Субриманово расстояние до единицы в группах Ли SO(3) и SU(2)

Размер: px
Начинать показ со страницы:

Download "Субриманово расстояние до единицы в группах Ли SO(3) и SU(2)"

Транскрипт

1 Субриманово расстояние до единицы в группе Ли SU() Субриманово расстояние до единицы в группах Ли SO(3) и SU() И.А. Зубарева Омский филиал Института математики им. С.Л. Соболева СО РАН 5-30 июля 014

2 Субриманово расстояние до единицы в группе Ли SU() Необходимые сведения SO(3) компактная группа Ли, состоящая из всех ортогональных 3 3 матриц с определителем 1: SO(3) = { C Gl(3) CC T = e, det(c) = 1 }. Ее алгебра Ли so(3) состоит из всех кососимметричных 3 3 матриц. Зададим базис so(3): a = , b = , c = Положим D(e) = Lin(a, b) и зададим на D(e) скалярное произведение, с ортонормированным базисом a, b. Левоинвариантное распределение D на группе Ли SO(3) с данным D(e) вполне неголономно, пара (D(e),, ) определяет левоинвариантную субриманову метрику d на SO(3).

3 Субриманово расстояние до единицы в группе Ли SU() Необходимые сведения Результат (В.Н. Берестовский, И.А. Зубарева) Каждая параметризованная длиной дуги геодезическая γ = γ(t), t R, в SO(3) с условием γ(0) = e есть произведение двух 1 параметрических подгрупп: γ(t) = exp(t(cos φ 0 a + sin φ 0 b + βc)) exp( tβc), где φ 0, β некоторые произвольные постоянные. Обозначим m = sin (t 1 + β ), n = 1 cos (t 1 + β ) 1 + β 1 + β.

4 Субриманово расстояние до единицы в группе Ли SU() Необходимые сведения Первый столбец элементов геодезической γ(t) равен 1 n m cos φ 0 βn sin φ 0. m sin φ 0 + βn cos φ 0 Второй столбец элементов геодезической γ(t) равен m cos (βt + φ 0 ) βn sin (βt + φ 0 ) (1 β n) cos βt + βm sin βt n cos (βt + φ 0 ) cos φ 0 βm cos βt (1 β n) sin βt n cos (βt + φ 0 ) sin φ 0. Третий столбец элементов геодезической γ(t) равен m sin (βt + φ 0 ) + βn cos (βt + φ 0 ) (1 β n) sin βt βm cos βt n sin (βt + φ 0 ) cos φ 0. (1 β n) cos βt + βm sin βt n sin (βt + φ 0 ) sin φ 0

5 Субриманово расстояние до единицы в группе Ли SU() Основной результат Теорема 1. Пусть C = (c ij ) SO(3), C e, e единица группы SO(3). Тогда 1. Если c 11 = 1, то d(c, e) = π.. Если c 11 = 1, то d(c, e) = π, где β единственное решение 1+β системы уравнений cos sin πβ = c 1+β, πβ = c 1+β 3. ( ) 1+c 3. Если 1 < c 11 < 1 и cos π 11 = c+c33, то 1 d(c, e) = π (1 c 11).

6 Субриманово расстояние до единицы в группе Ли SU() Основной результат ( ) 1+c 4. Если 1 < c 11 < 1 и cos π 11 > c+c33, то (1 d(c, e) = arcsin c11 )(1 + β ), (1) 1 + β где β единственное решение системы уравнений ( ( ) 1 c cos arcsin β 11 1+c11+c +c 33 (), ( ( ) 1 c sin arcsin β 11 sgn(c 3 c 3 ) 1+c11 c c 33 (). β arcsin 1 1+β (1 c 11)(1 + β ) ) = ) β arcsin 1 1+β (1 c 11)(1 + β ) = ()

7 Субриманово расстояние до единицы в группе Ли SU() Основной результат ( ) 1+c 5. Если 1 < c 11 < 1 и cos π 11 < c+c33, то ( ) (1 c11 )(1 + β d(c, e) = π arcsin ), 1 + β где β единственное решение системы уравнений ( ( ) ( cos arcsin β 1 c11 + β 1 π arcsin )) ) (1 c11)(1 + 1+β β = 1+c11 +c +c 33 (, ) ( ( ) ( sin arcsin β 1 c11 + β 1 π arcsin )) ) (1 c11)(1 + 1+β β = sgn(c 3 c 3) 1+c11 c c 33 ( ).

