ФИЛЬТРАЦИЯ ОДНОМЕРНЫХ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ СКОЛЬЗЯЩИМ СРЕДНИМ

Размер: px
Начинать показ со страницы:

Download "ФИЛЬТРАЦИЯ ОДНОМЕРНЫХ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ СКОЛЬЗЯЩИМ СРЕДНИМ"

Транскрипт

1 УДК И. Ф. ЛОЗОВСКАЯ ФИЛЬТРАЦИЯ ОДНОМЕРНЫХ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ СКОЛЬЗЯЩИМ СРЕДНИМ В платформенных регионах для геофизических полей может быть принята модель случайного нормального поля, однородного относительно функции корреляции. В свою очередь, функция корреляции может быть аппроксимирована колокольной функцией х. Наилучшим аппаратом восстановления такого рода полей на фоне нормального мешающего поля является линейный фильтр, оптимизированный по критерию минимума среднего квадрата ошибки. Без существенных потерь в эффективности, по сравнению с оптимальной фильтрацией, можно синтезировать квазиоптимальные фильтры. Форма частотной характеристики квазиоптимального фильтра задается аналитически, а оптимизируются по указанному выше критерию некоторые параметры. Квазиоптимальные фильтры с колокольной и прямоугольной частотными характеристиками были рассмотрены ранее 2. При этом анализ и синтез фильтров осуществлялся путем преобразований в частотной области, что в значительной мере упрощало сами преобразования. Квазиоптимальные фильтры с колокольной и прямоугольной частотными характеристиками обладают свойствами, используемыми при анализе различных аспектов фильтрации геофизических полей. Тем не менее, хотя и с недостаточно обоснованным выбором параметров, наиболее употребительным в практике геофизических работ является фильтр текущего среднего. Объясняется это тем, что при его использовании свертка заменяется интегральной суммой или просто суммой, если наблюдения дискретны. Такая специфика фильтра делает достаточно простым рассмотрение его характеристик не в частотной области, а в пространственном представлении, т. е. в зависимости от координаты х. 1 Лозовская И. Ф., Година Е. Ю. Результаты статистического анализа структурных полей. В кн.: Прикладная геофизика, вып. 70. М., «Недра», 1973, с с ил. 2 Лозовская И. Ф. Эффективность двумерной фильтрации в задачах выделения и разделения геофизических полей. В кн.: Прикладная геофизика, вып. 80. М., «Недра», 1975, с с ил. 71

2 В пространственной области задача оптимального восстановления стационарного случайного поля А (х) из аддитивной смеси с мешающим полем а (х) при заданных функциях корреляции В А (е) и В а (е) сводится к минимизации среднего квадрата ошибки, т. е. к отысканию минимума функционала а 2 = М {[А (х) - А (ж)] 2 } = М Р Т1 А (х) \ h(e)v(x e)de } OO 00 -i J J = B A (0)-2 h(e)b A (z)de + j" f h(e)h(r\)b 0 {i\ B)dedi\, OO -OO OO где M математическое ожидание; h (x) искомая переходная функция фильтра, по смыслу являющаяся плотностью весовых коэффициентов; v (х) = А (х) -\- а (х) наблюденное поле. Для фильтра (текущего или интегрального) среднего х Тогда ( h 0 при -^. <х <^-, h{x)\ ( 0 при х<-ц- и х>щ-. *о/2 *о/2 ЭСо/2 а 2 = 5 А (0)-2А 0 j B A (e)de+hl j j" B a (л-е)dedx]. (1) -*о/2 -Ж 0/2 -*о/2 Процедура оптимизации параметров А 0 и а: 0 сводится к отысканию минимума функции a 2 (h 0, х 0 ), т. е. к решению системы уравнений, которая в результате соответствующих преобразований будет иметь «о -g = - Ah 0 B A (-f-) + Ahl J Б 0 (e) de = 0, о x, ж 0/2 *o/2 g-=-4 j^(e)de + 2A 0 J J (*1 - e) de ^ = 0. О -Жо/2-ж 0/2 Положим для геофизических полей 2 В.= ДАвХ Р (- г*}, В а = Z) a ехр / - -^ гл, B v (e) = В А (г) + ВД, где 2? А, D 0 дисперсии; R A, R a радиусы корреляции выделяемого и мешающего полей, равные таким сдвигам е, при которых 1 При дискретных наблюдениях через достаточно малые Ах и замене «вертки суммой в качестве весового множителя берется произведение h B Ax. 72

3 вначение соответствующих функций корреляции уменьшаются в е 2 раз по сравнению с максимальным значением при нулевом сдвиге. После дифференцирования по пределу и вычисления определенных интегралов получим систему уравнений ho^a = 2У2 ехр Ktefl ^К^)+Ж Нг)]' (2) ho^a = Xp Ял ф ( 2^г)+^ф( 2^) + У?я Н- 2 Ш'}-')+ а где D = D A ld a ; R = R A lr a ; Ф (а) = -ф= J ехр (-y) 2 df - о интеграл вероятности. Численное решение системы (2) дает связь безразмерных величин h 0 R A и x 0 /R A с безразмерными величинами D и R, характеризующими относительные вертикальные и горизонтальные размеры аномалий разделяемых х, полей в среднем. На рис. 1 /? А приведены зависимости x 0 lr A ' LT", *- и А 0^А от R и Di?, вычисленные в точках Д = 2". Из рисунка видно, что непосредственная связь оптимальных параметров фильтра с относительными параметрами модели полей D и R быстро (Л^Ю-S-.15) ослабевает и остается лишь зависимость от произведения DR, характеризующего отношение энергий Ш Рис. 1. Зависимость оптимальных параметров фильтра х 0 и h 0 от параметров разделяемых полей. R (1) и DR (2). Шифр криьых D 8 3Z 6t Ш 256 ЕЕЗ' ЕЕЗ? 73

