^A на плоскости, и { } 1

Размер: px
Начинать показ со страницы:

Download "^A на плоскости, и { } 1"

Транскрипт

1 Линейные операторы в конечномерных пространствах Будем для простоты рассматривать линейные операторы в линейном пространстве, образованном множеством векторов на плоскости (пространство двух измерений Если каждому вектору плоскости поставлен в соответствие вектор этой плоскости, то говорят, что на плоскости задан оператор, и пишут A ^ Аналогичным образом определяется оператор в пространстве Оператор ^A, определённый на плоскости или в пространстве, называется линейным, если для любых векторов u, v плоскости (или пространства и любого числа λ выполняются равенства A^ ( u + v A^ u + A ^ v, A^ ( λu λ A^ u e базис на этой плоскости (Базисом на плоскости называется любая пара неколлинеарных векторов Базисом в трёхмерном пространстве называется любая тройка некомпланарных векторов Базисом в n мерном линейном пространстве называется система из n линейно независимых векторов Пусть задан линейный оператор ^A на плоскости, и { },e Матрицей линейного оператора ^A называется матрица e относительно базиса { },e A, столбцами которой служат координаты векторов A ^e, A ^e относительно этого базиса черт 0 Зная матрицу A линейного оператора, можно выразить координаты вектора A ^ через координаты вектора относительно базиса { e },e Действительно, пусть e + e Согласно определению матрицы линейного оператора, можно выразить ^Ae, ^Ae через e,e : ^ Ae e + e, ^ Ae e + e А тогда ^ ^ A A( e + e ^ ^ Ae + Ae ( ( + e + + e Следовательно, + + Полученные уравнения называются уравнениями линейного преобразования на плоскости Аналогичным образом можно определить матрицу линейного оператора ^A, относительно базиса { e, e, e 3 } в пространстве: 3 A Собственные числа и собственные векторы линейных операторов 83

2 Рассмотрим линейный оператор ^A на плоскости Вектор 0 собственным вектором оператора ^A, если существует такое число λ, что A λ называется ^ Число λ, для которого имеет место такое равенство, называется собственным числом оператора A^ Собственные векторы это векторы, которые растягиваются оператором, а соответствующее собственному вектору собственное число это коэффициент растяжения Если вектор собственный, то и вектор α, где α 0, также является собственным, и соответствует тому же собственному числу Действительно, если A ^ λ, то A ^ ( α αa ^ αλ, те A ( α λ ( α ^ Предположим, что линейный оператор ^A задан матрицей A Найдём его собственные числа и собственные векторы Пусть собственному числу λ соответствует вектор Тогда A ^ λ, причём 0 Обозначим координаты вектора через, : (, Тогда λ ( λ, λ, ^ A + + (, Следовательно, λ + + λ Эту систему уравнений можно переписать в виде ( λ + + ( λ Полученная система представляет собой систему двух линейных однородных уравнений с двумя неизвестными, По условию она должна иметь ненулевое решение, так как 0 Следовательно, определитель системы равен нулю: λ или λ ( + λ + λ Мы получили уравнение относительно λ, которое называется характеристическим уравнением линейного оператора Решая характеристическое уравнение, можно найти собственные числа линейного оператора, а затем для каждого из собственных чисел решить систему уравнений, определяющую координаты, соответствующего собственного вектора Пример Найти собственные числа и единичные собственные векторы оператора с матрицей 3 6 A 6 7 Решение Характеристическое уравнение: 84