8 Субриманово расстояние до единицы в группе Ли SU() Необходимые сведения SU() есть компактная односвязная группа Ли всех унитарных унимодулярных матриц {( ) } A B SU() = A, B C, A + B = 1. B A ( ) A B Через (A, B) будем обозначать матрицу SU(). B A Алгебра Ли su() есть алгебра всех косоэрмитовых матриц с нулевым следом {( ) } ia B su() = A R, B C. B ia Зададим базис su() следующим образом: ( 0 1 ( 0 i 1 0 i 0 p 1 = 1 ), p = 1 ), k = 1 ( i 0 0 i Положим (e) = Lin(p 1, p ) и зададим на (e) скалярное произведение (, ) с ортонормированным базисом p 1, p. ).

9 Субриманово расстояние до единицы в группе Ли SU() Необходимые сведения Пара ( (e), (, )) определяет левоинвариантную субриманову метрику ρ на SU(). Результат (Ugo Boscain, Fransesco Rossi) Каждая параметризованная длиной дуги геодезическая γ = γ(t), t R, в SU() с условием γ(0) = e есть произведение двух 1-параметрических подгрупп γ(t) = exp (t(cos φ 0 p 1 + sin φ 0 p + βk)) exp ( tβk), где φ 0, β произвольные постоянные. Если γ(t) = (A, B), то Re(A) = β sin t 1+β 1+β sin βt + cos t 1+β cos βt, Im(A) = β sin t 1+β 1+β cos βt cos t 1+β sin βt, B = sin t 1+β 1 + β ( ( ) ( )) βt βt cos + φ 0 + i sin + φ 0.

10 Субриманово расстояние до единицы в группе Ли SU() Теорема (Ugo Boscain, Fransesco Rossi) Пусть g = (A, B) SU(), Id единица группы SU(). Тогда { arg(a) (π arg(a)), если B = 0, d(g, Id) = Ψ(A), если B 0, где arg(a) [0, π] и Ψ(A) = t единственное решение системы ( βt + arctg β tg t ) 1+β 1+β = arg(a), ( ) sin t 1+β / = 1 A, 1+β ( ) π t 0,. 1+β [1] Boscain U., Rossi F., Invariant Carnot-Carathéodory metrics on S 3, SO(3), SL(), and lens spaces // SIAM J. Control Optim. 008 Vol. 47, N 4. P

11 Субриманово расстояние до единицы в группе Ли SU() Основной результат Теорема. Пусть g = (A, B) SU(), Id = (1, 0) единица группы SU(). Тогда 1. Если A = 0, то d(g, Id) = π.. Если A = 1, то d(g, Id) = arg(a) (π arg(a) ), arg(a) [ π, π]. 3. Если 0 < A < 1 и Re(A) = A sin ( π A ), то d(g, Id) = π 1 A.

12 Субриманово расстояние до единицы в группе Ли SU() Основной результат 4. Если 0 < A < 1 и Re(A) > A sin ( π A ), то d(g, Id) = 1 + β arcsin (1 A )(1 + β ), где β единственное решение системы уравнений cos (arcsin β 1 A A 1+β β arcsin ) (1 A )(1 + β ) sin (arcsin β 1 A β A 1+β arcsin ) (1 A )(1 + β ) = Re(A) A, = Im(A) A.

13 Субриманово расстояние до единицы в группе Ли SU() Основной результат 5. Если 0 < A < 1 и Re(A) < A sin ( π A ), то ( d(g, Id) = π arcsin ) (1 A )(1 + β ), 1 + β где β единственное решение системы уравнений ( ( cos β π arcsin ) ) 1 A (1 A )(1 + β ) + arcsin β = 1+β A Re(A), ( A ( sin β π arcsin ) ) 1 A (1 A )(1 + β ) + arcsin β = 1+β A Im(A) A.

Некоторые решения задач из лекции 8.

Некоторые решения задач из лекции 8. кафедра Проблемы теор. физики, II курс Введение в теорию групп Некоторые решения задач из лекции 8. Задача 4. а) Алгебра Ли so(3, R) изоморфна алгебре векторов R 3. б) Обозначим через SU(2) группу унитарных

Подробнее

ОТВЕТЫ ,5-0, arcsin ,

ОТВЕТЫ ,5-0, arcsin , АЛГЕБРА И НАЧАЛА АНАЛИЗА, класс Ответы и критерии, Апрель ОТВЕТЫ Вариант/ задания А А В В В В4 В5 С 6,5-4 8 arcsin 4 4,5 -,8 arcsin + k, 4,5 8-6 arccos 5 4 4,5, 5 arc tg9 + k, 5 4, -,4 6 6 8-7,5 7 6 855,4

Подробнее

Дифференциальная геометрия Листок 1 8 сентября 2014 г.

Дифференциальная геометрия Листок 1 8 сентября 2014 г. Листок 1 8 сентября 2014 г. Параметризация τ γ(τ) кривой в евклидовом пространстве называется натуральной, если γ = γ 1. Для натуральной параметризации dτ элемент τ длины на кривой и выполняется ( γ, γ)

Подробнее

3. Вычислить произведение всех комплексных корней n-ной степени из Вычислить сумму всех комплексных корней n-ной степени из 1.