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 средних размеров аномалий разделяемых полей. Таким образом, кривые с параметром D = 1 для шкалы DR при достаточно больших R дают общую зависимость оптимальных параметров фильтра от параметров модели разделяемых полей. Оптимальная база осреднения х 0 для рассматриваемого диапазона параметров, не превышающая радиуса корреляции выделяемого поля R A, изменяется в несколько раз. Для значения DR л* «=«30 -г- 35, являющегося пороговым для надежного выделения средних размеров аномалий по профилю, величина х 0 составляет 0,7R A. При одной и той же средней протяженности выделяемых аномалий R A в зависимости от сочетания относительных параметров разделяемых полей, оптимальная высота h 0 весовой функции фильтра осреднения также изменяется в 4 5 раз. Для относительно больших DR произведение A 0 o> соответствующее в случае фильтра нижних частот значению частотной характеристики на нулевой частоте, близко к единице. В то время как фильтры с колокольной или прямоугольной частотными характеристиками сильно сглаживают мешающее поле, фильтр текущего среднего, имея частотную характеристику вида ^п( ш 1г) Я (СО) = k 0 X 0 -, несколько усиливает компоненты спектра в окрестности частот со = пп/х 0, где п нечетно. Такая селективность фильтра осреднения в области высоких частот приводит к заметному наличию некоторых высокочастотных составляющих в функции мешающего поля на выходе фильтра. Не останавливаясь из-за громоздкости выкладок на выводе формул, запишем для выхода фильтра текущего среднего выражения функций корреляции выделяемого В А, (е) и мешающего Д. (е) полей Ф Ф оо оо ВА Ф {Е)= J $Л(Ч)МС)ДА( -Ч-ИЖ1«5 = -оо -оо = hl J j Z) A exp _-А-( _т + в)«<mc = -x t /2-x /2 L A = С^(М^{(^+^)Ф(2 ( + )) + +Ьгг-^) ф ( 2 (^-*г))- 2 хг ф ( 2 ту+ 74

5 _2exp[-2 (JL-)'])}. (3, +"(1ГГ-^) ф ( 2й (хг-тг))- 2й тгг ф ( 2Я^) + +w (-»И* (тг+*г]+-»[-»" (тг-^-)']- Подставляя е = 0 в (3') и относя полученное выражение к дисперсии выделяемого поля, получим ту часть относительной ошибки фильтрации, которая обусловлена прохождением мешающего поля через фильтр хн-м-ш"]- 1 )]- < 4 > В соответствии с (1) окончательное выражение для квадрата полной ошибки на выходе фильтра осреднения имеет вид В7-1 - У^ (*А0 ф (-57) + Кт (МЫ 1 х *fc[* +Tnr«( M Tfr)] + х ф (-гг) + /т<^) 8 [-& ф ( 2^) + Очевидно, что дополнение к OI/DA В (5) составляет квадрат той части ошибки, которая обусловлена искажающим действием фильтра по отношению к выделяемому полю. На рис. 2 даны зависимость СТ/JADA от параметров модели на выходе фильтра осреднения и для сравнения приведены кривые ошибок оптимальных и других квазиоптимальных фильтров, а также зависимость 75

6 KwAmlM 100 от параметров... J А /опт J разделяемых полей, иллюстрирующая величину относительного расхождения между ошибками разного рода квазиоптимальной фильтрации и фильтрации оптимальной, что в свою очередь характеризует потери в эффективности за счет квазиоптимальности. Эти графики при D = 1 также могут рассматриваться как зависимости от произведения DR. Можно видеть, что величина потерь при замене оптимального фильтра квазиоптимальным прямоугольным в процентном отношении не зависит от параметров модели и составляет около 5% ом I2RM ^/^-(<5/^и/(б/у5" д ) т1 ] 100 д, г У^~ Рис. 2. Сравнительная эффективность фильтров. а суммарные ошибки фильтрации; б расхождения между суммарными ошибками для различных квазиоптимальных фильтров и ошибкой оптимальной фильтрации. Фильтры: 1 прямоугольный, 2 колокольный, з текущего среднего, 4 оптимальный 2 <* Si, 128 2SJ 512RM ЕЕЗ' ЕЕЗ* EE3 J E3«от минимально возможной ошибки. В трудных условиях фильтрации, когда величина DR сравнительно мало отличается от единицы, расхождения в ошибках фильтраций квазиоптимальным колокольным и оптимальным фильтрами отсутствуют, но по мере улучшения условий фильтрации эти расхождения быстро растут. В этом отношении фильтр текущего среднего занимает промежуточное положение, будучи при малых DR более эффективным, чем прямоугольный и менее эффективным, чем колокольный, а при больших DR, наоборот, менее эффективным, чем прямоугольный и более эффективным, чем колокольный. В области порогового значения DR «* 30 -н 40, когда становится возможным надежное разделение выделяемого и мешающего полей, эффективность всех перечисленных квазиоптимальных фильтров, в том числе и фильтра текущего среднего, практически одинакова, а именно, с величиной потерь 5 6%.