3 3 λ λ или λ 5λ 900 Корни характеристического уравнения: λ 45, λ 0 Если λ λ, то координаты собственного вектора определяются системой уравнений ( или Система равносильна одному уравнению или ( Получаем собственный вектор te + te, 0 t Соответствующий единичный ( ( собственный вектор найдём в виде 0, те ( ( te + te e + e 0 ± 5t 5 Если λ λ, то получим систему уравнений или уравнение Соответствующий единичный собственный вектор: ( e e 0 ± 5 Характеристическое уравнение для оператора в пространстве имеет вид λ 3 λ, те является уравнением 3-й степени 3 λ 3 33 Самосопряжённые линейные операторы Линейный оператор A^ на плоскости называется самосопряжённым, если для любых векторов ^ A,, A^, этой плоскости справедливо равенство ( ( Предположим, что A^ задан матрицей нормированного базиса A относительно ортогонального Матрица A второго порядка называется симметрической, если Теорема Для того, чтобы оператор A^ был самосопряжённым, необходимо и достаточно, чтобы его матрица A относительно ортогонального нормированного базиса была симметрической (Базис называется ортогональным нормированным, если его векторы попарно ортогональные и единичные Доказательство Обозначим через, координаты вектора, через, координаты вектора относительно ортогонального нормированного базиса: 85

4 (,, (, Тогда ^ A ( +, +, ^ A ( +, + Условие самосопряжённости можно записать в виде ( ( ( ( или + + После простых преобразований получим ( ( В силу произвольности векторов, это равенство выполняется в том и только в том случае, если, что и требовалось доказать Теорема справедлива и для оператора в пространстве, с той разницей, что матрицей оператора в пространстве является матрица третьего порядка 3 A 3, а условие самосопряженности имеет вид ik ki ( i, k,,3 Теорема Собственные числа самосопряжённого оператора действительны Собственные векторы самосопряжённого оператора, соответствующие различным собственным числам, ортогональны Докажем эту теорему для оператора на плоскости Дискриминант характеристического уравнения в этом случае имеет вид ( + 4( ( + 4, те неотрицателен Следовательно, собственные числа λ, λ действительны Соответствующие собственные векторы ( (, удовлетворяют соотношению ( ^ ( ( ( ^ ( A, (, A ( ( ( ( или ( λ, (, λ, откуда следует, что ( ( ( ( ( λ λ (, Если λ λ, то (,, а это значит, что векторы ( (, ортогональны Теорема, как это доказывается в курсах алгебры, верна и для оператора в пространстве Применение линейных операторов для упрощения уравнений кривых второго порядка Нахождение канонического уравнения кривой второго порядка простейшее приложение характеристического уравнения линейного оператора Если начало декартовой прямоугольной системы координат O совпадает с центром кривой, то её уравнение имеет вид Пусть произвольной точки; через O, O 00 i + j i, j обозначены орты осей радиус-вектор Рассмотрим линейный оператор A^ с симметрической матрицей A, 86

5 ^ Тогда A ( ( i j записать в виде (, A ^ + 00 Следовательно, уравнение кривой можно Из того, что матрица A симметрическая, следует, что оператор A^ самосопряжённый Следовательно, существует базис из ортогональных единичных собственных векторов оператора Примем эти векторы за орты Тогда матрица оператора примет вид оператора Действительно, В новой системе координат A ˆ i λ i, A ˆj λ j i, j новой декартовой системы координат O λ 0 0 λ i + j, A ^ ( + i + ( + j 0 0 λ, ^ A λ + λ ( ( ( A, где λ собственные числа λ,,λ Следовательно, уравнение кривой в новой системе координат будет иметь вид λ ( ( + λ + 00 Коэффициенты λ находятся из характеристического уравнения,λ λ λ i, j можно найти как единичные собственные векторы оператора A^ Следовательно, Векторы их координаты являются решением системы уравнений ( λ + + где для вектора i ( λ 0 0 +,, нужно положить λ λ, а для вектора j Упражнение Привести к каноническому виду уравнение кривой Ответ: + 80 соответственно λ λ 87


Линейная алгебра. Лекция 2.1

Линейная алгебра. Лекция 2.1 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве.квадратичные

Подробнее

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.1

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.1 Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.1 Аннотация Сопряженные и самосопряженные операторы, их свойства и примеры. Ортогональная матрица и

Подробнее

Свойства собственных векторов линейного оператора.

Свойства собственных векторов линейного оператора. Свойства собственных векторов линейного оператора. 1. Если λ 1,..., λ k (k n) различные собственные числа оператора ϕ, тогда соответствующие собственные векторы x 1,..., x k линейно независимы. Доказательство:

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Симметричные и ортогональные матрицы и операторы 1.1 Определения. Основные свойства Действительная матрица A M n n называется симметричной (симметрической),

Подробнее

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.3

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.3 Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.3 Аннотация Приведение квадратичной формы к каноническому виду методом ортогонального преобразования.

