Производная функции, её геометрический и механический смысл.

Размер: px
Начинать показ со страницы:

Download "Производная функции, её геометрический и механический смысл."

Транскрипт

1 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет» Кафедра высшей математики Производная функции, её геометрический и механический смысл. Методические указания для практических занятий Новокузнецк 2014

2 УДК (07) П 801 Рецензент доктор физико-математических наук, профессор кафедры физики имени профессора В.М. Финкеля Громов В.Е. П 801 Производная функции, её геометрический и механический смысл: метод. указ. / Сиб. гос. индустр. ун-т; сост. В. И. Зимин. Новокузнецк : Изд. центр СибГИУ, с. Изложена краткая теория, рассмотрены примеры решения задач, приведены задания для самостоятельного решения. Предназначены для студентов всех специальностей и направлений подготовки. Печатается по решению Совета института фундаментального образования 2

3 1. Понятие производной Теоретические сведения 1. Производной функции y=f(x) называется предел отношения приращения функции к приращению аргумента при стремлении приращения аргумента к нулю, то есть. Используя это определение, получают формулы дифференцирования (таблица производных) и правила дифференцирования. 2. Таблица производных: 2.1 Степенная функция: 1) c =0, 2) x =1, 3) (x 2 ) =2x, 4) 2.2 Показательная функция: 1) 2.3 Логарифмическая функция: 2.3 Тригонометрические функции: 2.4 Обратные тригонометрические функции: 2.5 Гиперболические функции: 3. Правила дифференцирования. 3.1 Производная суммы (разности) 3.2 Производная произведения 3.3 Производная частного. 3.3 Производная сложной функции 3

4 3.3.1 Двухзвенная сложная функция y=u(v(x)), Трехзвенная сложная функция 2. Геометрический смысл производной Теоретические сведения 1. Геометрический смысл производной функции y=f(x) состоит в том, что значение производной в точке х 0 равно тангенсу угла наклона касательной к графику функции, проходящей через точку графика с абсциссой х 0 (рисунок 1).. 2. Уравнение касательной к графику функции в точке с абсциссой х 0 имеет вид у=у (x 0 )(x-x 0 )+y(x 0 ). 3. Уравнение нормали к графику функции в точке с абсциссой х 0 имеет вид у= (x 0 )(x-x 0 )+y(x 0 ). у y=f(x) y=y (x 0 )(x-x 0 )+y(x 0 ) x y= (x-x 0 )+y(x 0 ) Рисунок 1 Геометрический смысл производной Примеры решения задач 1) В какой точке касательная к графику функций у=х 3 -х параллельна прямой у=5х+2? Решение В точках, в которых касательная параллельна прямой у=5х+2, её угловой коэффициент равен 5, поэтому, и 3x 1 5,. Так, как 2 3 точка лежит на графике функции, то y ( 2) 2 2. Ответ: М 1,2 ( 4

5 2) Чему равен угловой коэффициент касательной, проведенный к окружности (х-1) 2 +(у+3) 2 =17, проведенной в точке М 0 (2;1) Решение Угловой коэффициент касательной в данной точке равен значению производной в этой точке. Находим производную. 2(х-1)+2(у+3)у, =0, у, = Ответ:-1/4 3) Найти угловой коэффициент касательной к данной линии в данной точке: Решение Угловой коэффициент касательной равен значению производной в этой точке. Отметим, что в данной точке параметр имеет два значения t 1 =0, t 2 =1. Это говорит о том, кривая, заданная параметрически самопересекается (рисунок 2). у 0 х Рисунок 2 График заданной функции Поэтому в данной точке будет две касательные и два угловых коэффициента. Находим производную к=ух/= к 1 =у(0)=0, к 2 =у(1)=1/3. Ответ: 0; 1/3. 5