3. Вычислить произведение всех комплексных корней n-ной степени из Вычислить сумму всех комплексных корней n-ной степени из 1. КОМПЛЕКСНЫЕ ЧИСЛА 1. Пусть ε первообразный корень нечетной степени n из 1. Доказать, что ε первообразный корень степени 2n из 1. 2. Пусть α первообразный корень степени 2n из 1. Вычислить 1+α+...+α n 1.

Подробнее

Контрольная работа 3.

Контрольная работа 3. Контрольная работа В промежутке между сессиями студенты должны провести самостоятельную подготовку Проработать теоретический материал по лекциям на тему «Функции нескольких переменных» (Материал представлен

Подробнее

Вопросы, входящие в состав экзаменационных билетов по линейной алгебре, II, III потоки

Вопросы, входящие в состав экзаменационных билетов по линейной алгебре, II, III потоки Московский государственный университет им. М. В. Ломоносова Физический факультет. Кафедра математики Внимание! Все утверждения необходимо доказывать Вопросы, входящие в состав экзаменационных билетов по

Подробнее

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ Уфимский государственный нефтяной технический университет. Вариант 500. Дифференциальное уравнение P (, ) d Q(, ) d 0 порядка, если: будет однородным уравнением первого Ответы: ). P и Q однородные функции

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Таблицы и формулы по применению теории групп в физике

Таблицы и формулы по применению теории групп в физике Таблицы и формулы по применению теории групп в физике 6 июня 016 г. 1 Конечные группы Таблица 1: Все конечные группы до порядка 1 (с точностью до изоморфизма). Порядок Группы 1 C 1 C 3 C 3 4 C 4, D C C

Подробнее

Теорема Гаусса Бонне

Теорема Гаусса Бонне Теорема Гаусса Бонне Теорема Гаусса Бонне утверждает, что среднее значение гауссовой (или скалярной) кривизны на двумерном многообразии не зависит от выбора метрики и определяется исключительно топологией

Подробнее

ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ

ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ 1. Устойчивость линейной системы Рассмотрим систему двух уравнений. Уравнения возмущенного движения имеют вид: dx 1 dt = x + ax 3 1, dx dt = x 1 + ax 3,

Подробнее

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения.

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения. Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения Цель: сформировать умение находить производные функций, заданных в явном, логарифмическом и параметрическом

Подробнее

Уфимский государственный технический университет. lim 7 5). 1

Уфимский государственный технический университет. lim 7 5). 1 Уфимский государственный технический университет ПРОБНИК. Задача: Вычислить предел функции + 4 Ответы: ). ). ). /4 4). 0 5). нет правильного ответа. Задача: Найти предел: 0 sin5 7 Ответы: ). 5 ). 7 ).

Подробнее

БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени В.Г.ШУХОВА ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2

БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени В.Г.ШУХОВА ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2 Поток: ТВГТ -I ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 1 1Определители -го и -го порядка Правила вычисления Общий алгоритм исследования графика функций с помощью производных Нахождение наибольшего и наименьшего значений

Подробнее

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера.

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера. Билет.. Определение матрицы (с примерами квадратной и прямоугольной матриц).. Геометрический смысл многочлена Тейлора первого порядка (формулировка, пример, рисунок). ( x) ctg(x). 4. Метод хорд графического

Подробнее

Элементы линейной и векторной алгебры.

Элементы линейной и векторной алгебры. Теоретические вопросы по курсу математики для студентов заочной формы обучения специальности «Промышленное и гражданское строительство» семестр Матрицы и определители Решение систем линейных уравнений:

Подробнее

УНИТАРНЫЕ ПРОСТРАНСТВА

УНИТАРНЫЕ ПРОСТРАНСТВА Министерство образования и науки Российской Федерации Московский Физико-Технический Институт (государственный университет) А.В. Ершов УНИТАРНЫЕ ПРОСТРАНСТВА Добавление к лекциям Долгопрудный 2016 Введение

Подробнее

(1.1) имеет вид (1.2)

(1.1) имеет вид (1.2) УДК 54.75 Н.М. Онищук ОБ ОДНОМ КЛАССЕ ВЕКТОРНЫХ ПОЛЕЙ В области G R изучается геометрия гладкого векторного поля без особых точек имеющего поверхности вдоль которых векторы поля параллельны. Исследуются

Подробнее

проверочная 1. (10 минут в начале пары, дата проведения проверочной: 14 сентября) проверочная 2. (дата проведения проверочной:??

