ФИЛЬТРАЦИЯ ОДНОМЕРНЫХ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ СКОЛЬЗЯЩИМ СРЕДНИМ

Размер: px
Начинать показ со страницы:

Download "ФИЛЬТРАЦИЯ ОДНОМЕРНЫХ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ СКОЛЬЗЯЩИМ СРЕДНИМ"

Транскрипт

1 УДК И. Ф. ЛОЗОВСКАЯ ФИЛЬТРАЦИЯ ОДНОМЕРНЫХ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ СКОЛЬЗЯЩИМ СРЕДНИМ В платформенных регионах для геофизических полей может быть принята модель случайного нормального поля, однородного относительно функции корреляции. В свою очередь, функция корреляции может быть аппроксимирована колокольной функцией х. Наилучшим аппаратом восстановления такого рода полей на фоне нормального мешающего поля является линейный фильтр, оптимизированный по критерию минимума среднего квадрата ошибки. Без существенных потерь в эффективности, по сравнению с оптимальной фильтрацией, можно синтезировать квазиоптимальные фильтры. Форма частотной характеристики квазиоптимального фильтра задается аналитически, а оптимизируются по указанному выше критерию некоторые параметры. Квазиоптимальные фильтры с колокольной и прямоугольной частотными характеристиками были рассмотрены ранее 2. При этом анализ и синтез фильтров осуществлялся путем преобразований в частотной области, что в значительной мере упрощало сами преобразования. Квазиоптимальные фильтры с колокольной и прямоугольной частотными характеристиками обладают свойствами, используемыми при анализе различных аспектов фильтрации геофизических полей. Тем не менее, хотя и с недостаточно обоснованным выбором параметров, наиболее употребительным в практике геофизических работ является фильтр текущего среднего. Объясняется это тем, что при его использовании свертка заменяется интегральной суммой или просто суммой, если наблюдения дискретны. Такая специфика фильтра делает достаточно простым рассмотрение его характеристик не в частотной области, а в пространственном представлении, т. е. в зависимости от координаты х. 1 Лозовская И. Ф., Година Е. Ю. Результаты статистического анализа структурных полей. В кн.: Прикладная геофизика, вып. 70. М., «Недра», 1973, с с ил. 2 Лозовская И. Ф. Эффективность двумерной фильтрации в задачах выделения и разделения геофизических полей. В кн.: Прикладная геофизика, вып. 80. М., «Недра», 1975, с с ил. 71

2 В пространственной области задача оптимального восстановления стационарного случайного поля А (х) из аддитивной смеси с мешающим полем а (х) при заданных функциях корреляции В А (е) и В а (е) сводится к минимизации среднего квадрата ошибки, т. е. к отысканию минимума функционала а 2 = М {[А (х) - А (ж)] 2 } = М Р Т1 А (х) \ h(e)v(x e)de } OO 00 -i J J = B A (0)-2 h(e)b A (z)de + j" f h(e)h(r\)b 0 {i\ B)dedi\, OO -OO OO где M математическое ожидание; h (x) искомая переходная функция фильтра, по смыслу являющаяся плотностью весовых коэффициентов; v (х) = А (х) -\- а (х) наблюденное поле. Для фильтра (текущего или интегрального) среднего х Тогда ( h 0 при -^. <х <^-, h{x)\ ( 0 при х<-ц- и х>щ-. *о/2 *о/2 ЭСо/2 а 2 = 5 А (0)-2А 0 j B A (e)de+hl j j" B a (л-е)dedx]. (1) -*о/2 -Ж 0/2 -*о/2 Процедура оптимизации параметров А 0 и а: 0 сводится к отысканию минимума функции a 2 (h 0, х 0 ), т. е. к решению системы уравнений, которая в результате соответствующих преобразований будет иметь «о -g = - Ah 0 B A (-f-) + Ahl J Б 0 (e) de = 0, о x, ж 0/2 *o/2 g-=-4 j^(e)de + 2A 0 J J (*1 - e) de ^ = 0. О -Жо/2-ж 0/2 Положим для геофизических полей 2 В.= ДАвХ Р (- г*}, В а = Z) a ехр / - -^ гл, B v (e) = В А (г) + ВД, где 2? А, D 0 дисперсии; R A, R a радиусы корреляции выделяемого и мешающего полей, равные таким сдвигам е, при которых 1 При дискретных наблюдениях через достаточно малые Ах и замене «вертки суммой в качестве весового множителя берется произведение h B Ax. 72

3 вначение соответствующих функций корреляции уменьшаются в е 2 раз по сравнению с максимальным значением при нулевом сдвиге. После дифференцирования по пределу и вычисления определенных интегралов получим систему уравнений ho^a = 2У2 ехр Ktefl ^К^)+Ж Нг)]' (2) ho^a = Xp Ял ф ( 2^г)+^ф( 2^) + У?я Н- 2 Ш'}-')+ а где D = D A ld a ; R = R A lr a ; Ф (а) = -ф= J ехр (-y) 2 df - о интеграл вероятности. Численное решение системы (2) дает связь безразмерных величин h 0 R A и x 0 /R A с безразмерными величинами D и R, характеризующими относительные вертикальные и горизонтальные размеры аномалий разделяемых х, полей в среднем. На рис. 1 /? А приведены зависимости x 0 lr A ' LT", *- и А 0^А от R и Di?, вычисленные в точках Д = 2". Из рисунка видно, что непосредственная связь оптимальных параметров фильтра с относительными параметрами модели полей D и R быстро (Л^Ю-S-.15) ослабевает и остается лишь зависимость от произведения DR, характеризующего отношение энергий Ш Рис. 1. Зависимость оптимальных параметров фильтра х 0 и h 0 от параметров разделяемых полей. R (1) и DR (2). Шифр криьых D 8 3Z 6t Ш 256 ЕЕЗ' ЕЕЗ? 73