6 Задачи для решения в аудитории 1) Составить уравнение касательной к графику у=х 2 в точке М(2;4). Построить параболу и касательную. 2) Составить уравнения касательных к графику функции у= 4хх 2 в точках пересечения его с осью абсцисс. Сделать чертеж. 3) В точках М 1 (0; 0), М 2 (2; 1), М 3 (4; 0) проведены касательные к параболе у=(4х-х 2 )/4. Написать их уравнения и определить углы наклона к оси ОХ. Сделать чертеж. 4) Под каким углом пересекаются парабола у=х 2 и прямая 3х-у- 2=0? 5) Под каким углом пересекаются парабола у=х 2 с параболой у=? 6) Написать уравнение касательной и нормали к кривой у=х 3 в точке с абсциссой 2. Задачи для домашнего задания 7) В какой точке касательная к параболе у=х 2 7.1) параллельна прямой у=4х-5; 7.2) перпендикулярна прямой 2х-6у+5=0; 7.3) образует с прямой 3х-у+1=0 угол 450? 8) Написать уравнения касательных к окружности х 2 +у 2-4х=0 в точках её пересечения с осью ОХ. Сделать чертеж. 9) Написать уравнение касательных к окружности х 2 +у 2-6х-8у=0 в точках её пересечения с осью ОХ. Сделать чертеж. 10) Найти угловые коэффициенты касательных к данным линиям в данных точках:. Ответы 1)у=4х-4; 2) у=4х, у=-4х-16, 3)у=х, у=2,у=-х+4, ; 4) 5), 6) у=12х-16, у 7.1) х=2, х=2; 7.3) х=-1, х= ; 8) х=0, х=4; 9) 10.1) 1; 10.2). 6

7 3. Механический смысл производной Теоретические сведения 1. Если тело движется по закону S=S(t)( S- пройденный путь, t- время от начала движения), то из определения производной следует, что скорость равна производной от пути по времениv=s =, а ускорение- производная от скорости по времени w=v =. 2. Если некоторая величина меняет свое значение в зависимости от времени, то производная от этой величины по времени является скоростью процесса, который характеризуется данной величиной. Например, при радиоактивном процессе масса является величиной, зависящей от времени, а производная от функции массы по времени является скоростью радиоактивного распада. 3. Если стержень I помещен на ось ОХ (рисунок 3), а масса его участка [0;x] равна м=м(х), то производной от этой функции по х будет являться плотность стержня в точке х. *0 I * x Рисунок 3 Изображение стержня на оси Ох Пример решения задач 1. Точка движется по окружности. Найти скорость изменения абсциссы и ординаты точки, если полярный радиус вращается со скоростью. Полярная ось служит осью абсцисс, пoлюс - началом системы декартовых координат. Решение Находим координаты точки окружности по формулам Тогда. Находим скорость изменения координат:. Полученные выражения определяют скорости изменения абсциссы и ординаты точки. 7

8 Задачи для решения в аудитории 1) Точка движется по логарифмической спирали. Найти скорость изменения полярного радиуса, если известно, что он изменяется со скоростью. 2) Тело движется по прямой по закону x=t 3 /3-2t 2 +3t. Определить скорость и ускорение движения. В какие моменты тело меняет направление движения? 3) Колебательное движение точки совершается по закону Определить скорость и ускорение движения в точках. Показать, что ускорение и отклонение связаны дифференциальным уравнением. 4) Вращающееся маховое колесо, задерживаемое тормозом, за t секунд поворачивается на угол, где а, b, с- положительные постоянные. Определить угловую скорость и ускорение вращения. Когда колесо остановится? Задачи для домашнего задания 5) Колесо радиуса a катится по прямой. Угол поворота колеса за t сек. Определяется уравнением.определить скорость и ускорение движения центра колеса. 6) Точка движется прямолинейно так, что v 2 =2ax, где v- скорость, х-пройденный путь и a постоянная. Определить ускорение движения. 7) Круг радиуса R катится без скольжения по прямой. Центр круга движется с постоянной скоростью v, найти скорость изменения абсциссы x и ординаты у для точки, лежащей на границе круга. Ответы 1) a e aφ ; 2)t 1 =1, t 2 =3; 3) v 1,2 =-a,v 3 =0, w 1,2 =0, w 3 =-a; 4) ; 5) v=a(1+t), w=a; 6) w=a; 7) v x =v(1+ v y =v 8

