Введение в линейную алгебру

Размер: px
Начинать показ со страницы:

Download "Введение в линейную алгебру"

Транскрипт

1 Введение в линейную алгебру

2 Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя т.е. номер строки, номер столбца. Обозначение: А, В, С. m n размерность матрицы

3 Системы линейных уравнений. Основные понятия. Определение. Система уравнений вида... n n... nn ()... m m... mnn m называется системой линейных уравнений, содержащей m уравнений и n неизвестных. Числа коэффициенты системы, свободные члены системы, неизвестные.

4 Определение. Коэффициенты, стоящие перед неизвестными, записанные в виде матрицы называются матрицей системы. Матричная форма записи: А X = B. Если в матрицу системы добавить столбец свободных членов, то получим расширенную матрицу системы. mn m m n n A n X m B вектор столбец неизвестных вектор столбец свободных членов m mn m m n n A

5 Определение. Совокупность из n чисел называется решением системы () если каждое уравнение системы обращается в числовое равенство после подстановки в него этих чисел вместо соответствующих неизвестных. Система уравнения называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения. Пример A 8 B Матрица системы: A Столбец свободных членов Расширенная матрица системы:

6 Определители Определение. Пусть задана квадратная таблица из -х чисел:,,,. Это матрица -го порядка. определитель го порядка. Обозначение:,,, - элементы определителя. Строки -я и -я, Главная Столбцы -й и -й. диагональ Побочная диагональ

7 Общее обозначение элементов определителя с двумя индексами номер строки номер столбца элементы определителя. а элемент в первой строке и втором столбце. Определитель -го порядка:

8 Примеры: Замечание: Элементами определителя могут быть не только числа, но и любые алегебраические выражения. cos sn cos sn sn cos cos

9 Определитель третьего порядка Соответствует таблица из 9-ти чисел: Это число: Разложение по первой строке определителя.

10 Правило Саррюса + -

11 Примеры По правилу Саррюса:

12 Методы решения систем линейных уравнений. Метод Крамера. Рассмотрим систему из n уравнений с n неизвестными,... n n... nn ()... n n... nnn n и пусть deta.

13 Метод Крамера. Теорема (правило Крамера). Система из n уравнений с n неизвестными () в случае, когда определитель системы не равен (deta ), имеет единственное решение, вычисляемое по формулам: формула Крамера где Δ определитель системы, а Δ определитель матрицы, получаемой из матрицы системы, заменой того столбца столбцом свободных членов.

14 Примеры:. Решим систему методом Крамера

15 Метод Гаусса. Наиболее универсальный и эффективный из методов решений систем линейных уравнений: метод Гаусса или метод последовательного исключения неизвестных. Пусть дана система уравнений: Расширенная матрица системы:... n n n n () m m mn n m m m mn m Выполняя элементарные преобразования строк расширенной матрицы системы можно привести ее к ступенчатому виду: ~ ~ ~ ~ ~... ~ ~ n A ~ ~ n n ~ ~ mn ~ ~ mn Исключение неизвестных - прямой ход метода Гаусса. Определение неизвестных из ступенчатой системы обратный ход метода Гаусса. A... ~ n n ~ n n n n ~ ~ ~ m

16 Элементарные преобразования матрицы.. Отбрасывание нулевой строки (столбца).. Умножение строки (столбца) на число отличное от нуля.. Перестановка строк (столбцов).. Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на одно и то же число.

17 Пример ~ ~ ~ 6 6 6

18 Векторы. Основные определения. Определение. Направленный отрезок (или, что то же, упорядоченную пару точек) мы будем называть вектором. Обозначение: AB,,. Нулевой вектор (у которого начало и конец совпадают):. Вектор характеризуется длиной и направлением. Под модулем (длиной) вектора понимаем его численное значение А безучета направления. Вектор, длина которого равна единичный вектор. e. Если ненулевой вектор разделить на его длину получим единичный вектор (орт) направления. e Определение. Два вектора называются равными, то есть не различаются как векторы, если соответствующие отрезки параллельны, имеют одинаковую длину и направление. В

19 Линейные операции над векторами Определение. Суммой векторов и называется такой третий вектор c, что при совмещенных началах этих трех векторов, векторы и служат сторонами параллелограмма, а вектор его диагональю. c Это сложение по правилу параллелограмма. Более удобно правило треугольника. c c

20 Для каждого вектора существует вектор ему противоположный имеющий ту же длину, но противоположный по направлению. Обозначение: - Определение. Разностью векторов и называется сумма и вектора противоположного : d.

