Пусть дана числовая последовательность. Определение Числовым рядом называется выражение следующего вида: ... a n

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Пусть дана числовая последовательность. Определение Числовым рядом называется выражение следующего вида: ... a n"

Транскрипт

1 Тема 9

2 Пусть дана числовая последовательность { } {, 2,..., 1...}. Определение Числовым рядом называется выражение следующего вида: Упрощенно : ряд это «бесконечная» сумма.

3 { } Вместе с последовательностью будем рассматривать числовую последовательность { S }, которая строится следующим образом: S S S... S , Эта последовательность называется последовательностью частичных сумм ряда 2 2, 3,,

4 Если предел последовательности { S } существует и конечен, то он называется суммой ряда: lim S S В оставшихся двух ситуациях - когда предел бесконечен или вообще не существует, ряд называется расходящимся. Понятие суммы для расходящегося ряда не определяется. 1 S

5 1. Геометрическая прогрессия и q 0 1 } { bq }, где b 0 Если q=1, то частичная сумма равна b, т.е. неограничена и ряд расходится. Если q=-1, то частичная сумма равна 0 или b, т.е. предел не существует и ряд расходится. Если q 1, тогда 1 b(1 q S b b q... b q 1 q { ). lim S b 1 q lim(1 q ), если q b, если 1 q 1 q 1 ряд расходится, ряд сходится.

6 Можно ли, не составляя последовательности частичных сумм, исследовать сходимость числового ряда? Это можно сделать, используя различные признаки сходимости и сравнения рядов. Главный их них называется необходимым условием сходимости: lim 0

7 lim 0 Если для числового ряда или такого предела вообще не существует, то ряд расходится. В такой формулировке необходимое условие сходимости ряда lim 0 равносильно достаточному условию расходимости ряда.

8 Простейшие свойства числовых рядов. 1. Суммой (разностью) рядов и b называется ряд вида. Если ряды и b сходятся к суммам A и B cоответственно, то сумма и разность этих рядов тоже сходится к суммам A ± B соответственно. 2. Ряд ( 1 1 b ) 1 по определению совпадает с рядом,т.е. при умножении ряда на константу, 1 C C 1 не равную нулю, сходимость (расходимость) не нарушается

9 Простейшие свойства числовых рядов. 3. Если в ряде отбросить конечное число членов (добавить конечное число членов), то ни сходимость, ни расходимость ряда при этом не нарушится. 4. Если ряд 1 сходится к сумме A, то члены этого ряда можно произвольно сгруппировать, не меняя порядка следования. При этом полученный в результате ряд сходится к той же сумме.

10 Признак сравнения в форме неравенства. Пусть даны два знакоположительных ряда 1 и, 1 b N причем для любого номера и -ые члены рядов связаны неравенством. 0 b Тогда из сходимости «большего» ряда следует сходимость «меньшего» ряда, а из расходимости «меньшего» ряда следует расходимость «большего» ряда.

11 Признак сравнения в форме неравенства. «Больший ряд» называется мажорирующим рядом, а «меньший» мажорируемым. Поэтому признак может быть сформулирован как: Из сходимости мажорирующего ряда следует сходимость мажорируемого ряда, и, наоборот, из расходимости мажорируемого ряда следует расходимость мажорирующего ряда.

12 Пример l 1. Исследовать сходимость числового ряда. Сравним данный ряд с гармоническим рядом. Очевидно, что l для любого 2. Значит 1 1 l Так как гармонический ряд расходится, то, по признаку сравнения, ряд 1 тоже расходится. 2 l

13 Признак сравнения в предельной форме. Пусть даны два знакоположительных ряда 1 1 b и. Если существует предел lim l 0 b, то оба ряда сходятся или расходятся одновременно. В частности, если lim 1 b, т.е. ~ b при, то в смысле сходимости оба ряда ведут себя одинаково.