4 средних размеров аномалий разделяемых полей. Таким образом, кривые с параметром D = 1 для шкалы DR при достаточно больших R дают общую зависимость оптимальных параметров фильтра от параметров модели разделяемых полей. Оптимальная база осреднения х 0 для рассматриваемого диапазона параметров, не превышающая радиуса корреляции выделяемого поля R A, изменяется в несколько раз. Для значения DR л* «=«30 -г- 35, являющегося пороговым для надежного выделения средних размеров аномалий по профилю, величина х 0 составляет 0,7R A. При одной и той же средней протяженности выделяемых аномалий R A в зависимости от сочетания относительных параметров разделяемых полей, оптимальная высота h 0 весовой функции фильтра осреднения также изменяется в 4 5 раз. Для относительно больших DR произведение A 0 o> соответствующее в случае фильтра нижних частот значению частотной характеристики на нулевой частоте, близко к единице. В то время как фильтры с колокольной или прямоугольной частотными характеристиками сильно сглаживают мешающее поле, фильтр текущего среднего, имея частотную характеристику вида ^п( ш 1г) Я (СО) = k 0 X 0 -, несколько усиливает компоненты спектра в окрестности частот со = пп/х 0, где п нечетно. Такая селективность фильтра осреднения в области высоких частот приводит к заметному наличию некоторых высокочастотных составляющих в функции мешающего поля на выходе фильтра. Не останавливаясь из-за громоздкости выкладок на выводе формул, запишем для выхода фильтра текущего среднего выражения функций корреляции выделяемого В А, (е) и мешающего Д. (е) полей Ф Ф оо оо ВА Ф {Е)= J $Л(Ч)МС)ДА( -Ч-ИЖ1«5 = -оо -оо = hl J j Z) A exp _-А-( _т + в)«<mc = -x t /2-x /2 L A = С^(М^{(^+^)Ф(2 ( + )) + +Ьгг-^) ф ( 2 (^-*г))- 2 хг ф ( 2 ту+ 74

5 _2exp[-2 (JL-)'])}. (3, +"(1ГГ-^) ф ( 2й (хг-тг))- 2й тгг ф ( 2Я^) + +w (-»И* (тг+*г]+-»[-»" (тг-^-)']- Подставляя е = 0 в (3') и относя полученное выражение к дисперсии выделяемого поля, получим ту часть относительной ошибки фильтрации, которая обусловлена прохождением мешающего поля через фильтр хн-м-ш"]- 1 )]- < 4 > В соответствии с (1) окончательное выражение для квадрата полной ошибки на выходе фильтра осреднения имеет вид В7-1 - У^ (*А0 ф (-57) + Кт (МЫ 1 х *fc[* +Tnr«( M Tfr)] + х ф (-гг) + /т<^) 8 [-& ф ( 2^) + Очевидно, что дополнение к OI/DA В (5) составляет квадрат той части ошибки, которая обусловлена искажающим действием фильтра по отношению к выделяемому полю. На рис. 2 даны зависимость СТ/JADA от параметров модели на выходе фильтра осреднения и для сравнения приведены кривые ошибок оптимальных и других квазиоптимальных фильтров, а также зависимость 75

6 KwAmlM 100 от параметров... J А /опт J разделяемых полей, иллюстрирующая величину относительного расхождения между ошибками разного рода квазиоптимальной фильтрации и фильтрации оптимальной, что в свою очередь характеризует потери в эффективности за счет квазиоптимальности. Эти графики при D = 1 также могут рассматриваться как зависимости от произведения DR. Можно видеть, что величина потерь при замене оптимального фильтра квазиоптимальным прямоугольным в процентном отношении не зависит от параметров модели и составляет около 5% ом I2RM ^/^-(<5/^и/(б/у5" д ) т1 ] 100 д, г У^~ Рис. 2. Сравнительная эффективность фильтров. а суммарные ошибки фильтрации; б расхождения между суммарными ошибками для различных квазиоптимальных фильтров и ошибкой оптимальной фильтрации. Фильтры: 1 прямоугольный, 2 колокольный, з текущего среднего, 4 оптимальный 2 <* Si, 128 2SJ 512RM ЕЕЗ' ЕЕЗ* EE3 J E3«от минимально возможной ошибки. В трудных условиях фильтрации, когда величина DR сравнительно мало отличается от единицы, расхождения в ошибках фильтраций квазиоптимальным колокольным и оптимальным фильтрами отсутствуют, но по мере улучшения условий фильтрации эти расхождения быстро растут. В этом отношении фильтр текущего среднего занимает промежуточное положение, будучи при малых DR более эффективным, чем прямоугольный и менее эффективным, чем колокольный, а при больших DR, наоборот, менее эффективным, чем прямоугольный и более эффективным, чем колокольный. В области порогового значения DR «* 30 -н 40, когда становится возможным надежное разделение выделяемого и мешающего полей, эффективность всех перечисленных квазиоптимальных фильтров, в том числе и фильтра текущего среднего, практически одинакова, а именно, с величиной потерь 5 6%.

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

1. О постановке задач

1. О постановке задач 1. О постановке задач Специфика компьютерного анализа данных почти всегда, так или иначе, заключается в присутствии фактора случайности, поскольку любой эксперимент подразумевает наличие погрешностей и

Подробнее

а соответствующая характеристика, как видим, представляет собой площадь поперечного сечения элемента.

