Примеры решения задач

Размер: px
Начинать показ со страницы:

Download "Примеры решения задач"

Транскрипт

1 И. В. Яковлев Материалы по математике athus.ru Расстояние от точки до плоскости Если точка не принадлежит плоскости, то расстояние от точки до плоскости это длина перпендикуляра, проведённого из точки на данную плоскость. На рис. показано расстояние d от точки до плоскости. d Рис.. Расстояние от точки до плоскости Если точка принадлежит плоскости, то расстояние от точки до плоскости равно нулю. Примеры решения задач Разберём четыре задачи. В них мы проиллюстрируем основные идеи, встречающиеся на ЕГЭ по математике в задачах С, где требуется найти расстояние от точки до плоскости. Задача. Дан равносторонний треугольник со стороной. В пространстве взята точка такая, что = =, =. Найдите расстояние от точки до плоскости. Решение. Искомое расстояние это высота пирамиды, проведённая из точки. Пусть середина. Проведём перпендикуляр на прямую (рис. ). Покажем, что будет высотой нашей пирамиды. ϕ Рис.. К задаче Поскольку медиана является высотой треугольника, имеем. Точно так же (ведь треугольник тоже равносторонний). По признаку перпендикулярности прямой и плоскости получаем, что перпендикулярна плоскости. Значит, перпендикулярна любой прямой, лежащей в этой плоскости в частности, прямой. Итак, (по построению) и. Отсюда получаем, что мы и хотели.

2 Из треугольников и легко находим: = =. Теперь запишем теорему косинусов для стороны треугольника : = + cos ϕ (здесь ϕ = ). Отсюда cos ϕ = /6, sin ϕ = /6 и = sin ϕ = 6. Ответ: 6. Задача. В правильной треугольной призме сторона основания равна, а боковое ребро равно. Найдите расстояние от точки до плоскости. Решение. Поскольку, прямая параллельна плоскости. Следовательно, искомое расстояние d есть расстояние от любой точки прямой до плоскости (ведь все эти расстояния равны друг другу). Поэтому мы можем выбрать наиболее удобную точку на прямой. Это, несомненно, точка N середина отрезка (рис. ). N d Рис.. К задаче Пусть середина. Проведём N перпендикулярно. Покажем, что N. В равнобедренном треугольнике медиана является одновременно высотой, так что. Кроме того, N, так как призма прямая. Следовательно, прямая перпендикулярна плоскости N и, в частности, прямой N, лежащей в этой плоскости. Итак, N (по построению) и N. По признаку перпендикулярности прямой и плоскости прямая N перпендикулярна плоскости, что мы и хотели показать. Стало быть, искомое расстояние d равно длине отрезка N. Дальше несложно. Имеем: N =, N = и = N + N =, откуда d = N N =. Ответ:.

3 Повторим ключевую идею данной задачи: от исходной точки перейти к другой точке, находящейся на таком же расстоянии от плоскости, но более удобной для вычислений. В приведённом решении мы из точки сместились параллельно плоскости в точку N. Возможен и другой вариант смещения, который также может оказаться полезным при решении задач. Он основан на следующем простом факте: если плоскость проходит через середину отрезка, то концы отрезка равноудалены от данной плоскости. Так, на рис. 4 мы видим плоскость, проходящую через середину K отрезка P Q. Проведём перпендикуляры P и Q на данную плоскость. Q K P Рис. 4. Концы отрезка равноудалены от плоскости Прямоугольные треугольники P K и QK равны по гипотенузе и острому углу. Следовательно, P = Q, что и требовалось. Вернёмся к задаче. Заметим, что отрезок делится плоскостью пополам (рис. 5). Следовательно, расстояние от точки до плоскости равно расстоянию от точки до этой плоскости. K Рис. 5. К задаче Итак, из точки переходим в точку. Аналогично доказываем, что расстояние от точки до плоскости равно длине перпендикуляра, проведённого к, и далее решение повторяется без каких-либо изменений.

4 Сформулированный выше факт о равноудалённости концов отрезка от плоскости, проходящей через его середину, является частным случаем следующей (тоже очень простой) теоремы. Теорема. Пусть прямая пересекает плоскость в точке O. Возьмём любые две точки X и Y на этой прямой (отличные от O), и пусть x и y соответственно расстояния от данных точек до плоскости. Тогда x : y = OX : OY. Доказательство. Если прямая перпендикулярна плоскости, то доказывать нечего. Пусть прямая является наклонной (рис. 6). Проведём перпендикуляры X и Y к плоскости. Y X x y O Рис. 6. OX : OY = x : y Из подобия треугольников OX и OY получаем OX : OY = X : Y, а последнее отношение как раз и есть x : y. Теорема доказана. Полезность этой теоремы состоит вот в чём. Предположим, что мы ищем расстояние от точки X до плоскости. Тогда, взяв некоторую точку O, можно сместиться вдоль прямой OX в более удобную точку Y с пропорциональным изменением расстояния до нашей плоскости. Задача. В правильной четырёхугольной пирамиде S (с вершиной S) сторона основания равна и высота равна. Найдите расстояние от точки до плоскости S. Решение. Пусть ST высота пирамиды (рис. 7). Точка T является серединой отрезка. Тогда, согласно нашей теореме, искомое расстояние d от точки до плоскости S равно удвоенному расстоянию от точки T до этой плоскости. S T Рис. 7. К задаче А расстояние от точки T до плоскости S равно высоте T треугольника ST (точка середина ). Действительно, T перпендикулярна также прямой ( T, S ST T ), и потому T перпендикуляр к плоскости S. Из треугольника ST легко находим: T = /. Тогда d = T =. Ответ:. 4

