Двойственность в линейном программировании

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Двойственность в линейном программировании"

Транскрипт

1 Двойственность в линейном программировании Двойственными называются пары следующих задач: z b b, k k,, r r, w, k k, b, r r, Принципы составления двойственных задач: Если исходная задача на максимум, то двойственная задача на минимум Количество переменных в двойственной задаче совпадает с количеством ограничений в исходной Коэффициентами целевой функции в двойственной задаче являются правые части ограничений исходной Правые части ограничений двойственной задачи есть коэффициенты целевой функции исходной Неравенствам в ограничениях исходной задачи соответствуют неотрицательные переменные в двойственной задаче Ограничениям типа = соответствуют переменные произвольного знака в двойственной задаче Неотрицательным переменным исходной задачи соответствуют ограничения двойственной задачи Переменным произвольного знака исходной задачи соответствуют строгие = в ограничениях двойственной задачи 7 Матрица коэффициентов ограничений исходной задачи в ограничениях двойственной задачи транспонируется Замечания

2 Если в исходной задаче есть ограничения b, то умножив на - получим ограничение вида b Если существуют переменные, то выполнив замену переменной, получим переменные Условия, записанные друг напротив друга, называются сопряженными Следующая пара двойственных задач называется симметричной z или, b, w или w, b, Основные теоремы двойственности Лемма Основное неравенство двойственности Для всяких планов исходной задачи и двойственной задачи выполняется неравенство Доказательство - план исходной задачи, следовательно Умножим обе части данного неравенства слева на матрицу Получим - план двойственной задачи, следовательно Умножим обе части данного неравенства справа на матрицу Получим Тогда, а значит для, Теорема Достаточное условие оптимальности Если и такие, что, то Х, Доказательство Согласно леммы для,

3 Рассмотрим в качестве определению, Х Х, тогда, тогда, по Аналогично доказывается, что докажите самостоятельно Теорема Если существует оптимальный план одной из двойственных задач, то существует оптимальный план и у другой задачи, причем Доказательство Рассмотрим пару двойственных задач z w Приведем обе задачи к основной z U U Запишем симплекс-матрицы для левой и правой частей w V V V z w Так как матрица, то в силу того, что ее можно представить в виде, так как существует, то базисные, - ввободные,где z С w Допустим, не ограничивая общности, что базисные переменные сосредоточены в первых столбцах В результате применения алгоритма симплекс-метода на месте матрицы получим единичную матрицу Е, что эквивалентно умножению на обратную матрицу слева в исходной задаче и на в двойственной

4 исходная С z С С z С строка Имеем: z свободные базисные При этом заметим, что, так как в индексной строке при оптимальном плане нет положительных элементов двойственная слева строка слева строка w w Используя свойства матриц, а именно:, имеем w базисные Симплекс-матрица двойственной задачи также доведена до оптимального решения, следовательно оно существует V w Так как, следовательно, по теореме полученное решение двойственной задачи является оптимальным Вывод Если мы решаем одну из симметричных задач, то в индексной строке под единичной матрицей получаем решение двойственной задачи с противоположным знаком Пусть, тогда, согласно леммы, так как Таким образом, если не ограничена на множестве планов, то и не ограничена на множестве планов Теорема Если существуют планы,, то существуют оптимальные, Доказательство По теореме о трех альтернативах альтернатива нет решения исключается, так как существуют планы, Так же исключена альтернатива неограниченность функции, так как по лемме,, то рассмотрев, имеем -

5 ограничена Следовательно, имеет место альтернатива, те задачи имеют оптимальное решение Теорема О равновесии Условия дополняющей нежесткости Для того чтобы, необходимо и достаточно выполнения условий Доказательство Достаточность по теореме, Необходимость Существуют,, надо доказать, что Допустим противное, тогда, тогда, что противоречит оптимальности, следовательно, наше предположение не верно Пример Найти оптимальный план и вычислить максимум функции на множестве,, используя процедуру двойственного симплекс-метода В каждом варианте приведены матрицы в виде Составим по данным исходную и двойственную задачи двойственная Из ограничений двойственной задачи,,,