а соответствующая характеристика, как видим, представляет собой площадь поперечного сечения элемента. Понятие о геометрических характеристиках однородных поперечных сечений Центр тяжести; статические моменты; моменты инерции осевые, центробежный, полярный; моменты сопротивления; радиусы инерции Главные

Подробнее

Моделирование волн деформаций в физически нелинейной оболочке, содержащей вязкую несжимаемую жидкость

Моделирование волн деформаций в физически нелинейной оболочке, содержащей вязкую несжимаемую жидкость Электронный журнал «Труды МАИ». Выпуск 69 www.ai./siee/dy/ УДК 5.8:5.56 Моделирование волн деформаций в физически нелинейной оболочке содержащей вязкую несжимаемую жидкость Блинков Ю. А. * Иванов С. В.

Подробнее

О модельных представлениях случайных процессов с комплексным спектром

О модельных представлениях случайных процессов с комплексным спектром Вісник Харківського національного університету Серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління» УДК 59.8 89 8 с.-8 О модельных представлениях случайных процессов

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА» ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА» Тема 1. Множества. Введение в логику. Понятие функции. Кривые второго порядка. Основные понятия о множествах. Символика, ее использование.

Подробнее

ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ

ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2002. Т. 43 N- 3 59 УДК 532.6 ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ О. Е. Александров Уральский государственный технический

Подробнее

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ Случайные векторы. Закон распределения. Условные распределения случайных величин. Числовые характеристики случайных векторов. Условные математические

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика: Статистическая термодинамика Лекция 13 ЛЕКЦИЯ 13

Д. А. Паршин, Г. Г. Зегря Физика: Статистическая термодинамика Лекция 13 ЛЕКЦИЯ 13 ЛЕКЦИЯ 13 Столкновения молекул. Длина свободного пробега. Время свободного пробега. Случайные блуждания. Диффузия. Уравнение непрерывности и закон Фика. Уравнение диффузии. Столкновения молекул До сих

Подробнее

ОГЛАВЛЕНИЕ. альтернативами... 241 Контрольные вопросы... 245. Предисловие... 9. Глава 1. Определение эконометрики... 15

ОГЛАВЛЕНИЕ. альтернативами... 241 Контрольные вопросы... 245. Предисловие... 9. Глава 1. Определение эконометрики... 15 Эконометрика: Учебник/ ЕлисееваИ.И., КурышеваС.В., Костеева Т.В. и др.; Под ред. И.И.Елисеевой. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2005. 576с.: ил. Излагаются условия и методы построения

Подробнее

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Сибирский математический журнал Январь февраль, 2010. Том 51, 1 УДК 519.233.5+519.654 О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Аннотация. Рассмотрена

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

Тема6. «Определенный интеграл»

Тема6. «Определенный интеграл» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема6. «Определенный интеграл» Кафедра теоретической и прикладной математики. разработана доц. Е.Б.Дуниной

Подробнее

для выполнения лабораторной работы 4

для выполнения лабораторной работы 4 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ПРИБЛИЖЕННОЕ

Подробнее

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература...

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература... ОГЛАВЛЕНИЕ Введение................................................ 3 Глава. Неопределенный интеграл.......................... 6.. Понятие первообразной функции и неопределенного интеграла........................

Подробнее

Однокритериальные и многокритериальные задачи в управленческой деятельности. 1. Задачи однокритериальной оптимизации

Однокритериальные и многокритериальные задачи в управленческой деятельности. 1. Задачи однокритериальной оптимизации Однокритериальные и многокритериальные задачи в управленческой деятельности. Задачи однокритериальной оптимизации Существует значительное число экономических систем, в частности из области управленческой

Подробнее

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПЕРЕДАЧИ СВЕТОВОЙ ИНФОРМАЦИИ ПУТЕМ ОБМЕНА РАЗЛИЧНЫХ ВИДОВ ОПТИЧЕСКИХ СТЕПЕНЕЙ СВОБОДЫ

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПЕРЕДАЧИ СВЕТОВОЙ ИНФОРМАЦИИ ПУТЕМ ОБМЕНА РАЗЛИЧНЫХ ВИДОВ ОПТИЧЕСКИХ СТЕПЕНЕЙ СВОБОДЫ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПЕРЕДАЧИ СВЕТОВОЙ ИНФОРМАЦИИ ПУТЕМ ОБМЕНА РАЗЛИЧНЫХ ВИДОВ ОПТИЧЕСКИХ СТЕПЕНЕЙ СВОБОДЫ Б.С. Гуревич 1, С.Б. Гуревич 2 1 ЗАО «Научные приборы», С.Петербург, тел. (812)251-8839, e-mail

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Казанский государственный университет Р.Ф. Марданов ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие Издательство Казанского государственного университета 2007 УДК 517.9

Подробнее

Вопросы для подготовки к зачету по дисциплине «Моделирование систем и процессов»

Вопросы для подготовки к зачету по дисциплине «Моделирование систем и процессов» Вопросы для подготовки к зачету по дисциплине «Моделирование систем и процессов» Специальность 280102 1. Модель и оригинал. 2. Что такое модель? 3. Что такое моделирование? 4. Для чего необходим этап постановки

Подробнее

Лекция 12.Байесовский подход

Лекция 12.Байесовский подход Лекция 12.Байесовский подход Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Байесовский подход Санкт-Петербург, 2013 1 / 36 Cодержание Содержание 1 Байесовский подход к статистическому

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 3. Аналитическая геометрия на плоскости 1. Составить уравнения прямых, проходящих через точку A(4; 1) a) параллельно прямой

Подробнее

Воспользуемся формулой интегрирования по частям

Воспользуемся формулой интегрирования по частям о с http://tigt.r Зада Кузнецов Интегралы 1-27 Вычислить неопределенный интеграл: Обозним: Впользуемся формулой интегрировия по частям Зада Кузнецов Интегралы 2-27 Вычислить определенный интеграл: Обозним:.