21 Определение. Произведением вектора на вещественное число α называется вектор, определяемый условием. ;. вектор коллинеарен вектору ;. векторы и направлены одинаково, если α >, и противоположно, если α <. Обозначение:,, Замечание. Иногда числа называют скалярами. Эта операция умножения вектора на скаляр.

22 Декартова прямоугольная система координат Декартова система координат в пространстве задается началом координат точкой О и базисом, состоящим из трех взаимно перпендикулярных единичных векторов (ортов),, координатных осей OX, OY и OZ соответственно. Обозначим: М -конец вектора. Вектор OM радиус вектор имеет такие же координаты, что и точка М: Вектор OM может быть единственным образом разложен по базису.,, OM OM,, Х Модуль вектора: Z О М (; ; ) М Y абсцисса ордината аппликата

23 . Линейные операции над векторами заданными в координатной форме. Пусть векторы и заданы своими координатами: Тогда Примеры:,,,,,,,,,,,,,,,,,,,, 8,,,,6,,,,

24 Расстояние между двумя точками Найдем координаты вектора AB, если известны координаты точек A,, и B,,. AB OB OA,, A B Координаты вектора равны разности координат его конца o и начала. Расстояние между точками А и В: AB Пример: AB A,, B,,,,,, AB 7,

25 Скалярное произведение векторов. Определение. Углом между векторами и называют наименьший угол φ ( ) на который нужно повернуть один из векторов, чтобы их направления совпали. Определение: Назовем скалярным произведение двух векторов и число, равное произведению длин этих векторов и косинуса угла φ между ними. Обозначение:, Выражение скалярного произведения через координаты векторов:, Условие перпендикулярности векторов

26 Примеры:. Даны векторы:,, 6,, Вычислить:, Даны вершины четырехугольника А(, -, ), В(,, ), С(-,, ), D(-, -, ). Доказать, что его диагонали взаимно перпендикулярны. Нужно доказать, что векторы и BD перпендикулярны. AC AC,, BD 6, 9, AC BD 6 9

27 Угол между векторами Определим угол φ между векторами,, и,,. Из определения скалярного произведения: cos cos φ Пример. Даны вершины треугольника АВС: А(-, -, ), В(-, -, ), С(, -, ). Вычислить внешний угол при вершине В. Внешний угол будет определяться как угол между векторами и. А В BA С BC cos BA,, BC 7,, 7 7 φ = π/

28 Векторное произведение векторов Тройка некомпланарных векторов ;;c называется правой левой если наименьший поворот с конца третьего вектора c от первого вектора ко второму вектору виден против по часовой стрелки c c c c sn( ; ). Векторным произведением вектора на вектор называется вектор, определяемый следующим образом: c ; c c Вектор направлен так, что тройка векторов - правая. c c, ; ; c

29 ,

30 Найти векторное произведение векторов: Выражение векторного произведения в координатной форме:

31 Пример. Найти площадь треугольника с вершинами: A ; ; B ; 6; C 7;; Найдем координаты векторов: AB AC S ; 6 ; ; ; 7 ; ; ; ; 9 А В С 9 7 S ( 7) ( ) 69. 6

32 Смешанное произведение векторов. Определение. Смешанным (или векторно-скалярным) произведением векторов, и c называется число c, где первые два вектора перемножаются векторно, а их результат скалярно на третий вектор., c Геометрический смысл выражения. Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком «плюс», если эти векторы образуют правую тройку, и со знаком «минус», если они образуют левую тройку. В координатной форме: c c

33 Вычисление объемов параллелепипеда и треугольной пирамиды. Согласно геометрическому смыслу смешанного произведения объем параллелепипеда, построенного на векторах, и вычисляется как, а объем треугольной пирамиды, построенной на тех же векторах: Примеры:. Даны c V V,, c c 6,, c,, c c?

34 . Проверить, лежат ли точки А(,, -), В(,,), С(-,, ) и D(,, ) в одной плоскости. Составим вектора из данных точек и найдем их координаты: AB,,6 B A AC,, C AD,, D Данные векторы должны лежать в одной плоскости и следовательно быть компланарными. 6 AB AC AD 6 6 Условие компланарности векторов выполняется, т.е. точки лежат в одной плоскости.