ЭЛЕКТРОННЫЕ И ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА

ЭЛЕКТРОННЫЕ И ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА ЭЛЕКТРОННЫЕ И ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА УДК 61.396:681.33 С. И. ЗИАТДИНОВ СИНТЕЗ ОПТИМАЛЬНЫХ ЭКСТРАПОЛЯТОРОВ Рассматривается вопрос оптимизации параметров кстраполятора с учетом как ширины спектра, так

Подробнее

Тестовые задания по математике для студентов 1 2 курсов СГГА

Тестовые задания по математике для студентов 1 2 курсов СГГА Тестовые задания по математике для студентов курсов СГГА Пояснение к выполнению тестового задания. Прочитайте внимательно текст задания.. Если в ответах указан символ «Ο» то нужно выбрать единственный

Подробнее

Часть 3 КОРРЕЛЯЦИОННАЯ ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ

Часть 3 КОРРЕЛЯЦИОННАЯ ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ Часть 3 КОРРЕЛЯЦИОННАЯ ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ В курсе "Теория вероятностей" корреляция между двумя случайными величинами определяется математическим ожиданием их произведения Если в качестве двух случайных

Подробнее

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

3. Используемые методы обучения

3. Используемые методы обучения 3.2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПРЕПОДАВАТЕЛЯМ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ Семестр I Раздел 1. Векторная и линейная алгебра. Практическое занятие 1 1. Цель: Рассмотреть задачи на вычисление определителей второго

Подробнее

Управление дистанционного обучения и повышения квалификации. Математика ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Управление дистанционного обучения и повышения квалификации. Математика ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине

Подробнее

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ 54 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье Некоторые свойства преобразования Фурье 3 Спектральный метод

Подробнее

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления УДК 6-5 Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления К.А. Рыбаков В статье вводится понятие спектральных характеристик линейных

Подробнее

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Подробнее

В.Н. Исаков Статистическая теория радиотехнических систем (курс лекций) strts-online.narod.ru

В.Н. Исаков Статистическая теория радиотехнических систем (курс лекций) strts-online.narod.ru 3. Случайные сигналы и помехи в радиотехнических системах 3.1. Случайные процессы и их основные характеристики Помехой называют стороннее колебание, затрудняющее приѐм и обработку сигнала. Помехи могут

Подробнее

1.4. СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ

1.4. СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ ЛЕКЦИЯ Сообщения, сигналы, помехи как случайные явления Случайные величины, вектора и процессы 4 СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ Как уже отмечалось выше основная проблематика теории РТС это

Подробнее

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ ООП: 120103.65 Космическая геодезия Дисциплина: Математика Время выполнения теста: 80 минут Количество заданий: 45 ТЕМАТИЧЕСКАЯ СТРУКТУРА АПИМ N ДЕ Наименование

Подробнее

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить функции плотности и числовые характеристики случайных величин имеющих равномерное показательное нормальное и гамма-распределение

Подробнее

Спектральный анализ непериодических сигналов. f(t) t 2. Ранее нами для периодического сигнала был получен ряд Фурье в комплексной форме: 1 2 T

Спектральный анализ непериодических сигналов. f(t) t 2. Ранее нами для периодического сигнала был получен ряд Фурье в комплексной форме: 1 2 T Ястребов НИ Каф ТОР, РТФ, КПИ Спектральный анализ непериодических сигналов () Т Ранее нами для периодического сигнала был получен ряд Фурье в комплексной форме: () jω C& e, где C & jω () e Поскольку интеграл

Подробнее

Полосовая фильтрация 1. Полосовая фильтрация

Полосовая фильтрация 1. Полосовая фильтрация Полосовая фильтрация 1 Полосовая фильтрация В предыдущих разделах была рассмотрена фильтрация быстрых вариаций сигнала (сглаживание) и его медленных вариаций (устранение тренда). Иногда требуется выделить

Подробнее

Контрольная работа выполнена на сайте МатБюро: Специально для библиотеки материалов MathProfi.com. Вариант 15

Контрольная работа выполнена на сайте МатБюро:  Специально для библиотеки материалов MathProfi.com. Вариант 15 Специально для библиотеки материалов MathProf.com Российская академия народного хозяйства и государственной службы при Президенте РФ Международный институт государственной службы и управления Задание 2

Подробнее

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Учебная дисциплина Б.2.1 - Математика Профиль подготовки: Производственный менеджмент Тематика

Подробнее

Часть 5 МЕТОДЫ ОПРЕДЕЛЕНИЯ ФУНКЦИИ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ

Часть 5 МЕТОДЫ ОПРЕДЕЛЕНИЯ ФУНКЦИИ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ Часть 5 МЕТОДЫ ОПРЕДЕЛЕНИЯ ФУНКЦИИ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ Функции спектральной плотности можно определять тремя различными эквивалентными способами которые будут рассмотрены в последующих разделах: с помощью