5 Задача 4. Точка середина ребра куба. Ребро куба равно 6. Найдите расстояние от точки до плоскости. Решение. Здесь можно осуществить переход (рис. 8). Рис. 8. К задаче 4 Именно, пусть искомое расстояние от точки до плоскости равно d. Тогда расстояние от точки до этой плоскости равно d. Отрезок делится плоскостью пополам, поэтому расстояние от точки до данной плоскости также равно d. С другой стороны, расстояние от точки до плоскости есть высота треугольной пирамиды. Основанием этой пирамиды служит равносторонний треугольник со стороной 6. Боковые рёбра пирамиды равны 6. Стало быть, данная пирамида является правильной, и точка центр треугольника. Отрезок есть радиус окружности, описанной вокруг треугольника. Имеем: = 6 = 6. Тогда Следовательно, = ( = 6 6) =. d = =. Ответ:. 5

Многогранники в задаче 16

Многогранники в задаче 16 И. В. Яковлев Материалы по математике MathUs.ru Стереометрия на ЕГЭ по математике Многогранники в задаче 16 Цель данного пособия помочь школьнику научиться решать задачи 16 (в прошлом С) единого госэкзамена

Подробнее

СПРАВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПОДГОТОВКИ К ЕГЭ ПО МАТЕМАТИКЕ ЗАДАНИЯ B3 И В6: ЗАДАЧИ ПО ПЛАНИМЕТРИИ

СПРАВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПОДГОТОВКИ К ЕГЭ ПО МАТЕМАТИКЕ ЗАДАНИЯ B3 И В6: ЗАДАЧИ ПО ПЛАНИМЕТРИИ СПРАВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПОДГОТОВКИ К ЕГЭ ПО МАТЕМАТИКЕ Гущин Д. Д. ЗАДАНИЯ B3 И В6: ЗАДАЧИ ПО ПЛАНИМЕТРИИ Проверяемые элементы содержания и виды деятельности: владение понятиями треугольник, четырехугольник,

Подробнее

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ. 11 класс

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ. 11 класс Санкт Петербургский государственный университет 5 6 учебный год, январь Вариант 1 1 Сравните числа ( 6 5 + 4) 1 и ( 8 + 7 6) 1 + 1 Решите уравнение + + + 1= log log Решите неравенство + 6 4 Изобразите

Подробнее

Векторы в пространстве и метод координат. Задача C2

Векторы в пространстве и метод координат. Задача C2 А. Г. Малкова. Подготовка к ЕГЭ по математике. Материалы сайта EGE-Study.ru Векторы в пространстве и метод координат. Задача C Существует два способа решения задач по стереометрии. Первый классический

Подробнее

Лекция 9: Прямая в пространстве

Лекция 9: Прямая в пространстве Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению прямой в пространстве. Излагаемый

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 3. Аналитическая геометрия на плоскости 1. Составить уравнения прямых, проходящих через точку A(4; 1) a) параллельно прямой

Подробнее

Решение контрольных и самостоятельных работ по геометрии за 10 класс

Решение контрольных и самостоятельных работ по геометрии за 10 класс АВ Тронин Решение контрольных и самостоятельных работ по геометрии за 0 класс к пособию «Дидактические материалы по геометрии для 0 класса / БГ Зив 6-е изд М: Просвещение, 00» Учебно-практическое пособие

Подробнее

ОБ УГЛАХ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ И НЕМНОГО О ПРОЧИХ УГЛАХ

ОБ УГЛАХ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ И НЕМНОГО О ПРОЧИХ УГЛАХ АКАДЕМИЯ МАТЕМАТИКИ 9 ВИРыжик ОБ УГЛАХ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ И НЕМНОГО О ПРОЧИХ УГЛАХ Окончание Начало см в 3 за 2008 г Задачи на вычисление угла между скрещивающимися прямыми Ясно, что установление

Подробнее

Лекция 5 Парабола, эллипс, гипербола

Лекция 5 Парабола, эллипс, гипербола Лекция 5 Парабола, эллипс, гипербола 1. ПАРАБОЛА Парабола эта линия, которая в некоторой прямоугольной декартовой системе координат O координат имеет уравнение = p. (1) Указанная система координат называется

Подробнее

Тренировочная работа. в формате ЕГЭ. 14 ноября 2013 года. 11 класс. Вариант МА10201

Тренировочная работа. в формате ЕГЭ. 14 ноября 2013 года. 11 класс. Вариант МА10201 Математика класс Вариант МА Тренировочная работа в формате ЕГЭ по МАТЕМАТИКЕ 4 ноября 3 года класс Вариант МА Инструкция по выполнению работы На выполнение работы по математике даётся 3 часа 55 минут (35

Подробнее

Тест 1. Пересечение фигур. Пересечением двух квадратов может быть: 1. точка; 2. отрезок; 3. квадрат; 4. треугольник; 5. что-либо иное.

Тест 1. Пересечение фигур. Пересечением двух квадратов может быть: 1. точка; 2. отрезок; 3. квадрат; 4. треугольник; 5. что-либо иное. Тест 1. Пересечение фигур. Пересечением двух квадратов может быть: 1. точка; 2. отрезок; 3. квадрат; 4. треугольник; 5. что-либо иное. Тест 2. Объединение фигур Объединением двух треугольников может быть:

Подробнее

Решения и критерии оценивания выполнения заданий С1 С6.