14 Пример Исследовать сходимость числового ряда Так как т.е. сравниваем данный ряд с гармоническим рядом и ряд расходится ~ , если

15 Пример Исследовать сходимость числового ряда, если Так как т.е. сравниваем данный ряд с геометрической прогрессией с знаменателем 1/7, т.е. ряд сходится l10 1)!) ( 2 ( rctg q b rctg ) 7 1 ( / ~ 7 3 l10 1)!) ( 2 (

16 Признак Д Аламбера Пусть для знакоположительного ряда вует предел Тогда: 1) если l 1 lim 1, ряд расходится; 2) если l 1, ряд сходится. В случае l 1 возможна как сходимость, так и расходимость ряда. l 1 сущест-

17

18

19

20 Радикальный признак Коши Пусть для знакоположительного ряда вует предел Тогда: 1) если l 1 lim, ряд расходится; 2) если l 1, ряд сходится. В случае l 1 возможна как сходимость, так и расходимость ряда. l 1 сущест-

21 Замечания. Из теории последовательностей известно, что если для последовательности существует предел 1 lim l, то существует и предел lim l Поэтому, если в результате применения признака Даламбера окажется, что предел равен 1, то и предел из признака Коши тоже равен 1. Однако, в определенном смысле признак Коши сильнее признака Даламбера.

22

23 Интегральный признак сходимости Коши- Маклорена Если для знакоположительного ряда существует такая неотрицательная, непрерывная, монотонно убывающая функция f (x), определенная на промежутке [ 1, ), для которой f ( ) N для любого, то исследуемый ряд сходится в том и только том случае, когда сходится несобственный интеграл. 1 f ( x) dx 1

24

25


Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида:

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида: Тема 9 Определение Числовым рядом называется выражение следующего вида: a 1 a2 a3... a... a Если предел последовательности последовательностью частичных сумм ряда. lim S S 1 Необходимое условие сходимости:

Подробнее

Третий семестр. Лектор: Князева Людмила Павловна

Третий семестр. Лектор: Князева Людмила Павловна Третий семестр Лектор: Князева Людмила Павловна Темы: Наименование раздела, темы Всего аудиторных часов Лекции, часы Практически е занятия, часы 1 2 3 4 Тема 1. Аналитическая геометрия и линейная алгебра

Подробнее

Лекция 2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши

Лекция 2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши Лекция. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши.. Ряды Дирихле и их сходимость, гармонический ряд Определение. Числовой ряд вида

Подробнее

Задача Первая теорема сравнения

Задача Первая теорема сравнения Первая теорема сравнения Постановка задачи: Исследовать сходимость ряда с неотрицательными членами где = f(, u (), u 2 (),...) и u (), u 2 (),...- функции с известными наименьшими и наибольшими значениями,

Подробнее

Лекция 1. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши

Лекция 1. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши Лекция. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши.. Некоторые сведения о последовательностях Пусть каждому значению N поставлено в соответствие

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными {основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными членами признак Даламбера, признак Коши, интегральный

Подробнее

n =1,2, K. Ряд называют

n =1,2, K. Ряд называют 2. Признаки сходимости знакоположительных рядов Ряд u называют знакоположительным, если все его члены неотрицательны, т.е. если u 0 для любого,2, K. Ряд называют знакоотрицательным, если все его члены

Подробнее

Числовые ряды. Лекции 6-7

Числовые ряды. Лекции 6-7 Числовые ряды Лекции 6-7 Понятие числового ряда Аналитическое выражение вида, a a2 a a a, a, a, где 2 последовательность чисел членов ряда, выражение a - называется общим членом ряда. Последовательность

Подробнее

Цель работы: исследование числового ряда на сходимость.

Цель работы: исследование числового ряда на сходимость. Практическая работа 0 Сходимость числовых рядов с положительными членами. Цель работы: исследование числового ряда на сходимость. Содержание работы. Основные понятия. Сумма членов бесконечной числовой

Подробнее

1. Числовые ряды, основные понятия.

1. Числовые ряды, основные понятия. Числовой ряд. Числовые ряды, основные понятия. () называется сходящимся, если его частичная сумма (2) имеет конечный предел Тогда называется суммой ряда, а разность lim. (3) (4) называют остатком ряда.

Подробнее

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2 Содержание Числовые ряды. Основные понятия 2 Необходимый признак сходимости ряда 3 Простейшие свойства числовых рядов 2 4 Знакоположительные ряды 3 5 Знакочередующиеся ряды 9 6 Знакопеременные ряды 0 7

Подробнее

Определение 1. Наибольший из частных пределов последовательности называется верхним пределом последовательности и обозначается

Определение 1. Наибольший из частных пределов последовательности называется верхним пределом последовательности и обозначается Глава. РЯДЫ. Понятия верхнего и нижнего пределов последовательности Пусть дана ограниченная числовая последовательность ( ) (все её члены заключены на числовой прямой между числами а и b), т.е. По теореме

Подробнее

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности.