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к экзаменам по дисциплине «Математика» I семестр

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к экзаменам по дисциплине «Математика» I семестр 2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к экзаменам по дисциплине «Математика» I Элементы линейной алгебры I семестр 1. Определители. Свойства определителей. 2. Матрицы. Виды

Подробнее

6. Оптимальные линейные цепи (фильтры)

6. Оптимальные линейные цепи (фильтры) ВН Исаков Статистическая теория радиотехнических систем (курс лекций) strts-onlinenarodru 6 Оптимальные линейные цепи (фильтры) 61 Понятие оптимального фильтра его характеристики Пусть на вход линейной

Подробнее

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Случайные величины Функции распределения вероятностей случайных величин Простейшая модель физического эксперимента последовательность независимых опытов (испытаний

Подробнее

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков.

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков. Лекция 8 Тема Сравнение случайных величин или признаков. Содержание темы Аналогия дискретных СВ и выборок Виды зависимостей двух случайных величин (выборок) Функциональная зависимость. Линии регрессии.

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

Определение области разброса фазовых координат механической системы /453448

Определение области разброса фазовых координат механической системы /453448 Определение области разброса фазовых координат механической системы 77-48/453448 Инженерный вестник # 0, октябрь 0 Беляев А. В., Тушев О. Н. УДК 69.7.07 Россия, МГТУ им. Н.Э. Баумана belaev@bstu.ru Излагается

Подробнее

Обоснование выбора желаемого характеристического уравнения замкнутой динамической системы

Обоснование выбора желаемого характеристического уравнения замкнутой динамической системы АВТОМАТИКА И ПРОГРАММНАЯ ИНЖЕНЕРИЯ., (4) Обоснование выбора желаемого характеристического уравнения замкнутой динамической системы,, Жмудь В.А. ФГБОУ ВПО НГТУ, НИУ НГУ, ОАО «НИПС», Россия oao_nip@bk.ru

Подробнее

Статистическая радиофизика и теория информации

Статистическая радиофизика и теория информации Статистическая радиофизика и теория информации Лекция 8 12. Линейные системы. Спектральный и временной подходы. Линейными называются системы или устройства, процессы в которых можно описать при помощи

Подробнее

ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ.

ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ. УДК 63966 ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ Г Ф Савинов В работе получен алгоритм оптимального фильтра для случая когда входные воздействия и шумы представляют собой случайные гауссовы

Подробнее

на произведение вероятностей d P dp

на произведение вероятностей d P dp .. Распределение Максвелла по абсолютным значениям скорости.... Функция распределения по скоростям. Разбиение вероятности dp на произведение вероятностей d P dp U позволяет найти распределение молекул

Подробнее

1. Многочлен Лагранжа. Пусть из эксперимента получены значения неизвестной функции

1. Многочлен Лагранжа. Пусть из эксперимента получены значения неизвестной функции 1 Многочлен Лагранжа Пусть из эксперимента получены значения неизвестной функции ( x i = 01 x [ a b] i i i Возникает задача приближенного восстановления неизвестной функции ( x в произвольной точке x Для

Подробнее

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 43 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье Некоторые свойства преобразования Фурье 3 Спектральный метод

Подробнее

Работа 1.3 Исследование зависимостей T(l) и A(t) математического маятника

Работа 1.3 Исследование зависимостей T(l) и A(t) математического маятника Работа 13 Исследование зависимостей T(l) и A(t) математического маятника Оборудование: штатив, маятник, линейка, электронный счетчик-секундомер Описание метода Графический метод является наиболее простым

Подробнее

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Выполнил: студент 3-го курса, гр. АК3-51 Ягубов Роман Борисович Проверил:

Подробнее

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО ЛЕКЦИЯ. Основные статистические характеристики показателей надёжности ЭТО Математический аппарат теории надёжности основывается главным образом на теоретико-вероятностных методах, поскольку сам процесс

Подробнее

Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация)

Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация) Аппроксимация по МНК Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация) Одна из главных задач математической статистики нахождение закона распределения случайной

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

Приложения поверхностного интеграла 1-го типа

Приложения поверхностного интеграла 1-го типа Глава 6 Приложения поверхностного интеграла 1-го типа 6.1 Необходимые сведения На прошлых занятиях мы уже освоили методы вычисления поверхностных интегралов 1-го типа, оперируя при этом преимущественно

Подробнее

4. ПЕРЕХОДНАЯ ХАРАКТЕРИСТИКА МЕМБРАНЫ

4. ПЕРЕХОДНАЯ ХАРАКТЕРИСТИКА МЕМБРАНЫ 4. ПЕРЕХОДНАЯ ХАРАКТЕРИСТИКА МЕМБРАНЫ 4.1 Временные характеристики динамической системы Для оценки динамических свойств системы и отдельных звеньев принято исследовать их реакцию на типовые входные воздействия,

Подробнее

Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА

Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА Решение вопросов организации эффективной добычи полезных ископаемых требует изучения закономерностей движения воды, тепла, распределен

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

1. Кратные интегралы

1. Кратные интегралы Пособие предназначено для студентов заочников КГТУ второго года обучения. В пособии в краткой и доступной форме рассмотрены темы: Кратные интегралы, Криволинейные интегралы, Ряды, Теория вероятностей.