Решения и критерии оценивания выполнения заданий С1 С6. Решения и критерии оценивания выполнения заданий С С6. Вариант С. Дано уравнение os + sin=. а) Решите данное уравнение. б) Укажите корни данного уравнения, принадлежащие промежутку ;. os sin + = os sin

Подробнее

Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 2010 года по МАТЕМАТИКЕ

Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 2010 года по МАТЕМАТИКЕ Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 00 года по МАТЕМАТИКЕ Демонстрационный вариант ЕГЭ по математике 00 года разработан по заданию Федеральной службы по

Подробнее

ПРЯМАЯ НА ПЛОСКОСТИ ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

ПРЯМАЯ НА ПЛОСКОСТИ ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ Федеральное агентство по образованию Троицкий филиал государственного образовательного учреждения высшего профессионального образования «Челябинский государственный университет» ПРЯМАЯ НА ПЛОСКОСТИ ПРЯМАЯ

Подробнее

Р. К. Гордин. Это должен знать. каждый матшкольник

Р. К. Гордин. Это должен знать. каждый матшкольник Р. К. Гордин Это должен знать каждый матшкольник МЦНМО, 2003 УДК 514.112 ББК 22.151.0 Г89 Г89 Гордин Р. К. Это должен знать каждый матшкольник. 2-е изд., испр. М.: МЦНМО, 2003. 56 с. ISBN 5-94057-093-3

Подробнее

Лекция 7: Прямая на плоскости

Лекция 7: Прямая на плоскости Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта и следующие две лекции посвящены изучению прямых и плоскостей.

Подробнее

7 класс 7.1. Ответ: Решение. Критерии проверки: 7.2. Ответ: Решение. Критерии проверки: 7.3. Ответ: Решение.

7 класс 7.1. Ответ: Решение. Критерии проверки: 7.2. Ответ: Решение. Критерии проверки: 7.3. Ответ: Решение. 7 класс 7.1. Запишите несколько раз подряд число 013 так, чтобы получившееся число делилось на 9. Ответ объясните. Ответ: например, 013013013. Решение. Приведем несколько способов обоснования. Первый способ.

Подробнее

Подготовка к ЕГЭ 2013, стереометрия

Подготовка к ЕГЭ 2013, стереометрия 1 Подготовка к ЕГЭ 2013, стереометрия Интерактивный комплект 1. Виды углов 1.1. Угол между скрещивающимися прямыми Пособие содержит описание основных понятий, методов расчёта, примеры решения множества

Подробнее

Еще несколько прямых, проходящих через точку Фейербаха. Ивлев Фёдор. СУНЦ МГУ

Еще несколько прямых, проходящих через точку Фейербаха. Ивлев Фёдор. СУНЦ МГУ Еще несколько прямых проходящих через точку Фейербаха. Ивлев Фёдор. СУНЦ МГУ Теорема: Дан треугольник. 1 - точки касания сторон и с вписанной окружностью соответственно. 0 0 - середины сторон. Обозначим

Подробнее

Г л а в а 6 Плоское движение тела

Г л а в а 6 Плоское движение тела Плоское движение тела 53 Аналогичные соотношения имеем из контакта колес 3 и 4, 4 и 5: ω 3 r 3 = ω 4 r 4, ω 4 R 4 = ω 5 R 5. (5.8) Кроме того, имеем уравнение, выражающее расстояние между крайними осями

Подробнее

Второй тур (15 минут; каждая задача 7 баллов). 6. sin x. Ответ: 0,76. Решение. 1) Преобразуем, используя формулы тройного аргумента

Второй тур (15 минут; каждая задача 7 баллов). 6. sin x. Ответ: 0,76. Решение. 1) Преобразуем, используя формулы тройного аргумента 0 класс Первый тур (0 минут; каждая задача 6 баллов) Сумма трѐх чисел равна нулю Может ли сумма их попарных произведений быть положительной? Ответ: нет, не может Решение Пусть a + b + c = 0 Докажем, что

Подробнее

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ УНИВЕРСИТЕТ КООПЕРАЦИИ, ЭКОНОМИКИ И ПРАВА»

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ УНИВЕРСИТЕТ КООПЕРАЦИИ, ЭКОНОМИКИ И ПРАВА» АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ УНИВЕРСИТЕТ КООПЕРАЦИИ, ЭКОНОМИКИ И ПРАВА» Программа и правила проведения вступительного испытания по «Математике»

Подробнее

Разговор после семинара: «Проблемы и пути их преодоления при решении задач группы С2».

Разговор после семинара: «Проблемы и пути их преодоления при решении задач группы С2». Разговор после семинара: «Проблемы и пути их преодоления при решении задач группы С» Богатова Елена Юрьевна, Пичина Ольга Викторовна, учителя математики высшей квалификационной категории ГБОУ гимназии

Подробнее

1. Найдите больший угол равнобедренной. AB углы, равные 30 и 45 соответственно. 4. В треугольнике ABC угол C прямой, AC = 8, cosa = 0,4. Найдите AB.

1. Найдите больший угол равнобедренной. AB углы, равные 30 и 45 соответственно. 4. В треугольнике ABC угол C прямой, AC = 8, cosa = 0,4. Найдите AB. 1. Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 30 и 45 соответственно. 2. В треугольнике ABC угол C прямой, BC = 8,

Подробнее

a = p 1p 2, b = p 1p 3

a = p 1p 2, b = p 1p 3 9.1. Известно, что ни одно из чисел a, b, c не является целым. Может ли случиться так, что каждое из чисел ab, bc, ca, abc целое? Ответ. Может. Решение. Например, выберем три различных простых числа p

Подробнее

в) 3 Какая из нижеперечисленных десятичных дробей является результатом округления числа 13