9 Библиографический список 1. Игнатьева А.В. Курс высшей математики / А.В. Игнатьева, Т.И. Краснощекова, В.Ф. Смирнов. М.: Высшая школа, с. 2. Шипачев В.С. Высшая математика: учебник для вузов / В.С. Шипачев. М.: Высшая школа, с. 3. Шипачев В.С. Задачник по высшей математике / В.С. Шипачев. М.: Высшая школа, с. 4. Данко П. Е. Высшая математика в упражнениях и задачах. Т.1. / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. Москва : Высшая школа, с. 9

10 Учебное издание Составитель Зимин Владимир Иванович Производная функции, её геометрический и механический смысл Методические указания для практических занятий Напечатано в полном соответствии с авторским оригиналом Подписано в печать г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл.-печ. 0,58 л. Уч.-изд. 0,65. л. Тираж 50 экз. Заказ. Сибирский государственный индустриальный университет , г. Новокузнецк, ул. Кирова, 42. Типография СибГИУ 10

Исследование функции на непрерывность. Точки разрыва и их классификация

Исследование функции на непрерывность. Точки разрыва и их классификация Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Дифференциальное исчисление функций нескольких переменных

Дифференциальное исчисление функций нескольких переменных Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Область определения функций нескольких переменных

Область определения функций нескольких переменных Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Правило Лопиталя. Методические указания для практических занятий. Министерство образования и науки Российской Федерации

Правило Лопиталя. Методические указания для практических занятий. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Определенный интеграл

Определенный интеграл Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Кафедра высшей математики. Дифференциальное исчисление функций одной переменной

Кафедра высшей математики. Дифференциальное исчисление функций одной переменной Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Выпуклость, точки перегиба. Асимптоты

Выпуклость, точки перегиба. Асимптоты Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Поверхности второго порядка

Поверхности второго порядка Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Тригонометрические ряды Фурье

Тригонометрические ряды Фурье Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Однородные дифференциальные уравнения 1-го порядка

Однородные дифференциальные уравнения 1-го порядка Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Функции одной переменной

Функции одной переменной Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Вычисление и приложения тройного интеграла

Вычисление и приложения тройного интеграла Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ЧАСТНЫЕ ПРОИЗВОДНЫЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий

ЧАСТНЫЕ ПРОИЗВОДНЫЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ДИФФЕРЕНЦИАЛ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий

ДИФФЕРЕНЦИАЛ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики

Министерство образования и науки Российской Федерации. Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Вычисление и приложения двойного интеграла

Вычисление и приложения двойного интеграла Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Уравнения прямой и плоскости Методические указания для практических занятий

Уравнения прямой и плоскости Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий

ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ II ПОРЯДКА, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА. Методические указания для практических занятий

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ II ПОРЯДКА, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Система задач по теме «Уравнение касательной» а) б)

Система задач по теме «Уравнение касательной» а) б) Система задач по теме «Уравнение касательной» Определите знак углового коэффициента касательной, проведенной к графику функции y f (), в точках с абсциссами a, b, c а) б) Укажите точки, в которых производная

Подробнее

Вычисление и приложения криволинейного интеграла

Вычисление и приложения криволинейного интеграла Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ПРОИЗВОДНАЯ И ГРАДИЕНТ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий

ПРОИЗВОДНАЯ И ГРАДИЕНТ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Уравнение касательной проще запомнить, ; = ;

Уравнение касательной проще запомнить, ; = ; Тема 40 «Касательные к графику функции» Геометрический смысл производной Значение производной функции y = f(x) в точке х 0 равно угловому коэффициенту касательной (k), проведенной к графику функции в точке

Подробнее

Кафедра высшей математики ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА ПО ФОРМУЛЕ НЬЮТОНА-ЛЕЙБНИЦА. ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Кафедра высшей математики ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА ПО ФОРМУЛЕ НЬЮТОНА-ЛЕЙБНИЦА. ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