проверочная 1. (10 минут в начале пары, дата проведения проверочной: 14 сентября) проверочная 2. (дата проведения проверочной:?? проверочная 1. (10 минут в начале пары, дата проведения проверочной: 14 сентября) Определения: векторное пространство, арифметическое пространство, линейно зависимая система векторов, линейно независимая

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1

ЛАБОРАТОРНАЯ РАБОТА 1 Задания к лабораторным работам по ОАиП. Зимняя сессия. ФТК. ЛАБОРАТОРНАЯ РАБОТА Написать программу вычисления значения выражения при заданных исходных данных. Сравнить полученное значение с указанным правильным

Подробнее

c 1 1 n... c n C =... = (c k k )n n c 1 c1 n c k

c 1 1 n... c n C =... = (c k k )n n c 1 c1 n c k Лекция 12 1 ПРЕОБРАЗОВАНИЕ БАЗИСОВ И КООРДИНАТ 11 Преобразование базисов и координат в линейном пространстве Пусть V K линейное пространство над числовым полем K, dim V n, e 1,, e n старый базис в V, e

Подробнее

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7.

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7. 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. Ответ: Если в качестве базисных переменных выбрать

Подробнее

Тема 2-5: Ранг матрицы

Тема 2-5: Ранг матрицы Тема 2-5: Ранг матрицы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр) В

Подробнее

А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ

А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ Методические указания Санкт-Петербург 2013 1. Линейная задача метода

Подробнее

УНИТАРНЫЕ ПРЕДСТАВЛЕНИЯ

УНИТАРНЫЕ ПРЕДСТАВЛЕНИЯ ЛЕКЦИЯ 18 УНИТАРНЫЕ ПРЕДСТАВЛЕНИЯ ТЕОРЕМА МАШКЕ ЛЕММА ШУРА 1 УНИТАРНЫЕ ПРЕДСТАВЛЕНИЯ Определение 1. Квадратная комплексная матрица A называется унитарной, если AA = E, где A = A T. Представление φ : G

Подробнее

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x.

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x. Демонстрационный вариант 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. 2. Найдите базис системы

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

АННОТАЦИЯ программы дисциплины Алгебра и аналитическая геометрия направления Прикладная математика и информатика.

АННОТАЦИЯ программы дисциплины Алгебра и аналитическая геометрия направления Прикладная математика и информатика. АННОТАЦИЯ программы дисциплины Алгебра и аналитическая геометрия направления 01.03.02 Прикладная математика и информатика. 1. Цели освоения дисциплины Целями освоения дисциплины Алгебра и аналитическая

Подробнее

ОБСУЖДЕНО на заседании кафедры высшей математики

ОБСУЖДЕНО на заседании кафедры высшей математики УДК 57. Математика: программа учебной дисциплины и методические указания к выполнению контрольной работы / Сост. Л. В. Березина; РГАТУ имени П. А. Соловьева. Рыбинск, 0. 7 с. (Заочная форма обучения/ РГАТУ

Подробнее

КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕД- СТАВЛЕНИЙ СУММА КВАДРАТОВ РАЗМЕРНОСТЕЙ

КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕД- СТАВЛЕНИЙ СУММА КВАДРАТОВ РАЗМЕРНОСТЕЙ ЛЕКЦИЯ 20 КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕД- СТАВЛЕНИЙ СУММА КВАДРАТОВ РАЗМЕРНОСТЕЙ ПРИМЕРЫ 1 КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕДСТАВЛЕНИЙ Лемма 1. Пусть Γ центральная функция на конечной группе G, φ : G GL (V ) неприводимое

Подробнее

Очная форма обучения. Бакалавры. I курс, 1 семестр. Направление «Управление в технических системах» Дисциплина - «Математика».

Очная форма обучения. Бакалавры. I курс, 1 семестр. Направление «Управление в технических системах» Дисциплина - «Математика». «Управление в технических системах» семестр Очная форма обучения Бакалавры I курс, семестр Направление «Управление в технических системах» Дисциплина - «Математика» Содержание Содержание Балльно - рейтинговая

Подробнее

R = W + A g, (1) sg 2(n 1) A = 1 n 2. = det(g x (X i, Y j )).