35 Пример. Найти объем треугольной пирамиды с вершинами: A ; ; B ; ; C ; ; Найдем координаты векторов: AB AC AD ; ; ;; ; ; ; ; ; ; 6 ; ; AB AC AD D ; ; 6 7 В А С D V 6 c Объем треугольной 7 пирамиды равен /6 части Vпараллелепипеда, построенного на векторах 6 ; ; c


Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами. Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

8. Дать определение ортогональной скалярной проекции вектора на направление.

8. Дать определение ортогональной скалярной проекции вектора на направление. 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения

Подробнее

4. Координаты вектора

4. Координаты вектора 4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

5. Векторы. 5.1 Определение и начальные сведения о векторах

5. Векторы. 5.1 Определение и начальные сведения о векторах 49 5 Векторы 51 Определение и начальные сведения о векторах Любые две точки А,В определяют направленный отрезок, если точка А определяет начало, точка В конец отрезка, направление задается от А к В Направленный

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только ~ ~ ВЕКТОРНАЯ АЛГЕБРА калярные и векторные величины, виды векторов. Определение: калярной называется величина, которая характеризуется только o своим значением m, T C. Определение: Векторной называется

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА» НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ ЧАСТНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА И СОЦИАЛЬНОГО УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Подробнее

a b =S пар. = a b sin( a,b );

a b =S пар. = a b sin( a,b ); Практическое занятие 4 Тема: Векторное произведение векторов План Определение и свойства векторного произведения Векторное произведение в координатах Приложение векторного произведения к вычислению площадей

Подробнее

Векторная алгебра. Глава Векторы на плоскости и в пространстве

Векторная алгебра. Глава Векторы на плоскости и в пространстве Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аннотация Скалярные и векторные величины. Понятие геометрического вектора, как направленного отрезка. Длина вектора. Нуль-вектор,

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Методические указания к выполнению индивидуальных домашних заданий ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ m n называется прямоугольная табли- Матрицей размера ца

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

Аналитическая геометрия. Лекция 1.4

Аналитическая геометрия. Лекция 1.4 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

Лекция 6. Геометрические векторы.

Лекция 6. Геометрические векторы. Лектор Гущина Елена Николаевна, кафедра Высшей математики 2. Лекция 6. Геометрические векторы. Вектор как направленный отрезок. Сложение векторов и умножение вектора на число. Свойства линейных операций.

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов

Подробнее

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА»

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ВАРИАНТ Даны вершины треугольника А ( ) В ( ) С ( ) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

5. Система координат. Координаты точки

5. Система координат. Координаты точки 5. Система координат. Координаты точки 1. Понятие системы координат Определение. Системой координат в пространстве (на плоскости) называется совокупность базиса пространства (соответственно базиса плоскости)

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

4. Векторная алгебра

4. Векторная алгебра 15 4 Векторная алгебра Вариант 1 11 Даны две точки М( 5; 7; 6) и N (7; 9; 9) Найти проекцию вектора a ( 1; 3; 1) на направление вектора MN 12 Вычислить работу силы F ( 3; 2; 5) приложенной к точке А(2;

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 2 Векторная алгебра 1. Даны три вектора a = {0; 1; 3}, b = {3; 2; 1}, c = {4; 0; 4}. Требуется найти: a) вектор d = 2 a b

Подробнее

Геометрические векторы

Геометрические векторы Геометрические векторы Определение Вектором называется направленный отрезок начальной точкой А и конечной точкой В (который можно перемещать параллельно самому себе) Если начало вектора - точка А, а его

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике МИНИСТЕРСТВО СВЯЗИ И ИНФОРМАТИЗАЦИИ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СВЯЗИ» Кафедра математики и физики ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , )

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , ) Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный политехнический университет» Университетский центр социально-гуманитарных

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.5

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.5 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.5 Аннотация Ориентация базиса, правые и левые тройки векторов. Векторное произведение двух векторов, его геометрический и

Подробнее

«Элементы векторной алгебры» Тема4. Минестерство образования Республики Беларусь. Кафедра теоретической и прикладной математики.

«Элементы векторной алгебры» Тема4. Минестерство образования Республики Беларусь. Кафедра теоретической и прикладной математики. Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема4. «Элементы векторной алгебры» Уи льям Ро уэн Га мильтон Кафедра теоретической и прикладной

Подробнее

-1-2. Вычислить площадь треугольника, построенного на векторах.. Найти высоту грани ОВС тетраэдра ОАВС, опущенную из конца вектора OB.