6 Введем замену Рассматриваем задачу Умножим на - ограничения Переходим к основной задаче Задача является канонической, используем симплекс-метод / - -/ z

7 / / / / / / -/ / -/ z- / / / 8/ -/ -/8 /8 / - - z- В индексной строке нет положительных элементов, получено оптимальное решение / 8 / / 8 / z Для нахождения решения исходной задачи используем условия дополняющей нежесткости / 8 / Таким образом, Подставляем в исходную систему Решим систему методом Жордана - Гаусса / / ;;;; / х Ответ: ;; ;/ ;8 / ;;;; / х

8 Экономический смысл двойственных переменных Рассмотрим задачу об оптимальном использовании ресурсов Предприятие выпускает различных изделий Для их производства требуется различных видов ресурсов разных видов сырья, вспомогательных материалов, запасов машинного времени, людских ресурсов и тд Ресурсы ограничены и составляют в планируемый период соответственно b, b,, b условных единиц Известны технологические коэффициенты, которые показывают, сколько единиц ого ресурса требуется для производства единицы, ;, Прибыль, получаемая предприятием при реализации единицы изделия ого вида, с,,,, равна ого вида изделия В планируемый период все показатели, с и b предполагаются постоянными Требуется составить такой план выпуска продукции, при котором прибыль предприятия от реализации была бы наибольшей Имеем математическую модель b,,, В результате решения исходной и двойственной задач z b,, w, b, получим план производства а также значения целевых функций и значения двойственных переменных Найдем единицы измерения целевой функции руб ед прод ед прод руб,

9 Так как при оптимальном плане При этом, то руб руб b ед рес b руб ед рес некоторая цена единицы ресурса учетная цена, фиктивная цена, оценка ресурса, то есть - это Дробь - это отношение показывающее, насколько увеличится числитель, если знаменатель увеличить на единицу Следовательно, учетная стоимость затрат на производство - цена единицы ресурса, - прибыль от производства, Рассмотрим выравнивающие переменные - Если, то Если, то b, а значит запас -го сырья использован полностью b, а значит запас -го сырья использован не полностью и - остаток запаса -го сырья Согласно условиям дополняющей нежёсткости, если b, то Ресурс недоиспользован, следовательно, дополнительные закупки этого сырья не приведут к увеличению производства, а значит, оценка этого ресурса равна нулю Рассмотрим неравенства При переходе к основной задаче вводим выравнивающие переменные - стоимость - го сырья, идущего на производство - го продукта, - стоимость всех видов сырья, идущих на производство - го продукта, с - стоимость - го продукта Если, то тратим на сырье больше, чем стоит продукт, следовательно, такой продукт производить не рентабельно, соответствующее Выравнивающие переменные показывают на сколько затраты на ресурсы превышают стоимость произведенной единицы - ой продукции


ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Исследование операций Определение Операция - мероприятие, направленное на достижение некоторой цели, допускающее несколько возможностей и их управление Определение Исследование операций совокупность математических

Подробнее

4 Методы нахождения первоначальной крайней точки

4 Методы нахождения первоначальной крайней точки 4 Методы нахождения первоначальной крайней точки 4. Переход к решению двойственной задачи Рассмотрим метод решения задач линейного программирования путем перехода к двойственной задаче и решения полученной

Подробнее

Двойственные задачи. Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2

Двойственные задачи. Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2 Двойственные задачи Содержание Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2 Взаимно двойственные задачи линейного программирования и их свойства 5 Теоремы двойственности

Подробнее

три вида ресурсов. Известны технологическая матрица A 6 ресурсов на производство единицы каждого вида продукции, вектор b 150

три вида ресурсов. Известны технологическая матрица A 6 ресурсов на производство единицы каждого вида продукции, вектор b 150 Линейная производственная задача. Предприятие может выпускать четыре вида продукции, используя при этом три вида ресурсов. Известны технологическая матрица A затрат 7 8 ресурсов на производство единицы

Подробнее

Построение математической модели задачи. Симплекс-метод решения задачи, метод искусственного базиса.