Подробнее

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны.

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны. Лекция 3 Тема: Уравнение прямой на проективной плоскости Принцип двойственности Теорема Дезарга Проективные отображения и проективные преобразования План лекции 1 Уравнение прямой на проективной плоскости

Подробнее

Линейная алгебра. Лекция 2.3

Линейная алгебра. Лекция 2.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве.квадратичные

Подробнее

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами По условию теоремы L [ ] B ( m Тогда в силу линейности оператора L имеем: m m m L L ] B [ Системы линейных дифференциальных уравнений с постоянными коэффициентами Собственные значения и собственные векторы

Подробнее

y = равносильно системе двух равенств: , a обозначают, соответственно, матрицу

y = равносильно системе двух равенств: , a обозначают, соответственно, матрицу Тензоры Тензоры объединяют целый ряд понятий, находящих применение в физике и математике, в частности, в аналитической геометрии Частными случаями тензоров являются векторы, линейные операторы, квадратичные

Подробнее

Практические занятия по алгебре. 1 курс. 2 семестр

Практические занятия по алгебре. 1 курс. 2 семестр А.Г.Гейн Практические занятия по алгебре 1 курс 2 семестр Приведены планы занятий в классе и домашние задания по курсу «Линейная алгебра и геометрия». Номера задач приведены по «Сборнику задач по алгебре

Подробнее

41. Симметрические операторы

41. Симметрические операторы 41 Симметрические операторы Линейные операторы, действующие в евклидовых пространствах, обладают дополнительными свойствами по сравнению с линейными операторами в векторных пространствах без скалярного

Подробнее

6. Базис и координаты вектора. Прямоугольная декартова система координат

6. Базис и координаты вектора. Прямоугольная декартова система координат 6. Базис и координаты вектора. Прямоугольная декартова система координат Понятия вектора и линейных операций над векторами алгебраизируют геометрические высказывания т.е. заменяют геометрические утверждения

Подробнее

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Основные определения Нормальная система дифференциальных уравнений называется линейной если функции f f K f линейны относительно неизвестных функций Из этого

Подробнее

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Кафедра высшей математики (ВМ) Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ Практическое

Подробнее

T T T. e 1. e 2 , T 2 + T 21 T T , T 3 + T 22 + T 23

T T T. e 1. e 2 , T 2 + T 21 T T , T 3 + T 22 + T 23 0. Главные оси симметрического тензора -го ранга В 8 было показано, что для любого тензора второго ранга и для любого направления μ (единичного вектора) можно поставить в соответствие вектор-проекцию pr

Подробнее

Линейные пространства

Линейные пространства Линейные пространства Лекция 1-2 по дисциплине «Линейная алгебра и аналитическая геометрия» поток гр. ПМ(б), ПО(б) Лекция 1-2 1. ОПРЕДЕЛЕНИЯ И АКСИОМЫ Определение 1. Множество R называется линейным или

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 4 ВЕКТОРЫ. БАЗИС 1. Базис векторов Определение 1. Векторы a 1,a 2,...,a n называются упорядоченными, если указано какой вектор из этой системы является первым, какой

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Аннотация Собственные векторы и собственные значения линейного оператора, их свойства.

Подробнее

Тема 2-18: Нормальные операторы

Тема 2-18: Нормальные операторы Тема 2-18: Нормальные операторы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

ВТОРОЙ СЕМЕСТР. Занятие 1. Кольцо многочленов. Операции над многочленами

ВТОРОЙ СЕМЕСТР. Занятие 1. Кольцо многочленов. Операции над многочленами ВТОРОЙ СЕМЕСТР Занятие 1. Кольцо многочленов. Операции над многочленами 1.1. a Известно, что многочлен f(x дает остаток x + 1 при делении на x 2 + 1 и остаток 3 при делении на x + 2. Найдите остаток при