-1-2. Вычислить площадь треугольника, построенного на векторах.. Найти высоту грани ОВС тетраэдра ОАВС, опущенную из конца вектора OB. --. Показать, что векторы a { ;2;0 }, b { 2; ; }, c { ;; } компланарны и найти разложение вектора 2 a + b по векторам a и b. 2. Вычислить площадь треугольника, построенного на векторах a m n, b 2 m + 3n

Подробнее

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения.

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между

Подробнее

2. Даны векторы a, b, 6. Найти фундаментальную систему решений однородной СЛАУ

2. Даны векторы a, b, 6. Найти фундаментальную систему решений однородной СЛАУ Экзаменационный билет 1 по курсу: 1. Дать определение скалярного произведения векторов. Доказать свойства скалярного произведения. Вывести формулу скалярного произведения в ортонормированном базисе. Приложения

Подробнее

Аналитическая геометрия. Лекция 1.5

Аналитическая геометрия. Лекция 1.5 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость

Подробнее

ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.

ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство. ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.... 1 2.Векторная алгебра.... 2 3.Системы координат... 6 1.Векторное пространство. Рассмотрим

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Введение в линейную алгебру и аналитическую геометрию Определители Теория матриц и определителей является введением в линейную алгебру Наиважнейшим применением этой теории является решение систем линейных

Подробнее

Чистопольский филиал «Восток» Кафедра Естественнонаучных дисциплин. Методические указания по дисциплине Математика часть 1

Чистопольский филиал «Восток» Кафедра Естественнонаучных дисциплин. Методические указания по дисциплине Математика часть 1 Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Лекция 6: Система координат. Координаты точки

Лекция 6: Система координат. Координаты точки Лекция 6: Система координат. Координаты точки Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

Л.В. Китаева, М.О. Сысоева, Т.А. Шайхудинова МАТЕМАТИКА. В четырех частях. Часть 1

Л.В. Китаева, М.О. Сысоева, Т.А. Шайхудинова МАТЕМАТИКА. В четырех частях. Часть 1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Бийский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Алтайский государственный

Подробнее

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством Определители Определитель второго порядка задается равенством Определитель третьего порядка задается равенством Свойства определителей Определитель равен нулю если он содержит две одинаковые или пропорциональные

Подробнее

4.1. Определение вектора и линейные операции над векторами

4.1. Определение вектора и линейные операции над векторами 4 Векторная алгебра 73 41 Определение вектора и линейные операции над векторами Пару точек A и B будем называть упорядоченной если известно какая из них первая а какая - вторая Определение 41 Отрезок концы

Подробнее

Методические указания к контрольным работам

Методические указания к контрольным работам Методические указания к контрольным работам Контрольная работа «Переаттестация» Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости Расстояние между двумя точками M ( ) и ( ) плоскости

Подробнее

6. Базис и координаты вектора. Прямоугольная декартова система координат

6. Базис и координаты вектора. Прямоугольная декартова система координат 6. Базис и координаты вектора. Прямоугольная декартова система координат Понятия вектора и линейных операций над векторами алгебраизируют геометрические высказывания т.е. заменяют геометрические утверждения

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

УДК [ ](075.8) ISBN ISBN УДК [ ](075.8)

УДК [ ](075.8) ISBN ISBN УДК [ ](075.8) ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ КОМПЛЕКСНЫЕ ЧИСЛА Учебное пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение

Подробнее

ВЕКТОРНАЯ АЛГЕБРА Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

ВЕКТОРНАЯ АЛГЕБРА Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ ВЕКТОРНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ

Подробнее

Билет 1 1. Матрицы, действия над ними. 2. Уравнение параболы в канонической системе координат.

Билет 1 1. Матрицы, действия над ними. 2. Уравнение параболы в канонической системе координат. Билет. Матрицы, действия над ними.. Уравнение параболы в канонической системе координат. Билет. Свойства матричных операций.. Взаимное расположение прямой и плоскости. Угол между ними, условия параллельности

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами.

ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами. ВЕКТОРЫ Определение вектора Линейные операции над векторами Вектором на плоскости или в пространстве называется направленный отрезок, для которого указаны начало и конец Обозначения: AB, Точка А начало

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.1

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.1 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.1 Аннотация Матрицы. Виды матриц. Элементарные преобразования матриц. Линейные операции над матрицами (сравнение, сложение,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 2. Векторы. Определения.