Подробнее

ПАРАДОКС УГЛОВОЙ КРОМКИ ПРОФИЛЯ В НЕСТАЦИОНАРНОМ ПОТОКЕ. Д. Н. Горелов

ПАРАДОКС УГЛОВОЙ КРОМКИ ПРОФИЛЯ В НЕСТАЦИОНАРНОМ ПОТОКЕ. Д. Н. Горелов ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2002. Т. 43, N- 1 45 УДК 532.5:533.6 ПАРАДОКС УГЛОВОЙ КРОМКИ ПРОФИЛЯ В НЕСТАЦИОНАРНОМ ПОТОКЕ Д. Н. Горелов Омский филиал Института математики СО РАН, 644099 Омск

Подробнее

Оценка области устойчивости нелинейной системы путем разбиения линейного блока на подсистемы

Оценка области устойчивости нелинейной системы путем разбиения линейного блока на подсистемы Оценка области устойчивости нелинейной системы путем разбиения линейного блока на подсистемы АИ Баркин Аннотация Предлагается новый способ вычисления параметрической области устойчивости нелинейной системы

Подробнее

Учитель: Я говорю лишь то, что вам самим должно быть ведомо. Давай наставления только тому, кто ищет знаний.

Учитель: Я говорю лишь то, что вам самим должно быть ведомо. Давай наставления только тому, кто ищет знаний. Конфуций говорил: Учитель: Я говорю лишь то, что вам самим должно быть ведомо. Давай наставления только тому, кто ищет знаний. http://www-chemo.univer.kharkov.ua/ 1 Случайные величины и их характеристики.

Подробнее

Линейная функция: (2.2.1) График этой функции приведён на рисунке 2.2.1.

Линейная функция: (2.2.1) График этой функции приведён на рисунке 2.2.1. 2.2. ОСНОВНЫЕ ФУНКЦИИ, ВЫСТУПАЮЩИЕ КАК МОДЕЛИ ТРЕНДА Если в ходе предварительного анализа временного ряда удалось обнаружить в его динамике некоторую закономерность, возникает задача описать математически

Подробнее

НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ЛИНЕЙНОГО ФУНКЦИОНАЛА НАД H 1 В. Г. Рябых

НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ЛИНЕЙНОГО ФУНКЦИОНАЛА НАД H 1 В. Г. Рябых Сибирский математический журнал Ноябрь декабрь, 27. Том 48, 6 УДК 517.53/.57 НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ЛИНЕЙНОГО ФУНКЦИОНАЛА НАД H 1 В. Г. Рябых Аннотация. Рассмотрена

Подробнее

L интерференционной картины от такого источника дается формулой:.

L интерференционной картины от такого источника дается формулой:. Интерференция от протяженного источника света Получение интерференционной картины в оптическом диапазоне возможно только в случае, когда интерферирующие волны исходят из одного источника В схеме Юнга свет

Подробнее

ПРИЛОЖЕНИЕ 4 Расчет параметров линейного уравнения регрессии методом наименьших квадратов

ПРИЛОЖЕНИЕ 4 Расчет параметров линейного уравнения регрессии методом наименьших квадратов ПРИЛОЖЕНИЕ 4 Два математика наблюдают за дверью в помещение. Из этой двери сначала выходят два человека, а потом туда заходит один человек. Один математик другому: Сейчас туда войдет еще человек, и тогда

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

Лекция 9: Прямая в пространстве

Лекция 9: Прямая в пространстве Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению прямой в пространстве. Излагаемый

Подробнее

Часть 2. Элементы математической статистики

Часть 2. Элементы математической статистики Часть 2. Элементы математической статистики Замечательно, что науке, начинавшейся с рассмотрения азартных игр, суждено было стать важнейшим объектом человеческого знания. Лаплас Вероятность это важнейшее

Подробнее

Измерение физических величин. Неопределенности измерения, погрешности измерения

Измерение физических величин. Неопределенности измерения, погрешности измерения Измерение физических величин. Неопределенности измерения, погрешности измерения. Измерение физических величин Измерением называется сравнение данной физической величины с величиной того же рода, принятой

Подробнее

О конструировании вычислительного алгоритма для решения некорректной задачи с использованием визуализации на вычислительном комплексе МВС-1000

О конструировании вычислительного алгоритма для решения некорректной задачи с использованием визуализации на вычислительном комплексе МВС-1000 О конструировании вычислительного алгоритма для решения некорректной задачи с использованием визуализации на вычислительном комплексе МВС-1000 ИММ УрО РАН В работе изложен опыт, полученный в процессе восстановления

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ГИДРОГАЗОДИНАМИКА

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ГИДРОГАЗОДИНАМИКА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

Д. П. Ветров 1 Д. А. Кропотов 2

Д. П. Ветров 1 Д. А. Кропотов 2 решение Лекция 8. Д. П. Ветров 1 Д. А. 2 1 МГУ, ВМиК, каф. ММП 2 ВЦ РАН Спецкурс «Байесовские методы машинного обучения» План лекции решение 1 Дифференцирование матриц Задача оптимального распределения

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы Международный консорциум «Электронный университет» Московский государственный университет экономики, статистики и информатики Евразийский открытый институт КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ АН Малахов Неопределенный

Подробнее

1. Задача финансирования инвестиционных проектов

1. Задача финансирования инвестиционных проектов ' В.Н.Бурков, Л.А.Цитович МОДЕЛИРОВАНИЕ МЕХАНИЗМОВ ФИНАНСИРОВАНИЯ В УСЛОВИЯХ РЫНОЧНОЙ ЭКОНОМИКИ Введение В статье рассматриваются механизмы финансирования инвестиционных проектов и программ в рыночной

Подробнее

Факультативно. Ковариантная форма физических законов.