Подробнее

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной Лекция 6 План лекции.3.3 Дифференциальная функция распределения непрерывных случайных величин.4 Числовые характеристики случайных.4. Математическое ожидание и его свойства..4. Дисперсия случайных величин

Подробнее

Лекция 12. Байесовские сети Методы анализа выживаемости. Лектор Сенько Олег Валентинович

Лекция 12. Байесовские сети Методы анализа выживаемости. Лектор Сенько Олег Валентинович Лекция 12 Байесовские сети Методы анализа выживаемости Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й курс, III поток Сенько Олег Валентинович () МОТП, лекция 12

Подробнее

2. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА 2.1. Содержание дисциплины.

2. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА 2.1. Содержание дисциплины. 1. Цель и задачи дисциплины В процессе изучения курса студенты получают представление об общих вопросах теории линейных преобразований, одноканальной фильтрации, элементах теории интерференционных систем,

Подробнее

РАСЧЕТ ХАРАКТЕРИСТИК ВИБРОАКТИВНОСТИ БУКСЫ ВАГОНА

РАСЧЕТ ХАРАКТЕРИСТИК ВИБРОАКТИВНОСТИ БУКСЫ ВАГОНА УДК 625.2.001.24, 625.23/24 РАСЧЕТ ХАРАКТЕРИСТИК ВИБРОАКТИВНОСТИ БУКСЫ ВАГОНА А.М. Захезин, Д.Ю. Иванов Рассмотрена математическая модель виброактивности буксы вагона при его движении по рельсам. Представленная

Подробнее

Методические материалы примеры билетов КР и вариантов РГР по курсу «Математические методы обработки цифровых сигналов»

Методические материалы примеры билетов КР и вариантов РГР по курсу «Математические методы обработки цифровых сигналов» Методические материалы примеры билетов КР и вариантов РГР по курсу «Математические методы обработки цифровых сигналов» Рубежный контроль 1 1. Разложите вектор (,1, 1 по векторам 1 ) ( 1,2,1), (,2,3) 1,

Подробнее

Материалы V Международной научно-технической школы-конференции, ноября 2008 г. МОСКВА МОЛОДЫЕ УЧЕНЫЕ , часть 4 МИРЭА

Материалы V Международной научно-технической школы-конференции, ноября 2008 г. МОСКВА МОЛОДЫЕ УЧЕНЫЕ , часть 4 МИРЭА Материалы Международной научно-технической школы-конференции, 3 ноября 8 г. МОСКВА МОЛОДЫЕ УЧЕНЫЕ 8, часть 4 МИРЭА РЕГУЛЯРИЗИРУЮЩИЙ АЛГОРИТМ ОПРЕДЕЛЕНИЯ ВЕСОВОЙ ФУНКЦИИ ОПТИМАЛЬНОГО ПРИЕМНИКА ДВОИЧНЫХ

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Г. М. Бездудный, В. А. Знаменский,

Подробнее

2.2. Распределение Максвелла по абсолютным значениям скорости. P =

2.2. Распределение Максвелла по абсолютным значениям скорости. P = .. Распределение Максвелла по абсолютным значениям скорости.... Функция распределения по скоростям. Разбиение вероятности P на произведение вероятностей P P U позволяет найти распределение молекул газа

Подробнее

Лекция 3. Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович

Лекция 3. Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович Лекция 3 Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й курс, III поток Сенько Олег Валентинович () МОТП, лекция

Подробнее

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ТЕРСКИЙ ФИЛИАЛ "КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ В.М.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ТЕРСКИЙ ФИЛИАЛ КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ В.М. МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ТЕРСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСВЕННЫЙ

Подробнее

Лекция Сглаживание экспериментальных зависимостей. 6. Сглаживание экспериментальных зависимостей

Лекция Сглаживание экспериментальных зависимостей. 6. Сглаживание экспериментальных зависимостей Лекция 5 6. Сглаживание экспериментальных зависимостей 6.. Метод наименьших квадратов 6... Теоретическое обоснование метода наименьших квадратов 7. Проверка статистических гипотез 7..Критерий согласия

Подробнее

ПРИМЕНЕНИЕ МЕТОДА МОНТЕ-КАРЛО ДЛЯ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

ПРИМЕНЕНИЕ МЕТОДА МОНТЕ-КАРЛО ДЛЯ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ ПРИМЕНЕНИЕ МЕТОДА МОНТЕ-КАРЛО ДЛЯ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ Крючкова И.В., Молчанова Н.Н. Оренбургский государственный университет, г. Оренбург Метод Монте-Карло - это численный метод для решения

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Б а й е с о в с к а я к л а с с и ф и к а ц и я

Б а й е с о в с к а я к л а с с и ф и к а ц и я МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 3 5 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Программа учебной дисциплины «Математика» предназначена для реализации государственных требований к минимуму содержания и уровню подготовки выпускников по специальностям среднего

Подробнее

7 Корреляционный и регрессионный анализ

7 Корреляционный и регрессионный анализ 7 Корреляционный и регрессионный анализ. Корреляционный анализ статистических данных.. Регрессионный анализ статистических данных. Статистические связи между переменными можно изучать методами дисперсионного,