R = W + A g, (1) sg 2(n 1) A = 1 n 2. = det(g x (X i, Y j )). Владикавказский математический журнал 011, Том 13, Выпуск 3, С. 3 16 УДК 51.765 О КОНФОРМНО ПОЛУПЛОСКИХ -МЕРНЫХ ГРУППАХ ЛИ О. П. Гладунова, Е. Д. Родионов, В. В. Славский В статье дается классификация

Подробнее

ОПЕРАТОРЫ ТЕОРИИ ПОЛЯ В КРИВОЛИНЕЙНЫХ КООРДИНАТАХ

ОПЕРАТОРЫ ТЕОРИИ ПОЛЯ В КРИВОЛИНЕЙНЫХ КООРДИНАТАХ ОПЕРАТОРЫ ТЕОРИИ ПОЛЯ В КРИВОЛИНЕЙНЫХ КООРДИНАТАХ Основные штрихи) Математический анализ, четвертый семестр, 202/3 уч. год Лектор профессор В.А.Зорич СОДЕРЖАНИЕ I. Напоминания из алгебры и геометрии. Билинейная

Подробнее

Содержание. Балльно - рейтинговая система

Содержание. Балльно - рейтинговая система 78 «Строительство» семестр Очная форма обучения Специалисты I курс, семестр Направление 78 «Строительство» Дисциплина - «Математика-» Содержание Содержание Балльно - рейтинговая система Контрольная работа

Подробнее

Лабораторная работа 2 Отображения и числовые функции

Лабораторная работа 2 Отображения и числовые функции Лабораторная работа Отображения и числовые функции Необходимые понятия и теоремы: отображения, числовые функции, образ, прообраз, график, обратное отображение, композиция отображений Литература: [] с.

Подробнее

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8.

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8. 01 1. Найдите общее и базисное решения системы уравнений: 16x 10x + 2x = 8, 40x + 25x 5x = 20. Ответ: Если в качестве базисной переменной выбрать x, то общее решение: x = 1 2 + 5 8 x 1 8 x, x, x R; базисное

Подробнее

Лекция 4. a 1 1 a 1 2 a 1 n. a 2 1 a 2 2 a 2 n. a m 1 a m 2 a m n. (2) первый индекс номер строки, а второй номер столбца: a 11 a 12 a 1n

Лекция 4. a 1 1 a 1 2 a 1 n. a 2 1 a 2 2 a 2 n. a m 1 a m 2 a m n. (2) первый индекс номер строки, а второй номер столбца: a 11 a 12 a 1n Лекция 4 1. МАТРИЦЫ 1.1. Основные определения. Матрица размера m n прямоугольная таблица из чисел элементов матрицы, состоящая из m строк и n столбцов. Нумерация элементов матрицы: 1 верхний индекс номер

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ (варианты курсовых заданий)

АЛГЕБРА И ГЕОМЕТРИЯ (варианты курсовых заданий) Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ Российский государственный технологический

Подробнее

ОТВЕТЫ НОРМЫ ВЫСТАВЛЕНИЯ ОЦЕНОК

ОТВЕТЫ НОРМЫ ВЫСТАВЛЕНИЯ ОЦЕНОК АЛГЕБРА И НАЧАЛА АНАЛИЗА, 0 класс Ответы и критерии, Январь 0 Вариант/ ОТВЕТЫ задания А А В В В В4 В С 4 00 00 0-0, 0, arcsin + πk, 9 0-0, 0, arccos + πk, πk, 000 0000-0, - 0, arcsin + πk, 4 4 49,6 4000-0,

Подробнее

Вопросы к экзамену по математике для студентов ИСиА (1 курс, 1, 2 и 9 гр) специальности , семестр

Вопросы к экзамену по математике для студентов ИСиА (1 курс, 1, 2 и 9 гр) специальности , семестр Вопросы к экзамену по математике для студентов ИСиА ( курс,, и 9 гр) специальности 6, 6 семестр Теоретическая часть часть Матрицы Действия с ними Определители квадратных матриц Свойства Миноры и алгебраические

Подробнее

ОТВЕТЫ ,5 0,4 ( 1) ,6 ( )

ОТВЕТЫ ,5 0,4 ( 1) ,6 ( ) МАТЕМАТИКА, 0 класс Ответы и критерии, Январь 0 Вариант/ ОТВЕТЫ задания В В В В В5 В6 В7 С 57 0, ; ; ; k 560 5,5 0, ( ) arccos + k, 96 0 0,6 ( ) 900 9 6 0,75 5 500 9 5 0,5 6 79 8,5 0,6 7 05,9 7 8 0,5 (

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Экзамен по аналитической геометрии 2009/2010 учебный год I поток (лектор А. В. Овчинников)

Экзамен по аналитической геометрии 2009/2010 учебный год I поток (лектор А. В. Овчинников) Экзамен по аналитической геометрии 2009/200 учебный год I поток (лектор А. В. Овчинников) Список вопросов к первой части экзамена Цель первой части экзамена проверка знания основных определений и формулировок

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы к зачету по математике семестр для студентов курса ИСиА, -6 гр. направление

Подробнее

Вопросы и задачи. оретические вопросы. 1. Дайте определение линейного пространства.

