, зачёты Учитель Немова Н.М. Первая квалификация 15 уч г Пояснительная записка. Данный дидактический материал предназначен

Подробнее

Электронное методическое пособие для выполнения домашнего задания

Электронное методическое пособие для выполнения домашнего задания Действия с дробями: Электронное методическое пособие для выполнения домашнего задания Домашнее задание. «Преобразования степенны и иррациональны выражений. Вычисление значений числовы выражений» Формулы

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Дифференциальные уравнения высших порядков, допускающие понижение порядка Занятие 13 Дифференциальные уравнения высших порядков, допускающие понижение порядка 13.1 Задача и теорема Коши Задачей Коши для дифференциального уравнения порядка n, разрешённого относительно старшей

Подробнее

УЧЕБНО - МЕТОДИЧЕСКИЙ КОМПЛЕКС Элементарная математика и практикум по решению задач. Тригонометрия

УЧЕБНО - МЕТОДИЧЕСКИЙ КОМПЛЕКС Элементарная математика и практикум по решению задач. Тригонометрия УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «Брестский государственный университет имени А.С. Пушкина» Т. В. Пивоварук УЧЕБНО - МЕТОДИЧЕСКИЙ КОМПЛЕКС Элементарная математика и практикум по решению задач. Тригонометрия для

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее

СПРАВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПОДГОТОВКИ К ЕГЭ ПО МАТЕМАТИКЕ ЗАДАНИЯ B7: ВЫЧИСЛЕНИЯ И ПРЕОБРАЗОВАНИЯ

СПРАВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПОДГОТОВКИ К ЕГЭ ПО МАТЕМАТИКЕ ЗАДАНИЯ B7: ВЫЧИСЛЕНИЯ И ПРЕОБРАЗОВАНИЯ Сайт элементарной математики Дмитрия Гущина wwwthetspru Гущин Д Д СПРАВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПОДГОТОВКИ К ЕГЭ ПО МАТЕМАТИКЕ ЗАДАНИЯ B7: ВЫЧИСЛЕНИЯ И ПРЕОБРАЗОВАНИЯ Проверяемые элементы содержания и виды

Подробнее

Уравнения и неравенства с модулем

Уравнения и неравенства с модулем И В Яковлев Материалы по математике MathUsru Уравнения и неравенства с модулем В данной статье мы рассмотрим алгебраические уравнения и неравенства с модулем и изучим основные приёмы избавления от модуля

Подробнее

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Глава 3 УРАВНЕНИЯ И НЕРАВЕНСТВА. ЦЕЛОЧИСЛЕННАЯ МАТЕМАТИКА

Глава 3 УРАВНЕНИЯ И НЕРАВЕНСТВА. ЦЕЛОЧИСЛЕННАЯ МАТЕМАТИКА Глава 3 УРАВНЕНИЯ И НЕРАВЕНСТВА. ЦЕЛОЧИСЛЕННАЯ МАТЕМАТИКА 3.. УРАВНЕНИЯ n-й СТЕПЕНИ 3... Уравнение n-й степени. Исключение слагаемых (n )-й степени. Понижение степени уравнения с известным корнем (случай

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Часть 3. «Математика, естественные и технические науки: методика и практика преподавания, теоретические и экспериментальные исследования»

Часть 3. «Математика, естественные и технические науки: методика и практика преподавания, теоретические и экспериментальные исследования» «Вестник ЦМО МГУ», 006 г., 6 Часть. «Математика, естественные и технические науки: методика и практика преподавания, теоретические и экспериментальные исследования» МЕТОДИКА И ПРАКТИКА ПРЕПОДАВАНИЯ ЕСТЕСТВЕННО-НАУЧНЫХ

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Решение уравнений в целых числах

Решение уравнений в целых числах Решение уравнений в целых числах Линейные уравнения. Метод прямого перебора Пример. В клетке сидят кролики и фазаны. Всего у них 8 ног. Узнать сколько в клетке тех и других. Укажите все решения. Решение.

Подробнее