Подробнее

Лекция 16. ОПЕРАТОРНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Лекция 16. ОПЕРАТОРНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 64 Лекция 6 ОПЕРАТОРНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ План Преобразование Лапласа Свойства преобразования Лапласа 3 Операторный метод анализа электрических цепей 4 Определение оригинала по известному

Подробнее

Лекция 3. Математическое описание систем управления

Лекция 3. Математическое описание систем управления Лекция 3 Математическое описание систем управления В теории управления при анализе и синтезе систем управления имеют дело с их математической моделью Математическая модель САУ представляет собой уравнения

Подробнее

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

Подробнее

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость .. Линейная корреляционная зависимость Часто на практике требуется установить вид и оценить силу зависимости изучаемой случайной величины Y от одной или нескольких других величин (случайных или неслучайных).

Подробнее

5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР

5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР 5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР Решение уравнения Шредингера для частицы в прямоугольной бесконечно глубокой потенциальной яме (рис.4) шириной дает для энергии лишь дискретные значения n n

Подробнее

Л и н е й н ы е к л а с с и ф и к а т о р ы

Л и н е й н ы е к л а с с и ф и к а т о р ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА

Подробнее

НЕЛИНЕЙНЫЙ МАССОПЕРЕНОС С ОБРАТИМОЙ АДСОРБЦИЕЙ НА ПОЛУПРОНИЦАЕМЫХ МЕМБРАНАХ В ПРОТОЧНЫХ ФИЛЬТРАХ. Поляков Ю.С.*, Казенин Д.А.**

НЕЛИНЕЙНЫЙ МАССОПЕРЕНОС С ОБРАТИМОЙ АДСОРБЦИЕЙ НА ПОЛУПРОНИЦАЕМЫХ МЕМБРАНАХ В ПРОТОЧНЫХ ФИЛЬТРАХ. Поляков Ю.С.*, Казенин Д.А.** НЕЛИНЕЙНЫЙ МАССОПЕРЕНОС С ОБРАТИМОЙ АДСОРБЦИЕЙ НА ПОЛУПРОНИЦАЕМЫХ МЕМБРАНАХ В ПРОТОЧНЫХ ФИЛЬТРАХ Поляков Ю.С., Казенин Д.А. Технологический институт Нью-Джерси, Ньюарк, США, yurypolyakov@lyos.o Московский

Подробнее

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных. Краткие теоретические сведения Задачей приближения или аппроксимации функций (от лат. approimo приближаюсь) называется задача замены одних математических

Подробнее

ПРИМЕНЕНИЕ СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ ПРИ ОБРАБОТКЕ ДАННЫХ ИЗОФОТОМЕТРИЧЕСКОЙ ФОТОРЕГИСТРАЦИИ В ОПТИЧЕСКИХ ИЗМЕРЕНИЯХ

ПРИМЕНЕНИЕ СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ ПРИ ОБРАБОТКЕ ДАННЫХ ИЗОФОТОМЕТРИЧЕСКОЙ ФОТОРЕГИСТРАЦИИ В ОПТИЧЕСКИХ ИЗМЕРЕНИЯХ ПРИМЕНЕНИЕ СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ ПРИ ОБРАБОТКЕ ДАННЫХ ИЗОФОТОМЕТРИЧЕСКОЙ ФОТОРЕГИСТРАЦИИ В ОПТИЧЕСКИХ ИЗМЕРЕНИЯХ Введение С. А. Родионов, В. Г. Резник, В. К. Кирилловский, А. Б. Вироховский Широко

Подробнее

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины.

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Лекция 3. Основные характеристики и законы распределения случайных величин Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Время: часа. Вопросы: 1. Характеристики

Подробнее

ФТД.4 ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ ИНФОРМАЦИОННЫХ СЕТЕЙ

ФТД.4 ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ ИНФОРМАЦИОННЫХ СЕТЕЙ МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТУРИЗМА И СЕРВИСА» (ФГБОУ ВПО «РГУТИС»)

Подробнее

БИНОМИАЛЬНАЯ МОДЕЛЬ ОЦЕНИВАНИЯ ОПЦИОНОВ. Марк Иоффе

БИНОМИАЛЬНАЯ МОДЕЛЬ ОЦЕНИВАНИЯ ОПЦИОНОВ. Марк Иоффе БИНОМИАЛЬНАЯ МОДЕЛЬ ОЦЕНИВАНИЯ ОПЦИОНОВ Марк Иоффе Биномиальная модель оценивания опционов является широко распространенным и с точки зрения прикладной математики достаточно простым и очевидным численным

Подробнее

ТЕОРИЯ ОПТИМИЗАЦИИ И РАСЧЕТ СИСТЕМ УПРАВЛЕНИЯ С ОБРАТНОЙ СВЯЗЬЮ

ТЕОРИЯ ОПТИМИЗАЦИИ И РАСЧЕТ СИСТЕМ УПРАВЛЕНИЯ С ОБРАТНОЙ СВЯЗЬЮ К. У. МЕРРИЭМ ТЕОРИЯ ОПТИМИЗАЦИИ И РАСЧЕТ СИСТЕМ УПРАВЛЕНИЯ С ОБРАТНОЙ СВЯЗЬЮ Перевод с английского и предисловие канд. техн. наук Б. М. АВДЕЕВА, канд. техн. наук Ю. В. КОВАЧИЧА, канд. техн. наук В. Н.