Подробнее

Тема: Линейные операторы

Тема: Линейные операторы Линейная алгебра и аналитическая геометрия Тема: Линейные операторы Лектор Пахомова Е.Г. 2012 г. 11. ЛИНЕЙНЫЕ ОПЕРАТОРЫ 1. Определение линейного оператора Пусть L и V линейные пространства над F (где F

Подробнее

Базис. Координаты вектора в базисе

Базис. Координаты вектора в базисе Тема 0 Базис Существование и единственность разложения вектора по базису Координатное представление векторов Действия с векторами в координатном представлении Необходимое и достаточное условие линейной

Подробнее

всевозможные решения заданной системы линейных однородных уравнений:

всевозможные решения заданной системы линейных однородных уравнений: . ЯДРО ЛИНЕЙНОГО ПРЕОБРАЗОВАНИЯ Ранее мы охарактеризовали подпространство конечномерного пространства как линейную оболочку. Но возможны и другие истолкования подпространства. Пусть, e, e2, K, en какой-либо

Подробнее

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы.

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. Основные результаты Лекции 4. 1) Любое подпространство V k F n 2 размерности k задается некоторой системой из n k

Подробнее

Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА

Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА Доказать тождество: а y y y y б Доказать что Даны ненулевой вектор и скаляр Найти любое решение уравнения Подсказка: вектор характеризуется направлением и длиной так

Подробнее

Тема 2-19: Билинейные и квадратичные формы

Тема 2-19: Билинейные и квадратичные формы Тема 2-19: Билинейные и квадратичные формы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

2. Перечислить все линейные подпространства трехмерного векторного пространства.

2. Перечислить все линейные подпространства трехмерного векторного пространства. Тема Комплексные числа и многочлены cosϕ + i siϕ Упростить cosψ i siψ ( i 3 ( cosϕ + Вычислить i siϕ ( i( cosϕ i siϕ 3 3 Найти z, если z = ( i 4 Найти комплексные числа, сопряженные своим квадратам 5 Найти

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

2. Дать определение линейно зависимой и линейно независимой систе- мы векторов

2. Дать определение линейно зависимой и линейно независимой систе- мы векторов 1Дать определение линейного (векторного) пространства. Множество R элементов x, y, z,... любой природы называется линейным (или векторным) пространством, если выполнены следующие три требования: 1. z=x+y.

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

ЛЕКЦИЯ 7 ЛИНЕЙНЫЕ ПРОСТРАНСТВА. ЛИНЕЙНЫЙ И ОРТОГОНАЛЬНЫЙ ОПЕРАТОР. ПРЕОБРАЗОВАНИЕ КООРДИНАТ

ЛЕКЦИЯ 7 ЛИНЕЙНЫЕ ПРОСТРАНСТВА. ЛИНЕЙНЫЙ И ОРТОГОНАЛЬНЫЙ ОПЕРАТОР. ПРЕОБРАЗОВАНИЕ КООРДИНАТ ЛЕКЦИЯ 7 ЛИНЕЙНЫЕ ПРОСТРАНСТВА ЛИНЕЙНЫЙ И ОРТОГОНАЛЬНЫЙ ОПЕРАТОР ПРЕОБРАЗОВАНИЕ КООРДИНАТ 7 Линейные пространства Базис линейного пространства 7 Линейный оператор: определение действия над линейным оператором

Подробнее

Занятие 14 Понятие линейного оператора

Занятие 14 Понятие линейного оператора Линейная алгебра и аналитическая геометрия Занятие 4 Понятие линейного оператора Преподаватель Пахомова Елена Григорьевна 6 ЛИНЕЙНЫЕ ОПЕРАТОРЫ Определение линейного оператора Пусть L и V линейные пространства

Подробнее

Тема 1-13: Скалярное произведение векторов

Тема 1-13: Скалярное произведение векторов Тема 1-13: Скалярное произведение векторов А. Я. Овсянников Уральский федеральный университет Институт естественных наук и математики Департамент математики, механики и компьютерных наук Алгебра и геометрия