Вопросы и задачи. оретические вопросы. 1. Дайте определение линейного пространства. Вопросы и задачи оретические вопросы ормулировки 1. Дайте определение линейного пространства. 2. Дайте определение подпространства линейного пространства и сформулируйте критерий линейного подпространства.

Подробнее

Управление дистанционного обучения и повышения квалификации. Линейная алгебра ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Управление дистанционного обучения и повышения квалификации. Линейная алгебра ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Математика» Набор тестов для студентов очной формы обучения всех специальностей Автор

Подробнее

ИНВАРИАНТНЫЙ ОБЪЕМ СУБРИМАНОВА ШАРА НА ГРУППЕ ГЕЙЗЕНБЕРГА

ИНВАРИАНТНЫЙ ОБЪЕМ СУБРИМАНОВА ШАРА НА ГРУППЕ ГЕЙЗЕНБЕРГА Современная математика. Фундаментальные направления. Том 42 (211). С. 199 23 УДК 517.97 ИНВАРИАНТНЫЙ ОБЪЕМ СУБРИМАНОВА ШАРА НА ГРУППЕ ГЕЙЗЕНБЕРГА c 211 г. Е. Ф. САЧКОВА АННОТАЦИЯ. Вычислена мера Поппа

Подробнее

tg MN M 1 = MM 1. M 1 N = 6 5

tg MN M 1 = MM 1. M 1 N = 6 5 Математика. класс. Вариант (без логарифмов) Критерии оценивания заданий с развёрнутым ответом C Решите систему уравнений y + sinx =, (4 sinx )(y + ) =. y = Из второго уравнения получаем, или sinx =. 6

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

Тесты по контролю промежуточных знаний по высшей математике для студентов I курса I семестра факультетов МТ и АТ

Тесты по контролю промежуточных знаний по высшей математике для студентов I курса I семестра факультетов МТ и АТ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Московский государственный технический университет «МАМИ» Кафедра «Высшая математика» Проф, дф-мн Кадымов ВА Доц, кф-мн Соловьев ГХ Тесты по контролю промежуточных

Подробнее

2cos2 2 ). sin 2 x 3 ). 2 sin x 4 ). 2sin 2x

2cos2 2 ). sin 2 x 3 ). 2 sin x 4 ). 2sin 2x Уфимский Государственный Нефтяной Технический Университет Вариант 68. Закончить утверждение. При перестановке местами двух строк (столбцов) знак определителя ). меняется на противоположный ). всегда отрицателен

Подробнее

4 Вычисление экспоненты

4 Вычисление экспоненты 15 4 ВЫЧИСЛЕНИЕ ЭКСПОНЕНТЫ 4 Вычисление экспоненты В этом параграфе мы обсудим, каким образом можно вычислять экспоненту оператора Начнем с простейшего случая 41 Случай вещественного собственного базиса

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МАТРИЦЫ: а) Определение, виды матриц, операции над матрицами (сложение матриц, умножение матрицы на число, умножение матриц, транспонирование),

Подробнее

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b,

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b, Векторы Даны координаты векторов a b c в правом ортонормированном базисе i j k Показать что векторы a b c тоже образуют базис и найти координаты вектора в базисе a b c ) ( ) a ( ) b ( ) c ( ) ) ( ) a (

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия.

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия. Министерство образования и науки Российской Федерации Казанский государственный архитектурно-строительный университет Кафедра высшей математики Элементы векторной и линейной алгебры. Аналитическая геометрия.

Подробнее

Министерство путей сообщения Российской Федерации Дальневосточный государственный университет путей сообщения ВЫСШАЯ МАТЕМАТИКА

Министерство путей сообщения Российской Федерации Дальневосточный государственный университет путей сообщения ВЫСШАЯ МАТЕМАТИКА Министерство путей сообщения Российской Федерации Дальневосточный государственный университет путей сообщения Кафедра «Высшая математика» НС Константинов ВЫСШАЯ МАТЕМАТИКА Методические указания по выполнению

Подробнее

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК ББК Составитель: Н.А. Пинкина КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Линейная алгебра. Решение типовых примеров. Варианты контрольных

Подробнее

Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр

Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр лектор Панов АН 1 Основные определения и формулировки основных теорем Вопрос 11 Что такое перестановка и что такое

Подробнее

Лекция 5: Смешанное произведение векторов

Лекция 5: Смешанное произведение векторов Лекция 5: Смешанное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции рассматривается

Подробнее

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Е. И. Галахов, О. А. Салиева ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Учебное пособие Москва 2009 1 Галахов Е. И., Салиева О. А. Векторная алгебра и аналитическая

Подробнее

Плоскость. Прямая в пространстве 1

Плоскость. Прямая в пространстве 1 Объект изучения геометрические элементы: точки, прямые, линии, плоскости, поверхности; Метод изучения метод координат; Основные задачи 1. Задано ГМТ, т.е. совокупность точек, обладающих характерным свойством.