Факультативно. Ковариантная форма физических законов. Факультативно. Ковариантная форма физических законов. Ковариантность и контравариантность. Слово "ковариантный" означает "преобразуется так же, как что-то", а слово "контравариантный" означает "преобразуется

Подробнее

Функция. Исследование функции. 1. Найдите область определения функции у = л/х3-х

Функция. Исследование функции. 1. Найдите область определения функции у = л/х3-х Тема: «Пределы, их свойства» Знания: - определение функции; - определение чётности, нечётности; - определение периодической функции; - определение возрастающей, убывающей функции; - определение предела

Подробнее

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОВЕДЕНИЕМ РЕШЕНИЙ ОДНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ, ВОЗНИКАЮЩЕЙ В МЕХАНИКЕ ДИСКРЕТНО-КОНТИНУАЛЬНЫХ СИСТЕМ

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОВЕДЕНИЕМ РЕШЕНИЙ ОДНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ, ВОЗНИКАЮЩЕЙ В МЕХАНИКЕ ДИСКРЕТНО-КОНТИНУАЛЬНЫХ СИСТЕМ 1779 УДК 517.977.56 ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОВЕДЕНИЕМ РЕШЕНИЙ ОДНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ, ВОЗНИКАЮЩЕЙ В МЕХАНИКЕ ДИСКРЕТНО-КОНТИНУАЛЬНЫХ СИСТЕМ Е.П. Кубышкин Ярославский государственный университет

Подробнее

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ Иваново 011 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Ивановская

Подробнее

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА ЛАБОРАТОРНАЯ РАБОТА 5 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Интегральным уравнением Фредгольма рода называется уравнение x ( s, ds f (.

Подробнее

Лекция 7: Прямая на плоскости

Лекция 7: Прямая на плоскости Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта и следующие две лекции посвящены изучению прямых и плоскостей.

Подробнее

5 Транспортная задача

5 Транспортная задача 1 5 Транспортная задача Важный частный случай задач линейного программирования транспортные задачи Это математические модели разнообразных прикладных задач по оптимизации перевозок Распространенность в

Подробнее

2.18. ОПРЕДЕЛЕНИЕ РАБОТЫ ВЫХОДА ЭЛЕКТРОНА ИЗ ВОЛЬФРАМА

2.18. ОПРЕДЕЛЕНИЕ РАБОТЫ ВЫХОДА ЭЛЕКТРОНА ИЗ ВОЛЬФРАМА Лабораторная работа.8. ОПРЕДЕЛЕНИЕ РАБОТЫ ВЫХОДА ЭЛЕКТРОНА ИЗ ВОЛЬФРАМА Цель работы: построение и изучение вольтамперной характеристики вакуумного диода; исследование зависимости плотности тока насыщения

Подробнее

ϕ(r) = Q a + Q 2a a 2

ϕ(r) = Q a + Q 2a a 2 1 Урок 14 Энергия поля, Давление. Силы 1. (Задача.47 Внутри плоского конденсатора с площадью пластин S и расстоянием d между ними находится пластинка из стекла, целиком заполняющая пространство между пластинами

Подробнее

Определенный интеграл. Графический смысл перемещения.

Определенный интеграл. Графический смысл перемещения. Определенный интеграл. Графический смысл перемещения. Если тело движется прямолинейно и равномерно, то для определения перемещения тела достаточно знать его скорость и время движения. Но как подойти к

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

Интегралы Определенные и Неопределенные

Интегралы Определенные и Неопределенные 1 Интегралы Определенные и Неопределенные Опр. Интеграл функции это естественный аналог суммы последовательности. Опр. Интегрирование процесс нахождения интеграла. Зам. Интегрирование это операция обратная

Подробнее

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ООО «Резольвента» www.resolventa.ru resolventa@list.ru (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

Одномерные и двумерные массивы

Одномерные и двумерные массивы Одномерные и двумерные массивы Вариант 1 1. Дан массив целых чисел (n = 15), заполненный случайным образом числами из [-20, 50]. Удалить из него все элементы, в которых есть цифра 5. Вставить число k после

Подробнее

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений dx d ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2004 Электронный журнал, рег. N П23275 от 07.03.97 hp://www.neva.ru/journal e-mail: diff@osipenko.su.neva.ru Теория обыкновенных дифференциальных

Подробнее

УСРЕДНЕНИЕ ТРЁХМЕРНОГО ПОЛЯ НАПРАВЛЕНИЙ

УСРЕДНЕНИЕ ТРЁХМЕРНОГО ПОЛЯ НАПРАВЛЕНИЙ 9 Компьютерная оптика том УСРЕДНЕНИЕ ТРЁХМЕРНОГО ПОЛЯ НАПРАВЛЕНИЙ АВ Устинов Учреждение Российской академии наук Институт систем обработки изображений РАН Аннотация В данной статье описан метод усреднения

Подробнее

РАСЧЕТ МОЩНОСТИ ПОТЕРЬ В МОСТОВОМ ВЫПРЯМИТЕЛЕ С АКТИВНО-ЕМКОСТНОЙ НАГРУЗКОЙ. Падеров В. П., Виль А. В., Симкин А. В.