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности. Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =,, х =,,,,,,,,

Подробнее

Комплексный анализ Последовательности и ряды комплексных чисел

Комплексный анализ Последовательности и ряды комплексных чисел Комплексный анализ Последовательности и ряды комплексных чисел Никита Александрович Евсеев Физичеcкий факультет Новосибирского государственного университета Китайско-российский институт Хэйлунцзянского

Подробнее

a......, a,... называют членами...

a......, a,... называют членами... РЯДЫ Числовые ряды Основные понятия числового Пусть дана последовательность вещественных или комплексных чисел Числовым рядом называется сумма всех членов числовой последовательности: Числа,,,, называют

Подробнее

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности Глава Ряды Формальная запись суммы членов некоторой числовой последовательности Числовые ряды называется числовым рядом Суммы S, называются частичными суммами ряда Если существует предел lim S, S то ряд

Подробнее

Глава 6 Числовые ряды

Глава 6 Числовые ряды Глава 6 Числовые ряды Определение числового ряда и основные теоремы Определение : Последовательностью действительных чисел называется функция f, определённая на множестве всех натуральных чисел Число f

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд 3. Признаки сходимости знакопеременных рядов Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд Ряд u, не являющийся знакоположительным или знакоотрицательным

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

Несобственные интегралы 1.Определения, теоремы и формулы для решения задач.

Несобственные интегралы 1.Определения, теоремы и формулы для решения задач. Несобственные интегралы.определения, теоремы и формулы для решения задач. Интегралы с бесконечными пределами и интегралы от неограниченных функций называются несобствнными интегралами I и II рода соответственно.

Подробнее

Теорема 2.7. (Обобщенный признак Коши). Если существует верхний предел lim n a, то при 1. ряд расходится. Пример 14. Исследуем на сходимость ряд

Теорема 2.7. (Обобщенный признак Коши). Если существует верхний предел lim n a, то при 1. ряд расходится. Пример 14. Исследуем на сходимость ряд Теорема.7. (Обобщенный признак Коши). Если существует верхний предел lim a, то при ряд сходится, а при ряд расходится. ( ) Пример 4. Исследуем на сходимость ряд. 4 Первая мысль при рассмотрении данного

Подробнее

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости). «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

1. Числовые ряды. результату одно следующее число, мы будем получать частичные суммы: 1 ; ; ; ;...

1. Числовые ряды. результату одно следующее число, мы будем получать частичные суммы: 1 ; ; ; ;... ЛЕКЦИЯ N25. Числовые ряды. Сходимость и сумма ряда. Необходимый признак сходимости рядов с положительными членами. Достаточные признаки сходимости знакоположительных рядов..числовые ряды 2.Основные теоремы....

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Типовой расчет по математическому анализу Контрольные задания по теме Ряды Задание. Найти сумму числового ряда ) ) = + + ( )( 5) + ) ( ) = 5 = Решение ) 5 ( ) + + = = = = + + 5 + + 5 + + 5 + + 5

Подробнее

Сходимость знакопеременных числовых рядов

Сходимость знакопеременных числовых рядов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Сходимость знакопеременных числовых рядов Числовой ряд u, в котором имеется бесконечно много как положительных, так = и отрицательных элементов, называется числовым рядом с произвольными

Подробнее

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8 Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция. Определение ряда, свойства, критерий Коши сходимости ряда. Сравнение положительных рядов. Достаточные признаки сходимости Даламбера, Коши, Коши-Адамара, Раабе,

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций

3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций 3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций Рассмотрим два знака менительно к несобственным интегралом с бесконечным верхним пределом. Аналогичные знаки имеют

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г.