в) 3 Какая из нижеперечисленных десятичных дробей является результатом округления числа 13 Задача 1 4 1 = 9 2 а) 1 18 б) 3 в) 3 7 7 г) 1 18 Задача 2 Какая из нижеперечисленных десятичных дробей является результатом округления числа 13 до десятых? 7 а) 1, 6 б) 1, 7 в) 1, 8 г) 1, 9 Задача 3 10

Подробнее

Преобразуем уравнение. Обозначим Тогда

Преобразуем уравнение. Обозначим Тогда Задача 1 Решения задач по математике «Плехановской олимпиады школьников» (очный тур 11 класс) Если двухзначное число разделить на некоторое целое число, то в частном получится 3 и в остатке 8 Если в делимом

Подробнее

Р А Б О Ч А Я П Р О Г Р А М М А по геометрии для 10 класса

Р А Б О Ч А Я П Р О Г Р А М М А по геометрии для 10 класса АДМИНИСТРАЦИЯ ГОРОДА НИЖНЕГО НОВГОРОДА Муниципальное бюджетное образовательное учреждение средняя общеобразовательная школа 100 с углубленным изучением отдельных предметов Утверждаю Директор школы 100

Подробнее

Единый государственный экзамен по МАТЕМАТИКЕ

Единый государственный экзамен по МАТЕМАТИКЕ МАТЕМАТИКА, класс. Профильный уровень (5 - / 9) Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 5 года по МАТЕМАТИКЕ Единый государственный экзамен по МАТЕМАТИКЕ Демонстрационный

Подробнее

Несколько прямых, проходящих через точку Фейербаха

Несколько прямых, проходящих через точку Фейербаха 219 Несколько прямых, проходящих через точку Фейербаха Ф. Ивлев В этой заметке содержится, в частности, решение задачи 14.8 из задачника «Математического просвещения» 1) Всем известно, что в любом треугольнике

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Принцип Гюйгенса

И. В. Яковлев Материалы по физике MathUs.ru. Принцип Гюйгенса И. В. Яковлев Материалы по физике MathUs.ru Принцип Гюйгенса В кодификаторе ЕГЭ принцип Гюйгенса отсутствует. Тем не менее, мы посвящаем ему отдельный листок. Дело в том, что этот основополагающий постулат

Подробнее

3. Окружность задана уравнением (x + 2) 2 + y 2 = 81. Напишите уравнение прямой, проходящей через ее центр и параллельной оси ординат.

3. Окружность задана уравнением (x + 2) 2 + y 2 = 81. Напишите уравнение прямой, проходящей через ее центр и параллельной оси ординат. В А Р И А Н Т 1 1. Найдите координаты и длину вектора a, если a = b + 1 3 c, b{2, 1}, c{6, 3}. 2. Даны координаты вершин треугольника ABC: A(1; 4), B(2; 0), C(5; 5). Докажите, что треугольник ABC равнобедренный,

Подробнее

Вариант 1 Ответом на задания 1 14 является целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов

Вариант 1 Ответом на задания 1 14 является целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов Вариант 1 Ответом на задания 1 14 является целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую

Подробнее

14(15 15... 15 16) 1. 4. На сторонах ВС, АС и АВ треугольника АВС выбраны соответственно точки A., B1B 2 треугольника A1 B1C 1

14(15 15... 15 16) 1. 4. На сторонах ВС, АС и АВ треугольника АВС выбраны соответственно точки A., B1B 2 треугольника A1 B1C 1 ВАРИАНТЫ ЗАДАНИЙ ЗАКЛЮЧИТЕЛЬНОГО (ОЧНОГО) ЭТАПА ОЛИМПИАДЫ МГТУ ИМ. Н. Э. БАУМАНА «ШАГ В БУДУЩЕЕ» ПО МАТЕМАТИКЕ ДЛЯ 8-0 КЛАССОВ 0-04 УЧЕБНОГО ГОДА. ВАРИАНТ (8 класс). Найдите три числа, если первое составляет

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

Задачи с тремя равными окружностями.

Задачи с тремя равными окружностями. Задачи с тремя равными окружностями. А.Карлюченко Г.Филипповский Как здорово сказано: «Окружность это душа геометрии!» (И.Ф.Шарыгин). А если речь идет о трех окружностях? Да еще равных? Ну, тогда душа

Подробнее

Математика. 10 класс. Демонстрационный вариант 1. Итоговая работа. 10 класс. Углублённый уровень. Демонстрационный вариант

Математика. 10 класс. Демонстрационный вариант 1. Итоговая работа. 10 класс. Углублённый уровень. Демонстрационный вариант Математика. 0 класс. Демонстрационный вариант Итоговая работа по МАТЕМАТИКЕ 0 класс Углублённый уровень Демонстрационный вариант Инструкция по выполнению работы На выполнение итоговой работы по математике

Подробнее

Лекция 2. Инварианты плоских кривых

Лекция 2. Инварианты плоских кривых Лекция 2. Инварианты плоских кривых План лекции. Гладкие кривые на плоскости, число вращения, классификация кривых с точностью до гладкой гомотопии, точки самопересечения, число Уитни, теорема Уитни..1

Подробнее

Критерии оценивания решений задач заочного этапа Всесибирской олимпиады школьников 2013-14гг по математике Общие принципы оценивания Баллы

Критерии оценивания решений задач заочного этапа Всесибирской олимпиады школьников 2013-14гг по математике Общие принципы оценивания Баллы Критерии оценивания решений задач заочного этапа Всесибирской олимпиады школьников 2013-14гг по математике Общие принципы оценивания Каждая задача оценивается из 7 баллов. Далее, по степени решённости

Подробнее

б ). Как меньшая, пирамида Микерина

б ). Как меньшая, пирамида Микерина Ансамбль пирамид в Гизе. Ансамбль пирамид в Гизе, относящийся ко времени IV династии, скомпонован в единую группу. Все пирамиды довольно точно расположены по странам света почти параллельно одна другой.