Лекция 2. Векторы. Определения. Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 5 СИСТЕМЫ КООРДИНАТ 1. Проекция вектора на ось Дадим определение. Определение 4. Осью называется прямая, на которой указано направление. Рис. 1. Ось. Пусть A и B это

Подробнее

ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ

ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ Быкова Л.М., Добрынина Н.Н., Свердлова О.Л. ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ Рекомендовано учебно-методическим советом факультета технической кибернетики Ангарской государственной технической

Подробнее

Базис. Координаты вектора в базисе

Базис. Координаты вектора в базисе Тема 0 Базис Существование и единственность разложения вектора по базису Координатное представление векторов Действия с векторами в координатном представлении Необходимое и достаточное условие линейной

Подробнее

б) Координаты точек K и L середин ребер A 1 B 1 и CC 1 соответственно. Найдем координаты точек K, L из разложения векторов AK,

б) Координаты точек K и L середин ребер A 1 B 1 и CC 1 соответственно. Найдем координаты точек K, L из разложения векторов AK, . Дан параллелепипед ABCDA B C D. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA, найти координаты: а) вершин C, B, C ; б) точек K и L середин ребер A B и CC соответственно. Решение:

Подробнее

Министерство образования Российской Федерации

Министерство образования Российской Федерации Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Глава 1. Элементы линейной алгебры.

Глава 1. Элементы линейной алгебры. Глава Элементы линейной алгебры Матрицы О п р е д е л е н и е Матрицей размерности m n называется прямоугольная таблица чисел, расставленных в m строк и n столбцов Обозначаются матрицы латинскими буквами,,

Подробнее

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица.

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица. ВОПРОСЫ ТЕОРИИ I. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ 1) Дать определение матрицы. Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными? Как выполняется операция транспонирования? Когда

Подробнее

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое пособие МОСКВА Кафедра математики ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое

Подробнее

Алгебра и аналитическая геометрия

Алгебра и аналитическая геометрия Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Алтайская государственная педагогическая академия»

Подробнее

ГУРЬЯНОВ Н.Г., ТЮЛЕНЕВА О.Н. АЛГЕБРА. Учебное пособие. Казань

ГУРЬЯНОВ Н.Г., ТЮЛЕНЕВА О.Н. АЛГЕБРА. Учебное пособие. Казань Казанский (Приволжский) федеральный университет Институт математики и механики им НИ Лобачевского ГУРЬЯНОВ НГ ТЮЛЕНЕВА ОН АЛГЕБРА Учебное пособие Казань УДК 7 Печатается по решению учебно-методической

Подробнее

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ . ВЕКТОРНАЯ АЛГЕБРА и АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 1. Векторная алгебра 1. Понятие вектора Вектором будем называть направленный отрезок, т. е. отрезок с заданным на нём направлением. На рисунке направление

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b,

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b, Векторы Даны координаты векторов a b c в правом ортонормированном базисе i j k Показать что векторы a b c тоже образуют базис и найти координаты вектора в базисе a b c ) ( ) a ( ) b ( ) c ( ) ) ( ) a (

Подробнее

МАТЕМАТИКА. Контрольные работы 1 и 2. Для студентов ЗФ 1 курса 1-го семестра обучения

МАТЕМАТИКА. Контрольные работы 1 и 2. Для студентов ЗФ 1 курса 1-го семестра обучения Министерство транспорта Российской Федерации (Минтранс России) Федеральное агентство воздушного транспорта (Росавиация) ФГОУ ВПО «Санкт-Петербургский государственный университет гражданской авиации» МАТЕМАТИКА

Подробнее

Высшая математика для психологов

Высшая математика для психологов Саратовский государственный университет им Н Г Чернышевского Галаев СВ, Шевцова ЮВ Высшая математика для психологов Часть (Линейная алгебра и аналитическая геометрия) Саратов 00 СОДЕРЖАНИЕ Глава Векторная

Подробнее

9. СИСТЕМЫ КООРДИНАТ

9. СИСТЕМЫ КООРДИНАТ 9 СИСТЕМЫ КООРДИНАТ 9 ПРЯМОУГОЛЬНЫЕ СИСТЕМЫ КООРДИНАТ 9 ПРЯМОУГОЛЬНЫЕ КООРДИНАТЫ ВЕКТОРОВ И ТОЧЕК Пусть в пространстве фиксирована точка O Совокупность точки O и базиса называется аффинной (декартовой)