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. Замечание. 1) вопросы, не содержащие доказательства; ) вопросы, с серьезным доказательством; 3) вопросы с небольшим

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК О. В. Исакова Л. А. Сайкова М.Д. Улымжиев УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ

Подробнее

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ Учебно-методическое пособие КАЗАНЬ 008 Печатается по решению секции Научно-методического совета Казанского университета

Подробнее

Тема: Несобственные интегралы

Тема: Несобственные интегралы Математический анализ Раздел: Определенный интеграл Тема: Несобственные интегралы Лектор Рожкова С.В. 23 г. 5. Несобственные интегралы Для существования необходимы условия: [;] конечен, 2 f ограничена

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды Числовые и функциональные ряды. Числовые ряды: основные понятия и свойства.. Определение числового ряда и его суммы. Пусть задана бесконечная последовательность чисел ) u, u, K, u,k. (.) (Напомним, что

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

Тема: Числовые последовательности

Тема: Числовые последовательности Математический анализ Раздел: Введение в анализ Тема: Числовые последовательности (основные определения, предел последовательности, свойства сходящихся последовательностей) Лектор Пахомова Е.Г. 2012 г.

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста)

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный университет путей сообщения»

Подробнее

Санкт-Петербургский государственный университет Кафедра математического анализа

Санкт-Петербургский государственный университет Кафедра математического анализа Санкт-Петербургский государственный университет Кафедра математического анализа МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по математическому анализу Часть 2 Числовые ряды М. Г. Голузина,

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Министерство образования Российской Федерации МАТИ Российский государственный технологический университет им.к.э.циолковского Кафедра «Высшая математика» ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Варианты курсовых

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

2. Степенные ряды. 1. Определения, теоремы и формулы для решения задач. Теорема. (теорема Абеля). Если степенной ряд

2. Степенные ряды. 1. Определения, теоремы и формулы для решения задач. Теорема. (теорема Абеля). Если степенной ряд Степенные ряды Определения, теоремы и формулы для решения задач Определение Функциональный ряд ( ) ( ) ( ) ( ) 0 0 0 0 0 0 называется степенным рядом, числа R,,, называются коэффициентами степенного ряда

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Демина ЕЛ, Демин СЕ РЯДЫ г Нижний Тагил 00 Предисловие В настоящем

Подробнее

Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии. a+aq+...+aq n (a 0). Формула общего члена этого ряда

Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии. a+aq+...+aq n (a 0). Формула общего члена этого ряда Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии Формула общего члена этого ряда a+aq+...+aq n +... (a ). a n = aq n. Вычислим его частичные суммы. Если q =, то

Подробнее

sin n 100. n=1 sin k sin 1 k=1

sin n 100. n=1 sin k sin 1 k=1 Разберите предложенные ниже задачи с решениями Найдите принципиальные ошибки Для ошибочно решенных задач объясните, почему используемые методы не работают или работают неправильно, и предложите собственное

Подробнее

РЯДЫ. 1. Числовые ряды

РЯДЫ. 1. Числовые ряды РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Лекция 4. Рис.1. называется знакоположительным, если a

Лекция 4. Рис.1.  называется знакоположительным, если a С А Лавренченко wwwlawrecekoru Лекция Знакопостоянные и знакочередующиеся ряды Рис http://casioru/educatio/program/serie/ Знакопостоянные ряды Ряд a называется знакоположительным, если a 0, и знакоотрицательным,

Подробнее

Рецензенты Канд. ф.-м. наук, доцент.

Рецензенты Канд. ф.-м. наук, доцент. Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

Конспекты семинаров по курсу математического анализа

Конспекты семинаров по курсу математического анализа И.Х. Сабитов Конспекты семинаров по курсу математического анализа Тема: Числовые ряды 1. Определения и общие свойства. Числовым рядом называется формальная сумма счетного числа слагаемых, которые называются

Подробнее

РЯДЫ А.А. ЗЛЕНКО, C.А. ИЗОТОВА, Л.А. МАЛЫШЕВА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике

РЯДЫ А.А. ЗЛЕНКО, C.А. ИЗОТОВА, Л.А. МАЛЫШЕВА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) АА ЗЛЕНКО, CА ИЗОТОВА, ЛА МАЛЫШЕВА РЯДЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

Подробнее

Методические указания

Методические указания Московский государственный технический университет имени Н. Э. Баумана Методические указания В.Я. Томашпольский, М.Н. Шевченко, И.О. Янов ЧИСЛОВЫЕ РЯДЫ Издательство МГТУ им. Н. Э. Баумана Московский государственный