Подробнее

«Строительство» 1 семестр

«Строительство» 1 семестр Очная форма обучения. Бакалавры. I курс, 1 семестр. Направление 270800 «Строительство» Дисциплина - «Математика-1». Содержание Содержание... 1 Лекции... 1 Практические занятия... 4 Практические занятия

Подробнее

Лекция 6: Система координат. Координаты точки

Лекция 6: Система координат. Координаты точки Лекция 6: Система координат. Координаты точки Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

Вопросы и задачи к экзамену по аналитической геометрии 2007/2008 учебный год

Вопросы и задачи к экзамену по аналитической геометрии 2007/2008 учебный год Вопросы и задачи к экзамену по аналитической геометрии 2007/2008 учебный год 1 ВВОДНЫЕ ПОНЯТИЯ 1 (a) Системы координат на плоскости и в пространстве: декартова прямоугольная, декартова косоугольная, полярная,

Подробнее

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики АВ Капусто Минск 016 016 Кафедра высшей

Подробнее

ПРОСТРАНСТВЕННЫЕ ДВИЖЕНИЯ БЕЗ РАСХОЖДЕНИЯ С ЛИНЕЙНЫМ ПОЛЕМ СКОРОСТЕЙ

ПРОСТРАНСТВЕННЫЕ ДВИЖЕНИЯ БЕЗ РАСХОЖДЕНИЯ С ЛИНЕЙНЫМ ПОЛЕМ СКОРОСТЕЙ ISSN 274-1863 Уфимский математический журнал. Том 7. 2 (215). С. 114-122. ПРОСТРАНСТВЕННЫЕ ДВИЖЕНИЯ БЕЗ РАСХОЖДЕНИЯ С ЛИНЕЙНЫМ ПОЛЕМ СКОРОСТЕЙ С.В. ХАБИРОВ Аннотация. Получены формулы, задающие все возможные

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» БОРИСОГЛЕБСКИЙ ФИЛИАЛ (БФ ФГБОУ ВО «ВГУ») УТВЕРЖДАЮ Заведующий

Подробнее

Структурно логическая схема. b -бинормальный в-р Кривизна ния кривой. Френе

Структурно логическая схема. b -бинормальный в-р Кривизна ния кривой. Френе Практическое занятие 5 Тема: Репер Френе Кривизна и кручение кривой Формулы Френе План занятия Кривизна кривой Кручение кривой Репер Френе Сопровождающий трехгранник кривой 4 Формулы Френе Натуральные

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» И.А. ЧЕРНЯВСКАЯ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (решебник) Ростов-на-Дону

Подробнее

Линейная алгебра 4 Евклидовы и унитарные пространства

Линейная алгебра 4 Евклидовы и унитарные пространства Линейная алгебра 4 Евклидовы и унитарные пространства 1. ЕВКЛИДОВО ПРОСТРАНСТВО Евклидово пространство (ЕП) E это вещественное ЛП, в котором зафиксирована симметричная положительно определенная билинейная

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Московский государственный университет имени М.В. Ломоносова В.А. Ильин, Г.А. Ким ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ УЧЕБНИК 3-еизлание, переработанное и дополненное Учебник удостоен премии Президента

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

АЛГЕБРА И ГЕОМЕТРИЯ. ЛИНЕЙНЫЕ ПРОСТРАНСТВА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Тема 2-14: Евклидовы и унитарные пространства

Тема 2-14: Евклидовы и унитарные пространства Тема 2-14: Евклидовы и унитарные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Лекция 4: Векторное произведение векторов

Лекция 4: Векторное произведение векторов Лекция 4: Векторное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой и следующей

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 3. Элементы линейной алгебры (матрицы, определители, системы линейных уравнений и формулы Крамера) 1 Тема 1: Матрицы 1.1. Понятие

Подробнее

НЕГОЛОНОМНЫЕ КООРДИНАТЫ

НЕГОЛОНОМНЫЕ КООРДИНАТЫ А.В. Гохман НЕГОЛОНОМНЫЕ КООРДИНАТЫ учебное пособие для студентов механико-математического факультета Саратов 2009 2 Содержание Введение 3 1. Понятие дифференцируемого многообразия 4 1.1. n мерное вещественое

Подробнее

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2-1 Дисциплина: Математический анализ

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2-1 Дисциплина: Математический анализ ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ -1 1. Определение неопределённого интеграла и первообразной. Свойства неопределённого интеграла.. Решить дифференциальное уравнение y y +y = x, y(0) = 1, y (0) = 1. 3. Вычислить интеграл

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( )