Подробнее

ПРОГРАММА ЭКЗАМЕНА. по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX»)

ПРОГРАММА ЭКЗАМЕНА. по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX») ПРОГРАММА ЭКЗАМЕНА по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX») 1 курс 1 семестр для групп ФН11, Э4, Э9, Э7, АК1,АК2, АК3, АК4, Знание: Физико-математические науки Направление науки: Математические

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ Л.П. КАГАДИЙ, И.Л. ШИНКОВСКАЯ, И.П. ЗАЕЦ, Л.Ф.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ Л.П. КАГАДИЙ, И.Л. ШИНКОВСКАЯ, И.П. ЗАЕЦ, Л.Ф. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ ЛП КАГАДИЙ ИЛ ШИНКОВСКАЯ ИП ЗАЕЦ ЛФ СУШКО ВЫСШАЯ МАТЕМАТИКА Часть I Утверждено на заседании Ученого совета академии

Подробнее

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия»

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия» ТИПОВОЙ РАСЧЕТ «Векторная алгебра Аналитическая геометрия» Задание 1: а) показать, что векторы p, q, r образуют базис Найти координаты вектора x в этом базисе; б) проверить коллинеарность векторов и c

Подробнее

Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения:

Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения: Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения: 1. Определение вектора. Коллинеарные и компланарные векторы.. Сложение и вычитание векторов. Умножение вектора на

Подробнее

Векторное и смешанное произведение векторов

Векторное и смешанное произведение векторов Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ . Дифференциалы высоких порядков. Экзаменационный билет. Матрицы, основные понятия и определения.. Написать уравнение окружности, если точки А(;) и В(-;6) являются концами одного из диаметров.. Даны вершины

Подробнее

Лекция 4. Векторное и смешанное произведения векторов

Лекция 4. Векторное и смешанное произведения векторов Лекция 4. Векторное и смешанное произведения векторов Упорядоченная тройка, некомпланарных векторов называется правой (левой), если, приведя их к общему началу, кратчайший поворот от первого вектора ко

Подробнее

Системы линейных уравнений и матрицы второго и третьего порядков.

Системы линейных уравнений и матрицы второго и третьего порядков. Системы линейных уравнений и матрицы второго и третьего порядков. Введение: Рассмотрим систему уравнений вида: { a 11 x 1+a 12 x 2+...+a 1n x n=b 1... a m1 x 1 +a m2 x 2 +...+a mn x n =b m} Обозначим систему

Подробнее

-1-4. Дан треугольник с вершинами в точках А(1;-1;2), В(2;1;-1), С(-1;1;3). Найти его площадь и высоту, опущенную из вершины В.

-1-4. Дан треугольник с вершинами в точках А(1;-1;2), В(2;1;-1), С(-1;1;3). Найти его площадь и высоту, опущенную из вершины В. -- Доказать, что векторы e = { ;2;, e 2 = { 2;; }, e 3 = { ;2;3 } образуют базис Найти разложение в этом базисе вектора a = { ;3;2 } 2 Найти длину вектора a = 3e 2e2, где e =, e2 = 2, векторы угол в 30

Подробнее

ЛЕКЦИИ ПО ВЫСШЕЙ АЛГЕБРЕ

ЛЕКЦИИ ПО ВЫСШЕЙ АЛГЕБРЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» АИ Шерстнёва,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Практические указания по векторной алгебре (варианты курсовых работ)

Практические указания по векторной алгебре (варианты курсовых работ) Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им. К.Э.Циолковского

Подробнее

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M Лекция 8 Тема: Деление отрезка в данном отношении Ориентация плоскости Угол между векторами на ориентированной плоскости План лекции Деление отрезка в данном отношении Ориентация плоскости 3 Угол между

Подробнее

1. Найти значение матричного многочлена:

1. Найти значение матричного многочлена: 1. Найти значение матричного многочлена: f(a) = A + 5A E f(x) = x + 5x, A = ( 0 1 4 ) 5 1 A = ( 0 1 4 ) ( 0 1 4 ) = 5 1 5 1 + 0 5 + 1 ( ) ( ) + 4 1 = ( 0 + 1 0 + 4 5 0 + 1 1 + 4 ( ) 0 ( ) + 1 4 + 4 1)

Подробнее