Подробнее

Э. Г. Готман. Стереометрические задачи и методы их решения

Э. Г. Готман. Стереометрические задачи и методы их решения Э. Г. Готман Стереометрические задачи и методы их решения Москва Издательство МЦНМО, 006 УДК 514.11 ББК.151.0 Г7 Г7 Готман Э. Г. Стереометрические задачи и методы их решения. М.: МЦНМО, 006. 160 с.: ил.

Подробнее

Второй тур (15 минут; каждая задача 7 баллов). 2.1. Функция f(x) определена для всех x, кроме 1, и удовлетворяет равенству: x

Второй тур (15 минут; каждая задача 7 баллов). 2.1. Функция f(x) определена для всех x, кроме 1, и удовлетворяет равенству: x 10 класс Первый тур (10 минут; каждая задача 6 баллов). 1.1. Известно. что разность кубов корней квадратного уравнения ax + bx + c = 0 равна 011. Сколько корней имеет уравнение ax + bx + 4c = 0? Ответ:

Подробнее

Часть 1. Катеты прямоугольного треугольника равны 6 и 8. Найдите высоту треугольника, проведённую из вершины прямого угла.

Часть 1. Катеты прямоугольного треугольника равны 6 и 8. Найдите высоту треугольника, проведённую из вершины прямого угла. Часть 1 Ответом на задания B1 B8 должно быть целое число или конечная десятичная дробь. Единицы измерения писать не нужно. B4 Катеты прямоугольного треугольника равны 6 и 8. Найдите высоту треугольника,

Подробнее

ОБЩИЕ СВЕДЕНИЯ Способ перемены плоскостей проекции

ОБЩИЕ СВЕДЕНИЯ Способ перемены плоскостей проекции 1 СОДЕРЖАНИЕ 1. Общие сведения 2. Примеры решения задач 3. Контрольные вопросы 4. Приложения 4.1. Задания на эпюр 4.2. Данные к заданию 4.3. Образец оформления на листе 2 1. ОБЩИЕ СВЕДЕНИЯ Основными способами

Подробнее

Тонкие линзы. Ход лучей

Тонкие линзы. Ход лучей И. В. Яковлев Материалы по физике MathUs.ru Тонкие линзы. Ход лучей Темы кодификатора ЕГЭ: линзы, оптическая сила линзы. Взгляните ещё раз на рисунки линз из предыдущего листка: эти линзы обладают заметной

Подробнее

Тренировочная работа 1 по МАТЕМАТИКЕ

Тренировочная работа 1 по МАТЕМАТИКЕ Тренировочная работа по МАТЕМАТИКЕ класс Вариант Математика класс Вариант 2 Инструкция по выполнению работы На выполнение экзаменационной работы по математике дается 4 часа (24 мин) Работа состоит из двух

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

СРАВНЕНИЕ РАССТОЯНИЙ

СРАВНЕНИЕ РАССТОЯНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОСУДАРСТВЕННАЯ ГИМНАЗИЯ 1 г. ВИТЕБСКА Научно-исследовательская работа по математике на тему СРАВНЕНИЕ РАССТОЯНИЙ Выполнил: ученик 9

Подробнее

Демонстрационный вариант контрольных измерительных материалов для проведения в 2015 году основного государственного

Демонстрационный вариант контрольных измерительных материалов для проведения в 2015 году основного государственного ПРОЕКТ Государственная итоговая аттестация по образовательным программам основного общего образования в форме основного государственного экзамена (ОГЭ) Математика. 9 класс Демонстрационный вариант 05 г.

Подробнее

Пример 1. Два точечных заряда = 1 нкл и q = 2 нкл находятся на расстоянии d = 10 см друг от

Пример 1. Два точечных заряда = 1 нкл и q = 2 нкл находятся на расстоянии d = 10 см друг от Примеры решения задач к практическому занятию по темам «Электростатика» «Электроемкость Конденсаторы» Приведенные примеры решения задач помогут уяснить физический смысл законов и явлений способствуют закреплению

Подробнее

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы 1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. 1.1 Теорема о промежуточных значениях Теорема 1. (Больцано-Коши) Пусть функция f непрерывна на отрезке [a, b], причем f(a) f(b). Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ (a, b), что f(γ) = C. Доказательство. Пусть, например, f(a) = A < B = f(b) и A < C < B. Функция g(x) = f(x) C, очевидно, непрерывна на [a, b]. Кроме того, g(a) < 0, g(b) > 0. Для доказательства теоремы достаточно показать, что существует такая точка γ (a, b), что g(γ) = 0. Разделим отрезок [a, b] точкой x 0 на два равных по длине отрезка, тогда либо g(x 0 ) = 0 и, значит, искомая точка γ = x 0 найдена, либо g(x 0 ) 0 и тогда на концах одного из полученных промежутков функция g принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом - больше. Обозначим этот отрезок [a 1, b 1 ] и разделим его снова на два равных по длине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке γ, в которой g(γ) = 0, либо получим последовательность вложенных отрезков [a n, b n ] по длине стремящихся к нулю и таких, что g(a n ) < 0 < g(b n ) (1) Пусть γ - общая точка всех отрезков [a n, b n ], n = 1, 2,... Тогда γ = lim a n = lim b n. Поэтому, в силу непрерывности функции g Из (1) находим, что g(γ) = lim g(a n ) = lim g(b n ) (2) Из (2) и (3) следует, что g(γ) = 0. lim g(a n ) 0 lim g(b n ) (3) Следствие 1. Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль. 1.2 Первая и вторая теоремы Вейерштрасса Будем говорить, что функция f, определенная на множестве E достигает на нем своей верхней (нижней) границы β = sup E f (α = inf E f), если существует такая точка x 0 E, что f(x 0 ) = β (f(x 0 ) = α). 1