Подробнее

УГЛОВАЯ ПЕЛЕНГАЦИЯ В ЦИФРОВЫХ АНТЕННЫХ РЕШЕТКАХ ПО МЕЖКАНАЛЬНОМУ ВРЕМЕННОМУ СДВИГУ ИМПУЛЬСНЫХ СИГНАЛОВ

УГЛОВАЯ ПЕЛЕНГАЦИЯ В ЦИФРОВЫХ АНТЕННЫХ РЕШЕТКАХ ПО МЕЖКАНАЛЬНОМУ ВРЕМЕННОМУ СДВИГУ ИМПУЛЬСНЫХ СИГНАЛОВ 94 Збірник наукових праць ЖВІРЕ. Випуск 8 УДК 6.396.969.4 В.И. Слюсар А.А. Головин УГЛОВАЯ ПЕЛЕНГАЦИЯ В ЦИФРОВЫХ АНТЕННЫХ РЕШЕТКАХ ПО МЕЖКАНАЛЬНОМУ ВРЕМЕННОМУ СДВИГУ ИМПУЛЬСНЫХ СИГНАЛОВ Предложен метод

Подробнее

Модель сейсмической трассы

Модель сейсмической трассы Лекция 10. Модель сейсмической трассы. Частота и период. Общие сведения об обработке. Принципы частотной фильтрации. Компенсация сферического расхождения Оглавление Модель сейсмической трассы...1 Частотная

Подробнее

6 Методы приближения функций. Наилучшее приближение.

6 Методы приближения функций. Наилучшее приближение. 6 Методы приближения функций. Наилучшее приближение. Рассмотренные в прошлой главе методы приближения требуют строгой принадлежности узлов сеточной функции результирующему интерполянту. Если не требовать

Подробнее

Статистическая радиофизика и теория информации

Статистическая радиофизика и теория информации Статистическая радиофизика и теория информации. Введение Радиофизика как наука изучает физические явления существенные для радиосвязи, излучения и распространения радиоволн, приема радиосигналов. Предметом

Подробнее

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение.

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение. УДК 539.3 А. В. М а н ж и р о в, С. А. Л ы ч е в, С. И. К у з н е ц о в, И. Ф е д о т о в АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕПЛОПРОВОДНОСТИ В РАСТУЩЕМ ШАРЕ Работа посвящена исследованию эволюции температурного

Подробнее

Нейронные сети. Краткий курс.

Нейронные сети. Краткий курс. Нейронные сети. Краткий курс. Лекция 4 Сети на основе радиальных базисных функций Многослойный персептрон, рассмотренный в предыдущих лекциях выполняет аппроксимацию стохастической функции нескольких переменных

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

В. В. НЕШИТОЙ МОДЕЛИРОВАНИЕ КРИВОЙ РОСТА И СТАТИСТИЧЕСКОЙ СТРУКТУРЫ СЛОВАРЯ КЛЮЧЕВЫХ СЛОВ

В. В. НЕШИТОЙ МОДЕЛИРОВАНИЕ КРИВОЙ РОСТА И СТАТИСТИЧЕСКОЙ СТРУКТУРЫ СЛОВАРЯ КЛЮЧЕВЫХ СЛОВ В. В. НЕШИТОЙ МОДЕЛИРОВАНИЕ КРИВОЙ РОСТА И СТАТИСТИЧЕСКОЙ СТРУКТУРЫ СЛОВАРЯ КЛЮЧЕВЫХ СЛОВ Рассматривается один класс случайных функций описывающих статистическую зависимость между количеством произведенных

Подробнее

ВЛИЯНИЕ СПЕКТРАЛЬНОГО ПРОСАЧИВАНИЯ НА ПОВЕДЕНИЕ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ УСЕЧЕННОГО ГАРМОНИЧЕСКОГО СИГНАЛА. Г.С. Ханян

ВЛИЯНИЕ СПЕКТРАЛЬНОГО ПРОСАЧИВАНИЯ НА ПОВЕДЕНИЕ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ УСЕЧЕННОГО ГАРМОНИЧЕСКОГО СИГНАЛА. Г.С. Ханян www.vntr.ru 6 (34), г. www.ntgcom.com УДК 57.443+57.8 ВЛИЯНИЕ СПЕКТРАЛЬНОГО ПРОСАЧИВАНИЯ НА ПОВЕДЕНИЕ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ УСЕЧЕННОГО ГАРМОНИЧЕСКОГО СИГНАЛА Г.С. Ханян Центральный институт авиационного

Подробнее

C = D. (1) t. = = a, (4) Примечание: Первое уравнение системы (5) аналогично закону радиоактивного распада: Dat

C = D. (1) t. = = a, (4) Примечание: Первое уравнение системы (5) аналогично закону радиоактивного распада: Dat Лекция 4. РЕШЕНИЕ ДИФФУЗИОННЫХ УРАВНЕНИЙ МЕТОДОМ ФУРЬЕ В математической физике разработаны различные способы решения дифференциального уравнения в частных производных параболического типа.. Метод Фурье