Техническое обслуживание и ремонт радиоэлектронной техники (по отраслям); Преподаватель: Шарапова Н.А. Студент должен

Техническое обслуживание и ремонт радиоэлектронной техники (по отраслям); Преподаватель: Шарапова Н.А. Студент должен Министерство труда, занятости и трудовых ресурсов Новосибирской области Государственное бюджетное профессиональное образовательное учреждение Новосибирской области «Новосибирский радиотехнический колледж»

Подробнее

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования.

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования. Производная функции Ее геометрический и физический смысл Техника дифференцирования Основные определения Пусть f ( ) определена на (, ) a, b некоторая фиксированная точка, приращение аргумента в точке,

Подробнее

Выборки и их характеристики

Выборки и их характеристики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Теорема (Кантора) Функция, непрерывная на отрезке, равномерно непрерывна на нем. ГЛАВА 5 ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Теорема (Кантора) Функция, непрерывная на отрезке, равномерно непрерывна на нем. ГЛАВА 5 ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 66 Теорема (Кантора Функция, непрерывная на отрезке, равномерно непрерывна на нем Кантор Георг (CANTOR Georg 1921845-611918 - немецкий математик ГЛАВА 5 ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 1 ПОНЯТИЕ

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. Практикум по высшей математике

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. Практикум по высшей математике ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра прикладной математики и

Подробнее

Дифференциальные характеристики кривых линий

Дифференциальные характеристики кривых линий Лекция 6. Кривые линии Кривая линия (или просто кривая) - это геометрическое место точек, координаты которых являются функциями одной переменной. Если уравнение кривой в декартовой системе координат алгебраическое,

Подробнее

КРАТНЫЕ ИНТЕГРАЛЫ (задачи и упражнения)

КРАТНЫЕ ИНТЕГРАЛЫ (задачи и упражнения) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика СП КОРОЛЕВА»

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

Домашний контрольный тест по теме «Производная»

Домашний контрольный тест по теме «Производная» Домашний контрольный тест по теме «Производная» А. Производная элементарной функции А. Вычислите y 7, если y. A) B) C) - D) - E) А. Найдите f, если f A),5 B) - C) - D) E) 5 5 5 5 А. f, f? A) B) C) D) E)

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ

ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ Министерство образования Российской Федерации Ярославский государственный университет им. П.Г. Демидова Кафедра дискретного анализа ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ Задачи Ярославль Составитель канд.

Подробнее

Задания для самостоятельного решения. 5. Напишите уравнение касательной к графику функции f ( x) x 3 1в точках с абсциссами x 0 =-1 и x 0 =2

Задания для самостоятельного решения. 5. Напишите уравнение касательной к графику функции f ( x) x 3 1в точках с абсциссами x 0 =-1 и x 0 =2 Задания для самостоятельного решения. Найдите область определения функции 6x. Найдите тангенс угла наклона к оси абсцисс касательной, проходящей через точку М (;) графика функции. Найдите тангенс угла

Подробнее

Рабочая тетрадь по математике Тема «Производная»

Рабочая тетрадь по математике Тема «Производная» ГОУ СПО «Осинниковский политехнический техникум» Рабочая тетрадь по математике Тема «Производная» Составители: Глазунова Т.С., преподаватель ГОУ СПО «Осинниковский политехнический техникум» Новикова Н.П.,

Подробнее

Прототипы заданий В8 открытого банка задач по математике ЕГЭ-2013

Прототипы заданий В8 открытого банка задач по математике ЕГЭ-2013 Прототипы заданий В8 открытого банка задач по математике ЕГЭ-2013 Элементы содержания: производная, геометрический смысл производной, уравнение касательной к графику функции, применение производной к исследованию

Подробнее

lim f x f x используя обозначения приращений. 0 (2).