РАСЧЕТ МОЩНОСТИ ПОТЕРЬ В МОСТОВОМ ВЫПРЯМИТЕЛЕ С АКТИВНО-ЕМКОСТНОЙ НАГРУЗКОЙ. Падеров В. П., Виль А. В., Симкин А. В. РАСЧЕТ МОЩНОСТИ ПОТЕРЬ В МОСТОВОМ ВЫПРЯМИТЕЛЕ С АКТИВНО-ЕМКОСТНОЙ НАГРУЗКОЙ Падеров В. П., Виль А. В., Симкин А. В. ГОУВПО «Мордовский государственный университет им. Н. П. Огарева», г. Саранск Тел. (834)965,

Подробнее

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДЛЯ «ЧАЙНИКОВ» Часть II. Управление при случайных возмущениях. Оптимальные линейные системы. К.Ю.

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДЛЯ «ЧАЙНИКОВ» Часть II. Управление при случайных возмущениях. Оптимальные линейные системы. К.Ю. ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДЛЯ «ЧАЙНИКОВ» Часть II Управление при случайных возмущениях Оптимальные линейные системы КЮ Поляков Санкт-Петербург 9 КЮ Поляков, 9 «В ВУЗе нужно излагать материал на

Подробнее

Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок. Лекция 8

Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок. Лекция 8 Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок Лекция 8 CВОЙСТВА ОЦЕНОК КОЭФФИЦИЕНТОВ РЕГРЕССИИ Для того чтобы полученные по МНК оценки обладали некоторым полезными статистическими свойствами

Подробнее

ЗАДАЧА ЛИНЕЙНОЙ ОПТИМИЗАЦИИ C ЧАСТИЧНО ЗАДАННОЙ ИНФОРМАЦИЕЙ Н.Ю. Таратынова. Введение. f(x) = (c, x) max

ЗАДАЧА ЛИНЕЙНОЙ ОПТИМИЗАЦИИ C ЧАСТИЧНО ЗАДАННОЙ ИНФОРМАЦИЕЙ Н.Ю. Таратынова. Введение. f(x) = (c, x) max ЗАДАЧА ЛИНЕЙНОЙ ОПТИМИЗАЦИИ C ЧАСТИЧНО ЗАДАННОЙ ИНФОРМАЦИЕЙ Н.Ю. Таратынова Черноморский Филиал Московского Государственного Университета, отделение прикладной математики ул. Гер.Севастополя, 7, г.севастополь,

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

Имитационное моделирование и проблема обоснования его результатов

Имитационное моделирование и проблема обоснования его результатов Имитационное моделирование и проблема обоснования его результатов Сусляков Александр Сергеевич, гр. 522 Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Лекция 3. 2.6. Работа силы. Кинетическая энергия ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

Лекция 3. 2.6. Работа силы. Кинетическая энергия ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ 34 ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ Лекция 3.6. Работа силы. Кинетическая энергия Наряду с временнóй характеристикой силы ее импульсом, вводят пространственную, называемую работой. Как всякий вектор, сила

Подробнее

Преобразование Хафа (Hough transform)

Преобразование Хафа (Hough transform) Преобразование Хафа (Hough transform) Анна Дегтярева anna_d_666@mail.ru Вежневец Владимир vvp@graphics.cs.msu.su Содержание Введение Основная идея метода Пример: выделение прямых на изображении Пример:

Подробнее

Выдержки из книги Горбатого И.Н. «Механика» 3.2. Работа. Мощность. Кинетическая энергия. r r N =

Выдержки из книги Горбатого И.Н. «Механика» 3.2. Работа. Мощность. Кинетическая энергия. r r N = Выдержки из книги Горбатого ИН «Механика» 3 Работа Мощность Кинетическая энергия Рассмотрим частицу которая под действием постоянной силы F r совершает перемещение l r Работой силы F r на перемещении l

Подробнее

Лекция 14: Линейный оператор

Лекция 14: Линейный оператор Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к рассмотрению функций из векторного

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

Глава 7. Определенный интеграл

Глава 7. Определенный интеграл 68 Глава 7 Определенный интеграл 7 Определение и свойства К понятию определенного интеграла приводят разнообразные задачи вычисления площадей, объемов, работы, объема производства, денежных потоков и тп

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Химическая реакция и химическое равновесие с точки зрения термодинамики. (2)

Химическая реакция и химическое равновесие с точки зрения термодинамики. (2) . Лекция 1 Основной закон химической кинетики. Е. стр.7-22. Р. стр. 9-19, 23-26, 44-48. Э.-К. стр. 48-57, 70-73 Химическая реакция и химическое равновесие с точки зрения термодинамики. Скоростью химической

Подробнее

Все члены уравнения Шредингера для атома водорода (и водородоподобных

Все члены уравнения Шредингера для атома водорода (и водородоподобных Лекция Решение уравнения Шредингера для атома водорода и водородоподобных атомов Уравнение Шредингера для атома водорода Все члены уравнения Шредингера для атома водорода и водородоподобных атомов имеющих

Подробнее

С. А. Бутерин. обратная спектральная задача восстановления одномерного возмущения

С. А. Бутерин. обратная спектральная задача восстановления одномерного возмущения С А Бутерин обратная спектральная задача восстановления одномерного возмущения МАТЕМАТИКА УДК 517984 ОБРАТНАЯ СПЕКТРАЛЬНАЯ ЗАДАЧА ВОССТАНОВЛЕНИЯ ОДНОМЕРНОГО ВОЗМУЩЕНИЯ ИНТЕГРАЛЬНОГО ВОЛЬТЕРРОВА ОПЕРАТОРА

Подробнее

Лабораторная работа 47. Определение длины световой волны при помощи интерференционных колец

Лабораторная работа 47. Определение длины световой волны при помощи интерференционных колец Лабораторная работа 47 Определение длины световой волны при помощи интерференционных колец Лабораторная работа 47 Определение длины световой волны при помощи интерференционных колец Цель работы: изучение

Подробнее

Термодинамика необратимых процессов. Что мы уже знаем о равновесных и неравновесных состояниях, равновесных и неравновесных процессах?