Подробнее

Единый государственный экзамен по МАТЕМАТИКЕ

Единый государственный экзамен по МАТЕМАТИКЕ Демонстрационный вариант ЕГЭ 4 г. МАТЕМАТИКА, класс (4 - / 8) Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 4 года по МАТЕМАТИКЕ Единый государственный экзамен по

Подробнее

Лекция 17: Евклидово пространство

Лекция 17: Евклидово пространство Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

Подробнее

КЛАССИЧЕСКИЕ СРЕДНИЕ. Теорема. Для любых двух положительных чисел a и b имеют место неравенства

КЛАССИЧЕСКИЕ СРЕДНИЕ. Теорема. Для любых двух положительных чисел a и b имеют место неравенства КЛАССИЧЕСКИЕ СРЕДНИЕ Определение Средним арифметическим двух чисел a и называется число Определение Средним геометрическим двух неотрицательных чисел a и называется число Определение 3 Средним квадратичным

Подробнее

Лекция 4 Прямые и плоскости

Лекция 4 Прямые и плоскости Лекция 4 Прямые и плоскости 1 ПРЯМАЯ НА ПЛОСКОСТИ Сначала получим разные виды уравнения прямой на плоскости в произвольной косоугольной системе координат e 1 e 2 11 Параметрическое уравнение прямой на

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Решение заданий С2 ЕГЭ по математике координатновекторным

Решение заданий С2 ЕГЭ по математике координатновекторным МОУ «СОШ 34 с углубленным изучением художественно-эстетических предметов» Серия «Школьник - школьнику» Методические рекомендации В.В. Леваков Решение заданий С ЕГЭ по математике координатновекторным методом

Подробнее

Как определить высоту дерева, не срубая его и не взбираясь на верхушку

Как определить высоту дерева, не срубая его и не взбираясь на верхушку 1 Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Геометрия Как определить высоту дерева, не срубая его и не взбираясь на верхушку Белоногов Стас, Гимназия

Подробнее

УТВЕРЖДАЮ И.о.директора ГБОУ «МССУОР 4 им. А.Я. Гомельского» Москомспорта М.Н.Телепин. 2013 г. Рабочая программа. по (предмету) Геометрия Класс 10

УТВЕРЖДАЮ И.о.директора ГБОУ «МССУОР 4 им. А.Я. Гомельского» Москомспорта М.Н.Телепин. 2013 г. Рабочая программа. по (предмету) Геометрия Класс 10 Государственное бюджетное образовательное учреждение «Московское среднее специальное училище олимпийского резерва 4 им. А.Я. Гомельского (техникум)» Департамента физической культуры и спорта города Москвы

Подробнее

Лекция 1: Комплексные числа

Лекция 1: Комплексные числа Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В школьном курсе математики понятие числа постепенно расширяется.

Подробнее

Единый государственный экзамен по МАТЕМАТИКЕ

Единый государственный экзамен по МАТЕМАТИКЕ Единый государственный экзамен по МАТЕМАТИКЕ ПРОЕКТ МАТЕМАТИКА, класс. Профильный уровень (05 - / 7) Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 05 года по МАТЕМАТИКЕ

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Энергия

И. В. Яковлев Материалы по физике MathUs.ru. Энергия И. В. Яковлев Материалы по физике MathUs.ru Энергия Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии. Мы приступаем к изучению

Подробнее

Тема6. «Определенный интеграл»

Тема6. «Определенный интеграл» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема6. «Определенный интеграл» Кафедра теоретической и прикладной математики. разработана доц. Е.Б.Дуниной

Подробнее

Допуск Выполнение Отчет

Допуск Выполнение Отчет Л. Р. «Разветвляющиеся вычислительные процессы» Студент Иванов И. И. Группа ХХ-999 Дата дд.мм.гг Допуск Выполнение Отчет Условие задачи 1 Ввести число x, выяснить что больше: целая часть числа x, или его

Подробнее

Интерференция волн. Сложение колебаний. И. В. Яковлев Материалы по физике MathUs.ru

Интерференция волн. Сложение колебаний. И. В. Яковлев Материалы по физике MathUs.ru И. В. Яковлев Материалы по физике MthUs.ru Темы кодификатора ЕГЭ: интерференция света. Интерференция волн В предыдущем листке, посвящённом принципу Гюйгенса, мы говорили о том, что общая картина волнового

Подробнее

2. Формирование навыков визуального поиска

2. Формирование навыков визуального поиска 2. Формирование навыков визуального поиска Существенные моменты сопоставления того что мы видим» с тем как мы видим» почти не затрагиваются в методиках преподавания школьных дисциплин. Вполне возможно,

Подробнее

Равномерная непрерывность функций одной переменной.

Равномерная непрерывность функций одной переменной. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов, Н.Т. Левашова, Н.Е. Шапкина Равномерная непрерывность функций одной переменной.