Подробнее

1. О постановке задач

1. О постановке задач 1. О постановке задач Специфика компьютерного анализа данных почти всегда, так или иначе, заключается в присутствии фактора случайности, поскольку любой эксперимент подразумевает наличие погрешностей и

Подробнее

Управление высотой полета вертолета

Управление высотой полета вертолета Управление высотой полета вертолета Рассмотрим задачу синтеза системы управления движением центра масс вертолета по высоте. Вертолет как объект автоматического управления представляет собой систему с несколькими

Подробнее

Аналитическая формула ударной волны. Об одном классе уравнений состояния

Аналитическая формула ударной волны. Об одном классе уравнений состояния ИПМ им.м.в.келдыша РАН Электронная библиотека Препринты ИПМ Препринт 5 за 1969 г. Гаджиев М.Г., Молчанов А.М. Аналитическая формула ударной волны. Об одном классе уравнений состояния Рекомендуемая форма

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА 9.5.4. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и

Подробнее

РАБОЧАЯ ПРОГРАММА по дисциплине Методы идентификации систем управления

РАБОЧАЯ ПРОГРАММА по дисциплине Методы идентификации систем управления Министерство образования и науки РФ ФГБОУ ВПО «Рыбинский государственный авиационный технический университет имени П.А.Соловьева» УТВЕРЖДАЮ Проректор по науке и инновациям Т.Д. Кожина РАБОЧАЯ ПРОГРАММА

Подробнее

Пример Записать выражения для статических моментов плоской материальной области (D). На основании формул (3) с учетом фигуры ( Φ ) имеем:

Пример Записать выражения для статических моментов плоской материальной области (D). На основании формул (3) с учетом фигуры ( Φ ) имеем: 3 Пример Записать выражения для статических моментов плоской материальной области (D) На основании формул (3) с учетом фигуры ( Φ ) имеем: ρ, dd, ρ, dd Исходя из механического смысла статического момента,

Подробнее

ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ

ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2002. Т. 43 N- 3 59 УДК 532.6 ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ О. Е. Александров Уральский государственный технический

Подробнее

АНАЛИЗ АКУСТИЧЕСКИХ СИГНАЛОВ НА ОСНОВЕ МЕТОДА ФИЛЬТРАЦИИ КАЛМАНА И.П. Гуров, П.Г. Жиганов, А.М. Озерский

АНАЛИЗ АКУСТИЧЕСКИХ СИГНАЛОВ НА ОСНОВЕ МЕТОДА ФИЛЬТРАЦИИ КАЛМАНА И.П. Гуров, П.Г. Жиганов, А.М. Озерский АНАЛИЗ АКУСТИЧЕСКИХ СИГНАЛОВ НА ОСНОВЕ МЕТОДА ФИЛЬТРАЦИИ КАЛМАНА И.П. Гуров, П.Г. Жиганов, А.М. Озерский Рассматриваются особенности динамической обработки стохастических сигналов с использованием дискретных

Подробнее

ГРУППА 5 МАТЕМАТИКА. Математика

ГРУППА 5 МАТЕМАТИКА. Математика ГРУППА 5 МАТЕМАТИКА Математика Курс математики включает в себя большой диапазон тем, включая вероятность, статистику, векторы, производную и интегралы. При изучении математики акцент делается не на запоминание

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость.

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость. Поиск оценки может быть рассмотрен как измерение параметра (предполагается, что он имеет некоторое фиксированное, но неизвестное значение), основанное на ограниченном числе экспериментальных наблюдений.

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Определение вероятности.. 8 1. Классическое и статистическое определения вероятности.. 8 2. Геометрические вероятности... 12 Глава вторая. Основные

Подробнее

КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия)

КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия) КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия) В заданиях этой контрольной параметры n и m требуется заменить на последнюю и, соответственно, предпоследнюю ненулевую цифру Вашего индивидуального

Подробнее

Московский государственный технический университет им. Н. Э. Баумана. Л. К. Мартинсон, Е. В. Смирнов

Московский государственный технический университет им. Н. Э. Баумана. Л. К. Мартинсон, Е. В. Смирнов Московский государственный технический университет им Н Э Баумана Л К Мартинсон Е В Смирнов МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ ПО КУРСУ ОБЩЕЙ ФИЗИКИ РАЗДЕЛ «ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН В КВАНТОВЫХ

Подробнее

Решение: а) Используем локальную теорему Лапласа.

Решение: а) Используем локальную теорему Лапласа. Найди свою задачу на http://mathprof.com! ) Человек, проходящий мимо киоска, покупает газету с вероятностью 0,. Найти вероятность того, что из 00 человек, прошедших мимо киоска в течение часа: а) купят

Подробнее

РАСЧЕТНОЕ ЗАДАНИЕ ДЛЯ ЭТ-11 (2013 г.)

РАСЧЕТНОЕ ЗАДАНИЕ ДЛЯ ЭТ-11 (2013 г.) РАСЧЕТНОЕ ЗАДАНИЕ ДЛЯ ЭТ- (0 г.). В спектре некоторых водородоподобных ионов длина волны третьей линии серии Бальмера равна 08,5 нм. Найти энергию связи электрона в основном состоянии этих ионов.. Энергия

Подробнее