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ Т А Матвеева, В Б Светличная, Н Н Короткова ЧИСЛОВЫЕ РЯДЫ Волгоград 00 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

Лекция Несобственные интегралы

Лекция Несобственные интегралы Лекция..9. Несобственные интегралы Аннотация: Рассматриваются несобственные интегралы первого и второго рода. Вводится понятие главного значения несобственного интеграла. Определенный интеграл был введен

Подробнее

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида:

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида: Тема 9 Числовые ряды Определение Числовым рядом называется выражение следующего вида: a a2 a3... a... a Если предел последовательности последовательностью частичных сумм ряда. lim S S Необходимое условие

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие Российский Университет Дружбы Народов Марченко В. В., Сорокина М. В. Числовые ряды Учебно-методическое пособие Москва 205 Аннотация Учебное пособие знакомит студентов с основными понятиями, методами доказательств

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а прикладной математики

Подробнее

Санкт-Петербургский государственный университет Кафедра математического анализа

Санкт-Петербургский государственный университет Кафедра математического анализа Санкт-Петербургский государственный университет Кафедра математического анализа ФУНКЦИОНАЛЬНЫЕ РЯДЫ Поточечная и равномерная сходимость. Действия над рядами, связанные с предельным переходом методические

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Несобственные интегралы

Несобственные интегралы 7 Занятие Несобственные интегралы. Несобственные интегралы первого и второго рода Понятие определенного интеграла f() от ограниченной функции по конечному отрезку [; b] распространяют на случаи, когда

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА.

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра инженерной математики И В Прусова Н А Кондратьева Н К Прихач ВЫСШАЯ МАТЕМАТИКА РЯДЫ, ТЕОРИЯ ФУНКЦИЙ

Подробнее

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки:

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: 4 Сходимость знакопеременных рядов Определение 4 Ряд a с членами произвольных знаков называют знакопеременным Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: a

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА МАТЕМАТИКА МАТЕМАТИЧЕСКИЙ АНАЛИЗ РЯДЫ Методические рекомендации

Подробнее

Лекция 5. Абсолютная и условная сходимости

Лекция 5. Абсолютная и условная сходимости С. А. Лавренченко www.lwreceko.ru Лекция 5 Абсолютная и условная сходимости. Понятие абсолютной и условной сходимостей Пусть дан ряд (данный ряд). Поставим ему в соответствие ряд, члены которого равны

Подробнее

Нижнетагильский технологический институт (филиал) Ряды

Нижнетагильский технологический институт (филиал) Ряды Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n Тема 9 Степенные ряды Степенным рядом называется функциональный ряд вида при этом числа... коэффициентами ряда, а точка разложения ряда.,,...,,... R... называются центром Степенные ряды Общий член степенного

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Глава ПОСЛЕДОВАТЕЛЬНОСТИ ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Функция, определенная на множестве натуральных чисел N и принимающая числовые значения, называется числовой последовательностью или просто последовательностью

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

16. Равномерная сходимость последовательностей и рядов

16. Равномерная сходимость последовательностей и рядов 16. Равномерная сходимость последовательностей и рядов 16.1. Рассмотрим произвольное множество X и последовательность функций f, определенных на X. Говорят, что последовательность f сходится поточечно

Подробнее

Лекция 3. Интегральный признак

Лекция 3. Интегральный признак С. А. Лавренченко www.lwreceko.ru Лекция Интегральный признак Перед прослушиванием этой лекции рекомендуется повторить несобственные интегралы (лекция 9 и практическое занятие 9 из модуля «Интегральное

Подробнее

Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè

Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Знакочередующийся ряд. Признак сходимости Лейбница. Знакопеременный ряд. Абсолютная и условная сходимости. Общий комплексный ряд. Теорема

Подробнее

Интегралы и дифференциальные уравнения. Лекции 9-10

Интегралы и дифференциальные уравнения. Лекции 9-10 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекции 9- Признаки сходимости

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

ПЛАН ЛЕКЦИИ. Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов

ПЛАН ЛЕКЦИИ. Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов ЧИСЛОВЫЕ РЯДЫ ПЛАН ЛЕКЦИИ Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов ЧИСЛОВОЙ РЯД Бесконечная сумма чисел вида: а а а... а... 3 называется числовым

Подробнее