lim f x f x используя обозначения приращений. 0 (2). Лекция подготовлена доц Мусиной МВ Непрерывность функции Пусть функция y = f(x) определена в точке x и в некоторой окрестности этой точки Функция y = f(x) называется непрерывной в точке x, если существует

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ Кафедра высшей математики ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ Методические указания для подготовки дипломированных специалистов по направлению

Подробнее

Практическая работа 4 Составление уравнений прямых и кривых второго порядка

Практическая работа 4 Составление уравнений прямых и кривых второго порядка Практическая работа Составление уравнений прямых и кривых второго порядка Цель работы: закрепить умения составлять уравнения прямых и кривых второго порядка Содержание работы. Основные понятия. B C 0 вектор

Подробнее

СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ

СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ АЛГЕБРА И ГЕОМЕТРИЯ САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ Методические указания для подготовки дипломированных специалистов по направлению 654700 «Информационные

Подробнее

ОГЛАВЛЕНИЕ. Предисловие к девятому изданию...9 Предисловие к пятому изданию Г Л А В А I ЧИСЛО, ПЕРЕМЕННАЯ, ФУНКЦИЯ

ОГЛАВЛЕНИЕ. Предисловие к девятому изданию...9 Предисловие к пятому изданию Г Л А В А I ЧИСЛО, ПЕРЕМЕННАЯ, ФУНКЦИЯ ОГЛАВЛЕНИЕ Предисловие к девятому изданию.....9 Предисловие к пятому изданию... 11 Г Л А В А I ЧИСЛО, ПЕРЕМЕННАЯ, ФУНКЦИЯ 1. Действительные числа. Изображение действительных чисел точками числовой оси...

Подробнее

КОНТРОЛЬНЫЕ РАБОТЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

КОНТРОЛЬНЫЕ РАБОТЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный университет им. Н. И. Лобачевского Центр Дистанционного

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ С ПОМОЩЬЮ ПРОИЗВОДНЫХ

ИССЛЕДОВАНИЕ ФУНКЦИЙ С ПОМОЩЬЮ ПРОИЗВОДНЫХ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения.

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения. Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения Цель: сформировать умение находить производные функций, заданных в явном, логарифмическом и параметрическом

Подробнее

Урок на тему: Что такое производная? Производная на графике функции. Геометрический смысл производной

Урок на тему: Что такое производная? Производная на графике функции. Геометрический смысл производной Урок на тему: Что такое производная? Что будем изучать: Введение в понятие производной. Чуть-чуть истории. Определение производной. Производная на графике функции. Геометрический смысл производной Алгоритм

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Министерство образования и науки Российской Федерации. Владивостокский государственный университет экономики и сервиса МАТЕМАТИКА

Министерство образования и науки Российской Федерации. Владивостокский государственный университет экономики и сервиса МАТЕМАТИКА Министерство образования и науки Российской Федерации Владивостокский государственный университет экономики и сервиса МАТЕМАТИКА Учебная программа курса по специальности 281300 «Художественное проектирование

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ!УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей Контрольные вопросы Пример

Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей Контрольные вопросы Пример Математика [Электронный ресурс] : электронный учебно-методический комплекс. Ч. 1 / Е.А. Левина, В.И. Зимин, И.В. Касымова [и др.] ; Сиб. гос. индустр. ун-т. - Новокузнецк : СибГИУ, 2010. - 1 электрон.опт.диск

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

Цель: закрепить пройденный теоретический материал посредством рассмотрения I соответствующих примеров и решения задач.