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я приведение общего уравнения поверхности второго порядка к каноническому виду

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я приведение общего уравнения поверхности второго порядка к каноническому виду А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я приведение общего уравнения поверхности второго порядка к каноническому виду ШИМАНЧУК Дмитрий Викторович d.shimanchuk@spbu.ru Санкт-Петербургский государственный

Подробнее

По дисциплине «Линейная алгебра»

По дисциплине «Линейная алгебра» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНО УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет вычислительной

Подробнее

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости Тема 5 Способы задания прямой на плоскости Условие совпадения прямых задаваемых разными линейными уравнениями Геометрические свойства линейных неравенств Способы задания плоскости в пространстве Способы

Подробнее

Тема 2-15: Ортогональность

Тема 2-15: Ортогональность Тема 2-15: Ортогональность А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

23. Базис векторного пространства

23. Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение базиса Определение Базисом векторного пространства называется упорядоченная

Подробнее

7. Понятие линейного пространства

7. Понятие линейного пространства 7 Понятие линейного пространства 1 Определение и примеры Пусть L некоторое множество, элементы которого можно складывать и умножать на действительные числа (например, множество матриц одинакового размера,

Подробнее

ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА 66 ГЛАВА 6 ЛИНЕЙНЫЕ ПРОСТРАНСТВА Определение линейного пространства В гл 5 n-мерное векторное пространство было определено как упорядоченная система n чисел Для n-мерных векторов были введены операции

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейная алгебра Лекция 3 ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейное (векторное) пространство Определение Множество элементов произвольной природы X называется линейным (или векторным) пространством если для любых

Подробнее

1 Билинейная и квадратичная формы.

1 Билинейная и квадратичная формы. 1 Билинейная и квадратичная формы. Пусть ϕ(x, y) числовая функция, заданная на линейном пространстве, то есть ϕ : L L R. Если ϕ(x, y) линейна по каждому из своих аргументов, то её называют билинейной формой.

Подробнее

Линейная алгебра. Лекция 1.4

Линейная алгебра. Лекция 1.4 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы

Подробнее

4. Существование собственного значения вполне непрерывного самосопряженного оператора.

4. Существование собственного значения вполне непрерывного самосопряженного оператора. Лекция 4 Существование собственного значения вполне непрерывного самосопряженного оператора Пусть линейный оператор действует в линейном пространстве L Число называется собственным значением оператора,

Подробнее

Пояснения к введению в ГАРМОНИЧЕСКИЙ АНАЛИЗ Умнов А.Е, Умнов Е.А. (Верс. 29апр2018г)

Пояснения к введению в ГАРМОНИЧЕСКИЙ АНАЛИЗ Умнов А.Е, Умнов Е.А. (Верс. 29апр2018г) Пояснения к введению в ГАРМОНИЧЕСКИЙ АНАЛИЗ Умнов АЕ Умнов ЕА Верс 9апр08г Данный документ имеет своей целью проиллюстрировать некоторые способы применения понятий и методов рассмотренных ранее в курсах

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов

Подробнее

8. Дать определение ортогональной скалярной проекции вектора на направление.

8. Дать определение ортогональной скалярной проекции вектора на направление. 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения

Подробнее

4. Координаты вектора

4. Координаты вектора 4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.2

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.2 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.2 Аннотация Линейное подпространство, его свойства и примеры. Линейная оболочка, ее свойства

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно.

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно. ЛЕКЦИЯ 5 МЕТОД ГАУССА Мы разобрали выше два различных способа задания линейных подпространств F n 2 при помощи образующих и как множество решений системы линейных уравнений Для различных приложений нам

Подробнее

X = O. В этом случае любое решение системы ( A λ E)

X = O. В этом случае любое решение системы ( A λ E) В заключение этого пункта заметим что говорят также о собственных векторах матрицы порядка имея при этом ввиду собственные векторы оператора -мерного пространства имеющего своей матрицей в некотором базисе

Подробнее

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число Лекция 4 Скалярное произведение φ Определение. Углом φ между ненулевыми векторами и называется тот из углов, образованных этими векторами, отложенными от единого начала, который лежит в пределах от до