Термодинамика необратимых процессов. Что мы уже знаем о равновесных и неравновесных состояниях, равновесных и неравновесных процессах? Лекция 5 Е. стр. 308-33, стр.39-35 Термодинамика необратимых процессов. Что мы уже знаем о равновесных и неравновесных состояниях, равновесных и неравновесных процессах? Равновесие. Состояние равновесия

Подробнее

Лекция 2: Многочлены

Лекция 2: Многочлены Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Понятие многочлена Определения Многочленом от одной переменной называется выражение вида

Подробнее

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16.1. Математическое описание какого-либо процесса нередко сопровождается выделением набора числовых его характеристик и заданием

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

ВОЗМОЖНОСТЬ ИДЕНТИФИКАЦИИ ВЯЗКОПЛАСТИЧЕСКИХ СВОЙСТВ ЖИДКОСТЕЙ В ЭКСПЕРИМЕНТАХ С КРУТИЛЬНЫМ ВИСКОЗИМЕТРОМ

ВОЗМОЖНОСТЬ ИДЕНТИФИКАЦИИ ВЯЗКОПЛАСТИЧЕСКИХ СВОЙСТВ ЖИДКОСТЕЙ В ЭКСПЕРИМЕНТАХ С КРУТИЛЬНЫМ ВИСКОЗИМЕТРОМ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2006. Т. 47, N- 6 59 УДК 532.5 ВОЗМОЖНОСТЬ ИДЕНТИФИКАЦИИ ВЯЗКОПЛАСТИЧЕСКИХ СВОЙСТВ ЖИДКОСТЕЙ В ЭКСПЕРИМЕНТАХ С КРУТИЛЬНЫМ ВИСКОЗИМЕТРОМ А. Е. Коренченко, О. А.

Подробнее

ПЛАН УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ МАТЕМАТИЧЕСКИЙ АНАЛИЗ ДЛЯ СТУДЕНТОВ 1 КУРСА СПЕЦИАЛЬНОСТИ 230101

ПЛАН УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ МАТЕМАТИЧЕСКИЙ АНАЛИЗ ДЛЯ СТУДЕНТОВ 1 КУРСА СПЕЦИАЛЬНОСТИ 230101 ПЛАН УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ МАТЕМАТИЧЕСКИЙ АНАЛИЗ ДЛЯ СТУДЕНТОВ 1 КУРСА СПЕЦИАЛЬНОСТИ 230101 РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА Основная 1. Бугров Я. С., Никольский С.М. Высшая математика. Т.2. Дифференциальное

Подробнее

Цель работы. Содержание работы. 1. Установление наличия корреляционной зависимости между случайными

Цель работы. Содержание работы. 1. Установление наличия корреляционной зависимости между случайными Цель работы Часто на практике необходимо исследовать, как изменение одной переменной величины X влияет на другую величину Y Например, как количество цемента X влияет на прочность бетона Y Такое влияние

Подробнее

Уравнивание системы нивелирных ходов способом

Уравнивание системы нивелирных ходов способом Уравнивание системы нивелирных ходов способом полигонов проф. В.В.Попова Составитель: старший преподаватель кафедры астрономии и космической геодезии Минсафин Гумер Зуфарович Уравнивание Уравниванием геодезических

Подробнее

где ω D / I cобственная циклическая частота колебаний рамки. Период

где ω D / I cобственная циклическая частота колебаний рамки. Период Лабораторная работа 05 Крутильный маятник Цель работы: определение моментов инерции крутильного маятника, твердых тел различной формы и проверка теоремы Штейнера. Методика эксперимента Крутильный маятник

Подробнее

УВЕЛИЧЕНИЕ ОТНОШЕНИЯ СИГНАЛ/ШУМ МЕТОДОМ ПОСЛЕДОВАТЕЛЬНОГО ВЫЧИСЛЕНИЯ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ

УВЕЛИЧЕНИЕ ОТНОШЕНИЯ СИГНАЛ/ШУМ МЕТОДОМ ПОСЛЕДОВАТЕЛЬНОГО ВЫЧИСЛЕНИЯ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ,, УДК 6.39 УВЕЛИЧЕНИЕ ОТНОШЕНИЯ СИГНАЛ/ШУМ МЕТОДОМ ПОСЛЕДОВАТЕЛЬНОГО ВЫЧИСЛЕНИЯ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ С. А. Останин Алтайский государственный университет, г. Барнаул Получена

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Вопрос 1. Вопросы к письменному коллоквиуму «Разработка эмпирических моделей»

Вопрос 1. Вопросы к письменному коллоквиуму «Разработка эмпирических моделей» Вопрос 1 Определение коэффициентов линейных регрессионных моделей при обработке результатов пассивного эксперимента. Вывод матричных формул для определения коэффициентов регрессии. Проверка адекватности

Подробнее

Управление ценовыми скидками в торговых сетях

Управление ценовыми скидками в торговых сетях 158 Управление, экономика ТРУДЫ МФТИ. 2014. Том 6, 2 УДК 519.86:658.8.03 С. Л. Семаков, А. С. Семаков Московский физико-технический институт (государственный университет) Управление ценовыми скидками в