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( ) ЗАДАЧИ для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса x bx + c f x = +, если известны ее значения в трех указанных x точках: Найдите функцию ( ) а) f ( ) f ( ) f (

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

ПРИРОДООБУСТРОЙСТВА ЛИНЕЙНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ДЛЯ СТУДЕНТОВ - ЗАОЧНИКОВ МГУП

ПРИРОДООБУСТРОЙСТВА ЛИНЕЙНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ДЛЯ СТУДЕНТОВ - ЗАОЧНИКОВ МГУП МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИРОДООБУСТРОЙСТВА ЛИНЕЙНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ДЛЯ СТУДЕНТОВ - ЗАОЧНИКОВ МГУП

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Кафедра «Высшая математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ 1. по дисциплине «МАТЕМАТИКА» (четырехсеместровый курс)

Кафедра «Высшая математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ 1. по дисциплине «МАТЕМАТИКА» (четырехсеместровый курс) Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тихоокеанский государственный университет» Кафедра «Высшая математика»

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Варианты контрольной работы 1 по математическому анализу (1 семестр) для студентов экономического факультета группы БкЭЗ-100

Варианты контрольной работы 1 по математическому анализу (1 семестр) для студентов экономического факультета группы БкЭЗ-100 Варианты контрольной работы 1 по математическому анализу (1 семестр) для студентов экономического факультета группы БкЭЗ-100 Требования к оформлению контрольной работы 1. Контрольная работа выполняется

Подробнее

Тема 2-3: Базис и размерность линейного пространства

Тема 2-3: Базис и размерность линейного пространства Тема 2-3: Базис и размерность линейного пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Задачи группы 5 (тип 6) 6 баллов Тема 6. на три группы: а) при x x0. Разбейте четыре пары бесконечно малых функций ϕ (x) x. , x.

Задачи группы 5 (тип 6) 6 баллов Тема 6. на три группы: а) при x x0. Разбейте четыре пары бесконечно малых функций ϕ (x) x. , x. Тест модуля Студенты проходят промежуточный тест через Интернет В этот промежуточный тест выносятся следующие задания по темам 7- учебного пособия по математике В данном документе СПЕЦИАЛЬНО не приводятся

Подробнее

О МИНОРНЫХ ХАРАКТЕРИСТИКАХ ВЗАИМНО ОРТОГОНАЛЬНЫХ ЦЕЛОЧИСЛЕННЫХ РЕШЁТОК ) С. И. Веселов, В. Н. Шевченко

О МИНОРНЫХ ХАРАКТЕРИСТИКАХ ВЗАИМНО ОРТОГОНАЛЬНЫХ ЦЕЛОЧИСЛЕННЫХ РЕШЁТОК ) С. И. Веселов, В. Н. Шевченко УДК 519.854, 512.643 ДИСКРЕТНЫЙ АНАЛИЗ И ИССЛЕДОВАНИЕ ОПЕРАЦИЙ Июль август 2008. Том 15, 4. 25 29 О МИНОРНЫХ ХАРАКТЕРИСТИКАХ ВЗАИМНО ОРТОГОНАЛЬНЫХ ЦЕЛОЧИСЛЕННЫХ РЕШЁТОК ) С. И. Веселов, В. Н. Шевченко

Подробнее

R. Геометрический смысл

R. Геометрический смысл Рабочий учебно-тематический план изучения дисциплины «Линейная алгебра» для профиля «Бухгалтерский учет, анализ и аудит», 1 триместр, лектор -- профессор, д.ф.м.н. Тищенко А.В. Наименовани е Содержание

Подробнее

Тема 2-8: Образ и ядро линейного отображения

Тема 2-8: Образ и ядро линейного отображения Тема 2-8: Образ и ядро линейного отображения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Вычислить определители 3-го порядка: a+b a-b a-b a+b 3. cosα sinα sinα cosα

Вычислить определители 3-го порядка: a+b a-b a-b a+b 3. cosα sinα sinα cosα Задания для самостоятельной работы по курсу Высшая математика для студентов отделения заочного и дистанционного обучения 1-й семестр В представленных решениях необходимо привести все вычислительные операции,

Подробнее

МЕТОДЫ НАХОЖДЕНИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ МАТРИЦ

МЕТОДЫ НАХОЖДЕНИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ МАТРИЦ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный технологический институт (Технический университет)

Подробнее

А. В. Овчинников. Контрольные задания по аналитической геометрии для студентов 1 курса

А. В. Овчинников. Контрольные задания по аналитической геометрии для студентов 1 курса Московский государственный университет им М В Ломоносова Физический факультет Кафедра математики А В Овчинников Контрольные задания по аналитической геометрии для студентов курса Москва Содержание Правила

Подробнее