Подробнее

ВОЛШЕБНЫЙ МИР АНРИ ПУАНКАРЕ

ВОЛШЕБНЫЙ МИР АНРИ ПУАНКАРЕ ВОЛШЕБНЫЙ МИР АНРИ ПУАНКАРЕ Я описал воображаемый мир, обитатели которого неминуемо должны были бы прийти к созданию геометрии Лобачевского. А. Пуанкаре Когда сегодня рассказывают историю геометрии Лобачевского,

Подробнее

Федеральная служба по надзору в сфере образования и науки

Федеральная служба по надзору в сфере образования и науки Федеральная служба по надзору в сфере образования и науки Методическое письмо о проведении государственной итоговой аттестации по образовательным программам основного общего и среднего общего образования

Подробнее

Выдержки из книги Горбатого И.Н. «Механика» 3.2. Работа. Мощность. Кинетическая энергия. r r N =

Выдержки из книги Горбатого И.Н. «Механика» 3.2. Работа. Мощность. Кинетическая энергия. r r N = Выдержки из книги Горбатого ИН «Механика» 3 Работа Мощность Кинетическая энергия Рассмотрим частицу которая под действием постоянной силы F r совершает перемещение l r Работой силы F r на перемещении l

Подробнее

Золотое сечение в античной математике

Золотое сечение в античной математике Золотое сечение в античной математике А. И. ЩЕТНИКОВ 1. Постановка проблемы. Не будет преувеличением сказать, что без обсуждения вопроса о золотом сечении не обходится ни одна публикация, посвящённая взаимоотношениям

Подробнее

Задачи Штурма-Лиувилля в простейшем случае

Задачи Штурма-Лиувилля в простейшем случае Задачи Штурма-Лиувилля в простейшем случае 1 I рода слева I рода справа Решить задачу Штурма-Лиувилля с краевыми условиями I-го рода: { X x + Xx, X X 11 Общее решение уравнения X x + Xx имеет вид Xx c

Подробнее

а соответствующая характеристика, как видим, представляет собой площадь поперечного сечения элемента.

а соответствующая характеристика, как видим, представляет собой площадь поперечного сечения элемента. Понятие о геометрических характеристиках однородных поперечных сечений Центр тяжести; статические моменты; моменты инерции осевые, центробежный, полярный; моменты сопротивления; радиусы инерции Главные

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Турнир имени М.В. Ломоносова Заключительный тур 2015 г. ФИЗИКА

Турнир имени М.В. Ломоносова Заключительный тур 2015 г. ФИЗИКА Задача Турнир имени МВ Ломоносова Заключительный тур 5 г ФИЗИКА Небольшой кубик массой m = г надет на прямую горизонтальную спицу, вдоль которой он может перемещаться без трения Спицу закрепляют над горизонтальным

Подробнее

Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс)

Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс) Задача 1 Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс) Найдите все простые числа p и q такие, что выражение целого числа является квадратом 1 Очевидно, что при q

Подробнее

РЕАЛИЗАЦИЯ ФГОС В ОБУЧЕНИИ МАТЕМАТИКЕ НЕОБХОДИМОЕ УСЛОВИЕ ДОСТИЖЕНИЯ ТРЕБОВАНИЙ СТАНДАРТА «ПЕДАГОГ»

РЕАЛИЗАЦИЯ ФГОС В ОБУЧЕНИИ МАТЕМАТИКЕ НЕОБХОДИМОЕ УСЛОВИЕ ДОСТИЖЕНИЯ ТРЕБОВАНИЙ СТАНДАРТА «ПЕДАГОГ» РЕАЛИЗАЦИЯ ФГОС В ОБУЧЕНИИ МАТЕМАТИКЕ НЕОБХОДИМОЕ УСЛОВИЕ ДОСТИЖЕНИЯ ТРЕБОВАНИЙ СТАНДАРТА «ПЕДАГОГ» Доктор педагогических наук, профессор кафедры математических дисциплин ГБОУ ВПО «АСОУ» ДПО, профессор

Подробнее

7.3. Разносторонний треугольник поделѐн на две части некоторой прямой. Докажите, что эти части не могут быть равными фигурами.

7.3. Разносторонний треугольник поделѐн на две части некоторой прямой. Докажите, что эти части не могут быть равными фигурами. Всесибирская открытая олимпиада школьников по математике 014-15 г.г. Второй этап 15 декабря 014 г. - 5 января 015 г. 7 класс 7.1. В булочной есть пирожки с двумя начинками (яблочной и вишнѐвой) и двух

Подробнее

Определенный интеграл. Графический смысл перемещения.

Определенный интеграл. Графический смысл перемещения. Определенный интеграл. Графический смысл перемещения. Если тело движется прямолинейно и равномерно, то для определения перемещения тела достаточно знать его скорость и время движения. Но как подойти к

Подробнее

3 Формула Тейлора. Различные формы записи остаточного члена.

3 Формула Тейлора. Различные формы записи остаточного члена. В.В. Жук, А.М. Камачкин 3 Формула Тейлора. Различные формы записи остаточного члена. 3.1 Формула Тейлора для многочленов. Пусть P - многочлен степени не выше n: a 0 + a 1 x +... + a n x n. Дифференцируя

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Задачник ЕГЭ-15

И. В. Яковлев Материалы по математике MathUs.ru. Задачник ЕГЭ-15 И В Яковлев Материалы по математике MathUsru Задачник ЕГЭ-15 Здесь приведены задачи 15 в прошлом С1, которые предлагались на ЕГЭ по математике, а также на диагностических, контрольных и тренировочных работах

Подробнее

КИНЕМАТИКА ДВИЖЕНИЯ ТОЧКИ И ТВЕРДОГО ТЕЛА. Задание. к расчетно-графической работе Кинематика

КИНЕМАТИКА ДВИЖЕНИЯ ТОЧКИ И ТВЕРДОГО ТЕЛА. Задание. к расчетно-графической работе Кинематика КИНЕМАТИКА ДВИЖЕНИЯ ТОЧКИ И ТВЕРДОГО ТЕЛА Задание к расчетно-графической работе Кинематика РГР- ЗАДАНИЕ Вариант задания включает в себя: - задачу по определению траектории, скорости и ускорения точки при

Подробнее

Часть 1. На диаграмме показано распределение земель Уральского Федерального округа по категориям.