Цель: закрепить пройденный теоретический материал посредством рассмотрения I соответствующих примеров и решения задач. Предмет: алгебра и начала анализа Класе: 11 Дата проведения урока: 21.12.2015 Учитель: С.М. Криштоп Тема урока: Касательная к графику функции (урок 2) Цель: закрепить пройденный теоретический материал

Подробнее

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ . Дифференциалы высоких порядков. Экзаменационный билет. Матрицы, основные понятия и определения.. Написать уравнение окружности, если точки А(;) и В(-;6) являются концами одного из диаметров.. Даны вершины

Подробнее

Итоговый тест, Прикладная механика (теор.мех.) (2523)

Итоговый тест, Прикладная механика (теор.мех.) (2523) Итоговый тест, Прикладная механика (теормех) (2523) 1 (60c) Наука о общих законах механического движения и равновесия материальных тел под действием сил 1) общая физика 2) теоретическая механика 3) сопротивление

Подробнее

КИНЕМАТИКА ТОЧКИ И ПРОСТЕЙШИЕ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА

КИНЕМАТИКА ТОЧКИ И ПРОСТЕЙШИЕ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА Московский государственный технический университет имени Н.Э. Баумана КИНЕМАТИКА ТОЧКИ И ПРОСТЕЙШИЕ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА Методические указания к выполнению курсового задания Москва Издательство МГТУ

Подробнее

Класс 7.1, 7.2, 7.3, 7.6 Учебник: Алгебра (Макарычев Н.В.) Модуль 5 «Функции» В тесте проверяются теоретическая и практическая части.

Класс 7.1, 7.2, 7.3, 7.6 Учебник: Алгебра (Макарычев Н.В.) Модуль 5 «Функции» В тесте проверяются теоретическая и практическая части. Класс 7.1, 7.2, 7.3, 7.6 Учебник: Алгебра (Макарычев Н.В.) Модуль 5 «Функции» В тесте проверяются теоретическая и практическая части. Что такое функция. График функции. Графическое представление статистических

Подробнее

ОПРЕДЕЛЕНИЕ СКОРОСТИ И УСКОРЕНИЯ ТОЧКИ ПО ЗАДАННЫМ УРАВНЕНИЯМ ЕЁ ДВИЖЕНИЯ

ОПРЕДЕЛЕНИЕ СКОРОСТИ И УСКОРЕНИЯ ТОЧКИ ПО ЗАДАННЫМ УРАВНЕНИЯМ ЕЁ ДВИЖЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ А.Ю. Григорьев,

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНЫХ И НЕЯВНО ЗАДАННЫХ ФУНКЦИЙ. Методические указания для практических занятий

ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНЫХ И НЕЯВНО ЗАДАННЫХ ФУНКЦИЙ. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Тесты по курсу «Теоретическая механика», раздел «Динамика» для студентов укрупненной группы всех специальностей лектор доц. О.В.

Тесты по курсу «Теоретическая механика», раздел «Динамика» для студентов укрупненной группы всех специальностей лектор доц. О.В. 83 Тесты по курсу «Теоретическая механика», раздел «Динамика» для студентов укрупненной группы 270000 всех специальностей лектор доц. О.В.Воротынова Для каждого вопроса предлагается не менее 4 ответов,

Подробнее

Эволюта и эвольвента

Эволюта и эвольвента Эволюта и эвольвента Дейнека В В Дегтярев Д Ю Беришвили ОН Плотникова СВ ФГБОУ ВО «Самарская государственная сельскохозяйственная академия» пгт Усть-Кинельский Россия Векторные функции находят широкое

Подробнее

ТЕСТЫ ДЛЯ ЗАЩИТЫ ЛАБОРАТОРНОЙ РАБОТЫ «КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ». ВАРИАНТ 1 1. Колесо вращается так, как показано на рисунке белой стрелкой.

ТЕСТЫ ДЛЯ ЗАЩИТЫ ЛАБОРАТОРНОЙ РАБОТЫ «КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ». ВАРИАНТ 1 1. Колесо вращается так, как показано на рисунке белой стрелкой. ТЕСТЫ ДЛЯ ЗАЩИТЫ ЛАБОРАТОРНОЙ РАБОТЫ «КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ». ВАРИАНТ 1 1. Колесо вращается так, как показано на рисунке белой стрелкой. К ободу колеса приложена сила, направленная по касательной.