Подробнее

11. Задача о собственных векторах

11. Задача о собственных векторах Задача о собственных векторах 59 Линейные преобразования Вновь вернёмся к линейным преобразованиям A : L L как частному случаю линейных отображений В этом случае пространства совпадают и мы в обеих пространствах

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МАТРИЦЫ: а) Определение, виды матриц, операции над матрицами (сложение матриц, умножение матрицы на число, умножение матриц, транспонирование),

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика» Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Высшая математика» Е Б Павельева В Я Томашпольский Линейная алгебра Методические указания

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов ВВ 1 Геометрическое строение линейных операторов 11 Введение Мы знаем, что линейное преобразование ϕ : R n R n (линейный оператор) в каноническом базисе E пространства

Подробнее

ВТОРОЕ ЗАДАНИЕ. 1. Евклидовы и унитарные пространства 1. Пусть в линейном пространстве заданы две операции скалярного умножения.

ВТОРОЕ ЗАДАНИЕ. 1. Евклидовы и унитарные пространства 1. Пусть в линейном пространстве заданы две операции скалярного умножения. ВТОРОЕ ЗАДАНИЕ Евклидовы и унитарные пространства Пусть в линейном пространстве заданы две операции скалярного умножения ( xy, ) и ( xy, ) Показать, что для любых чисел λ 0, µ 0, одновременно не равных

Подробнее

, i 2, 2 3i. многочлен f (x), где степень многочлена меньше степени многочлена g (x), если. Записать многочлены q (x) 1, 2, (формула

, i 2, 2 3i. многочлен f (x), где степень многочлена меньше степени многочлена g (x), если. Записать многочлены q (x) 1, 2, (формула Важные понятия утверждения формулы и некоторые примеры по высшей алгебре Тема «К о м п л е к с н ы е ч и с л а» Записать заданное комплексное число в алгебраической тригонометрической и показательной форме

Подробнее

Тема 2-3: Базис и размерность линейного пространства

Тема 2-3: Базис и размерность линейного пространства Тема 2-3: Базис и размерность линейного пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

и AC компланарны, а векторы AB, AD и AA не компланарны.

и AC компланарны, а векторы AB, AD и AA не компланарны. Лекция 3 Тема: Линейная зависимость векторов Базис векторного пространства План лекции Компланарные векторы Линейная зависимость/независимость системы векторов: определение свойства геометрический смысл

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора.

Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора. Материалы к установочной лекции Вопрос 9. Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора.. Матричное представление линейных операторов Будем обозначатьчерез

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ 3. 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту:

ДОМАШНЕЕ ЗАДАНИЕ 3. 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту: ДОМАШНЕЕ ЗАДАНИЕ Для выполнения домашнего задания Вам необходимо пользуясь табл заполнить первую строку табл затем выписать соответствующие Вашему номеру варианта данные из табл Например Вы учитесь в группе

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Линейная алгебра. Лекция 1.2

Линейная алгебра. Лекция 1.2 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

Е.Е. Корякина ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К ГЛАВНЫМ ОСЯМ

Е.Е. Корякина ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К ГЛАВНЫМ ОСЯМ ЕЕ Корякина ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К ГЛАВНЫМ ОСЯМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЕЕ Корякина ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К ГЛАВНЫМ ОСЯМ

Подробнее

λ λ λ 2

λ λ λ 2 Вариант 7. Найти ранг матрицы при различных значениях параметра λ λ 4 λ 4 λ. Решить систему линейных уравнений, написать фундаментальную систему решений для соответствующей x x + 6x + 4x 4 = x + x x 7x

Подробнее

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ГЛАВА III СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 7 Задачи приводящие к понятию систем дифференциальных уравнений Рассмотрим систему уравнений m m m F m m m F 7 LLLLLLLLLLLLLLLLLLLLL L L m m m F где независимая

Подробнее

ОГЛАВЛЕНИЕ. Список основных обозначений... 3 От авторов... 7

ОГЛАВЛЕНИЕ. Список основных обозначений... 3 От авторов... 7 ОГЛАВЛЕНИЕ Список основных обозначений..................... 3 От авторов................................ 7 Ч а с т ь I. ЛИНЕЙНАЯ АЛГЕБРА Г л а в а 1. Преобразования матриц и системы линейных уравнений........................