Подробнее

k 0, - условие текучести Мизеса (2) 1 1

k 0, - условие текучести Мизеса (2) 1 1 Применение параллельных алгоритмов для решения системы линейных алгебраических уравнений с ленточной матрицей итерационными методами на кластерной системе Демешко И.П. Акимова Е.Н. Коновалов А.В. 1. Введение

Подробнее

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ Министерство образования и науки Украины Севастопольский национальный технический университет ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ для студентов всех специальностей очной формы

Подробнее

ЭВОЛЮЦИЯ ПОЛЯ ТЕЧЕНИЯ ОКОЛО КРУГОВОГО ЦИЛИНДРА И СФЕРЫ ПРИ МГНОВЕННОМ СТАРТЕ СО СВЕРХЗВУКОВОЙ СКОРОСТЬЮ

ЭВОЛЮЦИЯ ПОЛЯ ТЕЧЕНИЯ ОКОЛО КРУГОВОГО ЦИЛИНДРА И СФЕРЫ ПРИ МГНОВЕННОМ СТАРТЕ СО СВЕРХЗВУКОВОЙ СКОРОСТЬЮ 44 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2004. Т. 45, N- 3 УДК 533.6.011.8 ЭВОЛЮЦИЯ ПОЛЯ ТЕЧЕНИЯ ОКОЛО КРУГОВОГО ЦИЛИНДРА И СФЕРЫ ПРИ МГНОВЕННОМ СТАРТЕ СО СВЕРХЗВУКОВОЙ СКОРОСТЬЮ В. А. Башкин, И. В.

Подробнее

Глава 3. Определители

Глава 3. Определители Глава Определители Перестановки Q Рассмотрим множество первых натуральных чисел которое обозначим как Определение Перестановкой P множества элементов из Q назовем любое расположение этих элементов в некотором

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 22 ЛЕКЦИЯ 22

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 22 ЛЕКЦИЯ 22 ЛЕКЦИЯ Электростатическая энергия зарядов. Мультипольное разложение. Электрический диполь. Энергия системы зарядов во внешнем поле. Силы, действующие на диполь в электрическом поле. Взаимодействие двух

Подробнее

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Министерство образования Российской Федерации Московский физико-технический институт Кафедра высшей математики РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Методические указания и оптимальные

Подробнее

высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1

высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1 Негосударственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1 Линейная алгебра. Аналитическая

Подробнее

УСТОЙЧИВОСТЬ СИСТЕМЫ «ВЫСОКИЙ ОБЪЕКТ ОСНОВАНИЕ» С УЧЕТОМ ЖЕСТКОСТИ ОСНОВАНИЯ

УСТОЙЧИВОСТЬ СИСТЕМЫ «ВЫСОКИЙ ОБЪЕКТ ОСНОВАНИЕ» С УЧЕТОМ ЖЕСТКОСТИ ОСНОВАНИЯ УДК 539.3 К.А. Стрельникова УСТОЙЧИВОСТЬ СИСТЕМЫ «ВЫСОКИЙ ОБЪЕКТ ОСНОВАНИЕ» С УЧЕТОМ ЖЕСТКОСТИ ОСНОВАНИЯ Рассматривается влияние жесткости основания на устойчивость системы «высокий объект основание» для

Подробнее

Задача скачана с сайта www.matburo.ru МатБюро - Решение задач по высшей математике

Задача скачана с сайта www.matburo.ru МатБюро - Решение задач по высшей математике Тема: Статистика Задача скачана с сайта MatBuroru ЗАДАНИЕ Имеются данные 6%-ного механического отбора магазинов торговой фирмы по стоимости основных фондов (млрд руб): 4,,9 3,1 3,9 1,7,8 1,8,9 7,1,5 4,7

Подробнее

ТЕМА 2. Цепи переменного тока. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания в контуре

ТЕМА 2. Цепи переменного тока. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания в контуре ТЕМА 2. Цепи переменного тока П.1. Гармонический ток П.2. Комплексный ток. Комплексное напряжение. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания

Подробнее

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B).

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B). ЛАБОРАТОРНАЯ РАБОТА ТЕОРЕМА ФУБИНИ. ПРОСТРАНСТВА Lp, I. О с н о в н ы е п о н я т и я и т е о р е м ы Определение. Пусть и Y множества, и Y меры, заданные на полукольцах S и S Y подмножеств множеств и

Подробнее

ОБРАТНАЯ ЗАДАЧА СЕЙСМИЧЕСКОГО МЕТОДА ОТРАЖЕННЫХ ВОЛН ДЛЯ СРЕД С ПЕРЕМЕННЫМИ СКОРОСТЯМИ СЕЙСМИЧЕСКИХ ВОЛН

ОБРАТНАЯ ЗАДАЧА СЕЙСМИЧЕСКОГО МЕТОДА ОТРАЖЕННЫХ ВОЛН ДЛЯ СРЕД С ПЕРЕМЕННЫМИ СКОРОСТЯМИ СЕЙСМИЧЕСКИХ ВОЛН УДК 550.834.5 В. Б. ПИЙП ОБРАТНАЯ ЗАДАЧА СЕЙСМИЧЕСКОГО МЕТОДА ОТРАЖЕННЫХ ВОЛН ДЛЯ СРЕД С ПЕРЕМЕННЫМИ СКОРОСТЯМИ СЕЙСМИЧЕСКИХ ВОЛН Для некоторых класс%& скоростных функций известны методы решения следующей

Подробнее