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

Министерство образования Российской Федерации Казанская Государственная Архитектурно-строительная Академия. Кафедра высшей математики

Министерство образования Российской Федерации Казанская Государственная Архитектурно-строительная Академия. Кафедра высшей математики Министерство образования Российской Федерации Казанская Государственная Архитектурно-строительная Академия Кафедра высшей математики ЗАДАНИЯ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ Линейная

Подробнее

Подготовка к ЕГЭ по математике

Подготовка к ЕГЭ по математике 2014 Подготовка к ЕГЭ по математике Теория для решения задач В9 Открытый банк заданий ЕГЭ по математике http://mathege.ru Александр и Наталья Крутицких www.matematikalegko.ru 01.01.2014 А.С. Крутицких

Подробнее

виды движения неравномерное равнопеременное (равноускоренное)

виды движения неравномерное равнопеременное (равноускоренное) 1.1.1. Механическое движение. Относительность механического движения. Система отсчета. Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Программа и контрольные работы 5-7 по курсу. «Высшая математика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Программа и контрольные работы 5-7 по курсу. «Высшая математика» Министерство образования и науки Российской Федерации Московский государственный университет геодезии и картографии Факультет дистанционных форм обучения МЕТОДИЧЕСКИЕ УКАЗАНИЯ Программа и контрольные работы

Подробнее

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ.

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ. Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента xиз этого промежутка функция y=f(x)

Подробнее

Тема 4. ВРАЩЕНИЕ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ. Задание 4

Тема 4. ВРАЩЕНИЕ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ. Задание 4 Тема 4. ВРАЩЕНИЕ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ Задание 4 По заданному уравнению прямолинейного поступательного движения груза 1 определить скорость, а также касательное, нормальное и полное ускорения

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

Вопросы к экзамену по математике для студентов ИСиА (1 курс, 1, 2 и 9 гр) специальности , семестр

Вопросы к экзамену по математике для студентов ИСиА (1 курс, 1, 2 и 9 гр) специальности , семестр Вопросы к экзамену по математике для студентов ИСиА ( курс,, и 9 гр) специальности 6, 6 семестр Теоретическая часть часть Матрицы Действия с ними Определители квадратных матриц Свойства Миноры и алгебраические

Подробнее

Мусин Хасан Эльдарович, учитель математики Школа «Ретро». Персональная карточка Найдите длину промежутка возрастания убывания функции:

Мусин Хасан Эльдарович, учитель математики Школа «Ретро». Персональная карточка Найдите длину промежутка возрастания убывания функции: Урок обобщающего повторения по теме "Производная. Геометрический смысл производной. Задачи с использованием графика производной" (11-й класс, 2 часа) Мусин Хасан Эльдарович, учитель математики Школа «Ретро».

Подробнее

СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА

СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА Б. М. Маврин, Е. И. Балаев СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА Плоским движением твердого тела называют такое его движение, при котором каждая его точка все время движется в одной и той же плоскости. Плоскости, в которых движутся отдельные

Подробнее

Лекция 26 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ(4)

Лекция 26 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ(4) Лекция 26 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ(4) Вычисление площадей плоских фигур Площадь в полярных координатах Вычисление объемов тел Вычисление объема тела по известным

Подробнее

ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ ДЛЯ ПЛОСКИХ И ПРОСТРАНСТВЕННЫХ КРИВЫХ

ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ ДЛЯ ПЛОСКИХ И ПРОСТРАНСТВЕННЫХ КРИВЫХ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ

Подробнее

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1 1 Простейшие задачи аналитической геометрии на плоскости 11 Расстояние между двумя точками Рассмотрим прямоугольную систему координат (декартовую, рис Рис 1 Любой точки M соответствуют координаты OA x

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ Министерство образования и науки РФ Российский государственный университет нефти и газа имени И М Губкина Кафедра высшей математики СИ ВАСИН ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ Учебно-методическое пособие для

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ ВЫСШАЯ МАТЕМАТИКА 3

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ ВЫСШАЯ МАТЕМАТИКА 3 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ Ю.Г. Костына, Г.П. Мартынов ВЫСШАЯ МАТЕМАТИКА Дифференциальное исчисление функций нескольких переменных,

Подробнее

В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ

В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ ИЗДАТЕЛЬСТВО ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего

Подробнее

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения А. В. Мезенцев П. П. Скачков Векторная алгебра и аналитическая геометрия Методические рекомендации

Подробнее

Сборник тестовых заданий

Сборник тестовых заданий федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» КАФЕДРА «МАТЕМАТИКА» М. В. ИШХАНЯН, А.И.