Часть 1. На диаграмме показано распределение земель Уральского Федерального округа по категориям. Часть 1 Ответом на задания B1 B20 должно быть целое число или конечная десятичная дробь. Единицы измерения писать не нужно. B4 На диаграмме показано распределение земель Уральского Федерального округа

Подробнее

ϕ =, если положить потенциал на

ϕ =, если положить потенциал на . ПОТЕНЦИАЛ. РАБОТА СИЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ Потенциал, создаваемый точечным зарядом в точке A, находящейся на, если положить потенциал на бесконечности равным нулю: φ( ). Потенциал, создаваемый в

Подробнее

Лекция 3. 2.6. Работа силы. Кинетическая энергия ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

Лекция 3. 2.6. Работа силы. Кинетическая энергия ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ 34 ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ Лекция 3.6. Работа силы. Кинетическая энергия Наряду с временнóй характеристикой силы ее импульсом, вводят пространственную, называемую работой. Как всякий вектор, сила

Подробнее

КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕД- СТАВЛЕНИЙ СУММА КВАДРАТОВ РАЗМЕРНОСТЕЙ

КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕД- СТАВЛЕНИЙ СУММА КВАДРАТОВ РАЗМЕРНОСТЕЙ ЛЕКЦИЯ 20 КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕД- СТАВЛЕНИЙ СУММА КВАДРАТОВ РАЗМЕРНОСТЕЙ ПРИМЕРЫ 1 КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕДСТАВЛЕНИЙ Лемма 1. Пусть Γ центральная функция на конечной группе G, φ : G GL (V ) неприводимое

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

Материалы заданий с ответами. олимпиады школьников по математике «САММАТ - 2010» 7 КЛАСС. HOK(x, y) = HOK(201, 209),

Материалы заданий с ответами. олимпиады школьников по математике «САММАТ - 2010» 7 КЛАСС. HOK(x, y) = HOK(201, 209), 7 КЛАСС 1. Сколько решений в натуральных числах имеет уравнение HOK(x, y) = HOK(201, 209), где HOK - наименьшее общее кратное двух чисел? Ответ: 81. 2. В треугольнике ABC известно, что AB = 5, BC = 6,

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Единый государственный экзамен по МАТЕМАТИКЕ

Единый государственный экзамен по МАТЕМАТИКЕ МАТЕМАТИКА, 11 класс. Базовый уровень (015 - / 16) Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ 015 года по МАТЕМАТИКЕ Единый государственный экзамен по МАТЕМАТИКЕ

Подробнее

высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1

высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1 Негосударственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский институт гостеприимства» Кафедра математики и информатики МАТЕМАТИКА Часть 1 Линейная алгебра. Аналитическая

Подробнее

Математика. 10 класс. Демонстрационный вариант 1. Итоговая работа. 10 класс. базовый уровень. Демонстрационный вариант

Математика. 10 класс. Демонстрационный вариант 1. Итоговая работа. 10 класс. базовый уровень. Демонстрационный вариант Математика. 0 класс. Демонстрационный вариант Итоговая работа по МАТЕМАТИКЕ 0 класс базовый уровень Демонстрационный вариант Инструкция по выполнению работы На выполнение итоговой работы по математике

Подробнее

Лекция 2. Степенные ряды

Лекция 2. Степенные ряды С А Лавренченко wwwlwreekoru Лекция Степенные ряды Понятие степенного ряда Степенной ряд можно рассматривать как многочлен с бесконечным числом членов Определение (степенного ряда) Степенным рядом называется

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ООО «Резольвента» www.resolventa.ru resolventa@list.ru (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

МОЖНО ЛИ ПОСТРОИТЬ ТРЕУГОЛЬНИК ПО ОСНОВАНИЯМ БИССЕКТРИС?

МОЖНО ЛИ ПОСТРОИТЬ ТРЕУГОЛЬНИК ПО ОСНОВАНИЯМ БИССЕКТРИС? МОЖНО ЛИ ПОСТРОИТЬ ТРЕУГОЛЬНИК ПО ОСНОВАНИЯМ БИССЕКТРИС? А. В. Устинов 1. Список Верника В работе «Лёгкое решение очень трудной геометрической задачи» (см. [4], а также изложение на английском языке [7])

Подробнее

ϕ(r) = Q a + Q 2a a 2

ϕ(r) = Q a + Q 2a a 2 1 Урок 14 Энергия поля, Давление. Силы 1. (Задача.47 Внутри плоского конденсатора с площадью пластин S и расстоянием d между ними находится пластинка из стекла, целиком заполняющая пространство между пластинами

Подробнее

Лекция 9: Подпространства

Лекция 9: Подпространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение подпространства. Примеры подпространств (1) Определение Непустое подмножество

Подробнее

IV. 1. НА ОШИБКАХ УЧАТ

IV. 1. НА ОШИБКАХ УЧАТ IV. 1. НА ОШИБКАХ УЧАТ Учить математике, как я понимаю своё дело, это учить, в частности, характерному для неё (и для науки вообще) максимально добросовестному и ответственному отношению к полученному

Подробнее

XVII международная олимпиада по математике Русановского лицея 2012

XVII международная олимпиада по математике Русановского лицея 2012 XVII международная олимпиада по математике Русановского лицея 0 6 класс тур.. До отхода поезда остается минуты. Расстояние до вокзала км. Если первый километр бежать со скоростью 0 км/ч, то можно ли успеть

Подробнее