Подробнее

ЛЕКЦИИ ПО ВЫСШЕЙ АЛГЕБРЕ

ЛЕКЦИИ ПО ВЫСШЕЙ АЛГЕБРЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» АИ Шерстнёва,

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.2

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.2 Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.2 Аннотация Квадратичные формы. Знакоопределенные квадратичные формы. Критерий Сильвестра. Квадратичная

Подробнее

12. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

12. ЛИНЕЙНЫЕ ПРОСТРАНСТВА ЛИНЕЙНЫЕ ПРОСТРАНСТВА ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ЛИНЕЙНЫХ ПРОСТРАНСТВ Аксиомы линейного пространства Линейным векторным пространством называется множество V произвольных элементов, называемых векторами, в котором

Подробнее

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b,

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b, Векторы Даны координаты векторов a b c в правом ортонормированном базисе i j k Показать что векторы a b c тоже образуют базис и найти координаты вектора в базисе a b c ) ( ) a ( ) b ( ) c ( ) ) ( ) a (

Подробнее

«Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке, ) является линейным оператором.

«Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке, ) является линейным оператором. «Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке ( x 1, x2, x, x ) строку ( x1 2x2 x x, x1 x2 x, x1 2x2 x 2x,, x x 2x ) является линейным оператором.

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное агентство по образованию Московский государственный институт электроники и математики (технический университет) Кафедра алгебры и математической

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА Методические указания к практическим занятиям для студентов

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Линейная алгебра 5 Операторы в евклидовых и унитарных пространствах

Линейная алгебра 5 Операторы в евклидовых и унитарных пространствах Линейная алгебра 5 Операторы в евклидовых и унитарных пространствах 1. СОПРЯЖЕННЫЙ ОПЕРАТОР Пусть U УП, A ЛО в U. Оператор A называется сопряженным по отношению к ЛО A, если для любых векторов x, y U выполняется

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Евклидовы, унитарные, нормированные, метрические пространства Раздел электронного учебника для сопровождения

Подробнее

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет,

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению плоскости. Излагаемый в ней материал

Подробнее

ПОДРОБНЫЙ ПЛАН ЛЕКЦИЙ ПО КУРСУ "ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ"

ПОДРОБНЫЙ ПЛАН ЛЕКЦИЙ ПО КУРСУ ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ПОДРОБНЫЙ ПЛАН ЛЕКЦИЙ ПО КУРСУ "ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" ЛЕКЦИЯ 1. Множество. Операции над множествами. Диаграммы Венна. Теоретикомножественные тождества. Декартово произведение множеств.

Подробнее

Пусть на плоскости задана декартова система координат и некоторая линия L.

Пусть на плоскости задана декартова система координат и некоторая линия L. Лекция 7. Линии на плоскости и их уравнения. Прямая на плоскости. Различные формы уравнений прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой. Пусть на плоскости задана декартова система

Подробнее

Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА

Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА Методические указания и контрольные задания по высшей математике для

Подробнее

4. Уравнение прямой на проективной плоскости.

4. Уравнение прямой на проективной плоскости. 88 3 Практикум (рекомендации к практической части) МОДУЛЬ ПРОЕКТИВНЫЕ ПРОСТРАНСТВА Практическое занятие Тема: Построение точки по ее координатам на моделях проективной прямой и проективной плоскости Преобразование

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M Лекция 8 Тема: Деление отрезка в данном отношении Ориентация плоскости Угол между векторами на ориентированной плоскости План лекции Деление отрезка в данном отношении Ориентация плоскости 3 Угол между

Подробнее

Тема 2-20: Аффинные пространства

Тема 2-20: Аффинные пространства Тема 2-20: Аффинные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2

Подробнее

Лекция 2. Векторы. Определения.

Лекция 2. Векторы. Определения. Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:

Подробнее