Подробнее

l : y y 0 = f (x 0 )(x x 0 ). n : y y 0 = 1 f (x 0 ) (x x 0). y (n) = y (n 1)) dx n.

l : y y 0 = f (x 0 )(x x 0 ). n : y y 0 = 1 f (x 0 ) (x x 0). y (n) = y (n 1)) dx n. Занятие 4 Вычисление производных-1 4.1 Определение производной Производной функции y = f(x) в точке x 0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента

Подробнее

ПЕРВОЕ ЗАДАНИЕ (КРИВЫЕ)

ПЕРВОЕ ЗАДАНИЕ (КРИВЫЕ) ПЕРВОЕ ЗАДАНИЕ (КРИВЫЕ) 1 Исследовать и построить кривые: а) = y= 1+ 1+ б) sin+ cos cos = y= в) sin sin 9 + = y= 1 Прямая OL вращается вокруг точки О с постоянной угловой скоростью ω Точка М движется по

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. И. РАЗЗАКОВА ТОКМОКСКИЙ ТЕХНИЧЕСКИЙ ИНСТИТУТ Кафедра «Фундаментальные дисциплины» АНАЛИТИЧЕСКАЯ

Подробнее

Введение Методические указания содержат 26 вариантов индивидуальных домашних заданий по темам «Прямая на плоскости и в пространстве», «Плоскость»,

Введение Методические указания содержат 26 вариантов индивидуальных домашних заданий по темам «Прямая на плоскости и в пространстве», «Плоскость», Введение Методические указания содержат 26 вариантов индивидуальных домашних заданий по темам «Прямая на плоскости и в пространстве», «Плоскость», «Кривые и поверхности второго порядка». Под индивидуальными

Подробнее

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ:

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: 11 Функциональная связь Предел функции 1 Производная функции 1 Механический физический и геометрический смысл производной 14 Основные

Подробнее

Набережные Челны 2013 год

Набережные Челны 2013 год Муниципальное бюджетное общеобразовательное учреждение «Открытая (сменная) общеобразовательная школа 65» город Набережные Челны Республика Татарстан МЕТОДИЧЕСКОЕ ПОСОБИЕ по подготовке учащихся вечерней

Подробнее

МАЯТНИК ОБЕРБЕКА. Методические указания к выполнению лабораторной работы M-09a по курсу «Общая физика» для студентов всех специальностей

МАЯТНИК ОБЕРБЕКА. Методические указания к выполнению лабораторной работы M-09a по курсу «Общая физика» для студентов всех специальностей ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Проректор-директор

Подробнее

ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ

ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Б. М. Маврин, Е. И. Балаев ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. 1 1. Уравнение поверхности и уравнения линии в пространстве. Геометрический смысл уравнений В аналитической геометрии всякую поверхность рассматривают как совокупность

Подробнее

Основы кинематики. Лекция-видеопрезентация по физике для слушателей подготовительного отделения

Основы кинематики. Лекция-видеопрезентация по физике для слушателей подготовительного отделения Основы кинематики Лекция-видеопрезентация по физике для слушателей подготовительного отделения Составитель М.Н. Бардашевич, ассистент кафедры довузовской подготовки и профориентации Основная литература:

Подробнее

8. Кривые второго порядка Окружность

8. Кривые второго порядка Окружность 8 Кривые второго порядка 81 Окружность Множество точек плоскости, равноудаленных от одной точки, называемой центром, на расстояние, называемое радиусом, называется окружностью Пусть центр окружности находится

Подробнее