Построение математической модели задачи. Симплекс-метод решения задачи, метод искусственного базиса. ) Задача о планировании производства. Производственному участку может быть запланировано к изготовлению на определённый плановый период времени два вида изделий: A и B. На производство единицы изделия

Подробнее

Линейная алгебра

Линейная алгебра Линейная алгебра 22.12.2012 Линейные модели в экономике Линейное программирование Теория двойственности Линейная алгебра (лекция 15) 22.12.2012 2 / 28 Линейное программирование Каждой задаче линейного

Подробнее

ВАРИАНТ 5. Контрольная работа выполнена на сайте МатБюро. Решение задач по математике, статистике, теории вероятностей

ВАРИАНТ 5. Контрольная работа выполнена на сайте  МатБюро. Решение задач по математике, статистике, теории вероятностей ВАРИАНТ 5 Для изготовления различных изделий А, В, С предприятие использует различных вида сырья. Используя данные таблицы: Вид сырья Нормы затрат сырья Кол-во сырья А В С I II III 18 6 5 15 4 12 8 540

Подробнее

Решение задачи целочисленного программирования методом Гомори. Решение двойственной задачи

Решение задачи целочисленного программирования методом Гомори. Решение двойственной задачи Решение задачи целочисленного программирования методом Гомори. Решение двойственной задачи ЗАДАНИЕ.. Найти целочисленное решение задачи линейного программирования..составить двойственную задачу и решить

Подробнее

Математическое программирование. 1-я задача. Симплекс-метод решения задачи.

Математическое программирование. 1-я задача. Симплекс-метод решения задачи. Математическое программирование. 1) Решить графически следующие задачи линейного программирования. 2) Решить обе задачи перебором базисных решений. 3) Решить первую задачу симплекс методом. 1-я задача:

Подробнее

Практическая работа. «Экономико-математические методы и модели» Вариант 2. Задание 1. Решить графически.

Практическая работа. «Экономико-математические методы и модели» Вариант 2. Задание 1. Решить графически. Практическая работа «Экономико-математические методы и модели» Вариант 2 Задание 1. Решить графически. 150x + 70x max, 30x1 + 75x2 900, 3x1 + 2x2 30, x, x 0. Решение. Построим область допустимых решений

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ Глава 2 МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 2.1. Симплекс-метод решения задачи линейного программирования Для решения задач линейного программирования симплексметодом следует выполнить ряд

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

Симплекс-метод решения задачи линейного программирования

Симплекс-метод решения задачи линейного программирования Симплекс-метод решения задачи линейного программирования. Эквивалентные формулировки задачи линейного программирования. Формулировка задачи линейного программирования. Напомним, что математически задача

Подробнее

Лекции подготовила доц. Мусина М.В. Лекция 2. Основная задача линейного программирования. (в матричной форме A x b, где b 0 )

Лекции подготовила доц. Мусина М.В. Лекция 2. Основная задача линейного программирования. (в матричной форме A x b, где b 0 ) Лекция 2. Основная задача линейного программирования. Все задачи линейного программирования могут быть приведены к стандартной форме, в которой целевая функция должна быть максимизирована, а все ограничения

Подробнее

Графическое решение задачи

Графическое решение задачи На приобретение машин для участка выделены 30 т.р. Производственная площадь участка - 70 м 2. Можно закупить машины двух видов: стоимостью 3 т.р. и 5 т.р. олее дорогая машина требует для установки 12 м

Подробнее

Нормы расхода ресурсов на одно изделие. шкафов. По смыслу задачи эти переменные неотрицательны, x1, x2

Нормы расхода ресурсов на одно изделие. шкафов. По смыслу задачи эти переменные неотрицательны, x1, x2 Составление, решение и анализ задачи линейного программирования в Excel ЗАДАНИЕ. Построить математическую модель задачи и решить её средствами Excel. Записать сопряжённую задачу. Провести анализ и сделать

Подробнее

Иррациональные уравнения и неравенства 1

Иррациональные уравнения и неравенства 1 Иррациональные уравнения и неравенства Оглавление Свойства корней й степени Свойства корней Свойства степеней с рациональным показателем Примеры 5 Свойства корней -й степени Арифметическим корнем й степени

Подробнее

Метод сокращения отрицательных компонент при поиске допустимого базисного решения задачи линейного программирования

Метод сокращения отрицательных компонент при поиске допустимого базисного решения задачи линейного программирования Истомин Леонид Александрович Кандидат физико-математических наук, доцент кафедры высшей математики Уральский государственный экономический университет 62144, РФ, г Екатеринбург, ул 8 Марта/Народной воли,

Подробнее

Симплекс-метод линейного программирования

Симплекс-метод линейного программирования Симплекс-метод линейного программирования Симплекс-метод является основным в линейном программировании. Решение задачи начинается с рассмотрений одной из вершин многогранника условий. Если исследуемая

Подробнее

СОДЕРЖАНИЕ 1. ЗАДАНИЕ ЭТАПЫ РАБОТЫ Формирование математической модели задачи Решение прямой задачи симплекс-методом...

СОДЕРЖАНИЕ 1. ЗАДАНИЕ ЭТАПЫ РАБОТЫ Формирование математической модели задачи Решение прямой задачи симплекс-методом... СОДЕРЖАНИЕ. ЗАДАНИЕ.... ЭТАПЫ РАБОТЫ..... Формирование математической модели задачи..... Решение прямой задачи симплекс-методом..... Построение двойственной задачи... 6.4. Решение прямой и двойственной

Подробнее

Метод Гаусса (метод исключения неизвестных)

Метод Гаусса (метод исключения неизвестных) Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно перейти с помощью элементарных преобразований

Подробнее

Нелинейная задача оптимизации.

Нелинейная задача оптимизации. Нелинейная задача оптимизации. Кольцов С.Н 2014 www.linis.ru Задача безусловной оптимизации Задача оптимизации формулируется следующим образом: заданы множество Х (допустимое множество задачи) и функция

Подробнее

Задача 1. (необходимо решить графическим методом) Найти максимум целевой функции L=4x+3y при следующих ограничениях:

Задача 1. (необходимо решить графическим методом) Найти максимум целевой функции L=4x+3y при следующих ограничениях: Задача. (необходимо решить графическим методом) Найти максимум целевой функции L=4+y при следующих ограничениях: Решить задачу при дополнительном условии (ДУ): ДУ: Найти минимум целевой функции L=-y при

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ ДВОЙСТВЕННОСТИ

ЭЛЕМЕНТЫ ТЕОРИИ ДВОЙСТВЕННОСТИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ГД Чернышова, ИН Булгакова ЭЛЕМЕНТЫ ТЕОРИИ

Подробнее

О б р а з е ц в ы п о л н е н и я э т а п а 3 Р Г Р. б) Найти максимум и минимум в задаче. симплекс-методом. = 4, проходящей через точки:

О б р а з е ц в ы п о л н е н и я э т а п а 3 Р Г Р. б) Найти максимум и минимум в задаче. симплекс-методом. = 4, проходящей через точки: Задание: Вариант # f (X) = x + x extr x + x x + x 4 x, x Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы 4-6 Иванов И.И. Вариант Этап. Тема: Методы

Подробнее

Симплекс-метод для решения задач линейного программирования

Симплекс-метод для решения задач линейного программирования для решения задач линейного программирования Арсений Мамошкин СПбГУ ИТМО Кафедра КТ 2010 г. Мамошкин А. М. (СПбГУ ИТМО КТ) http://rain.ifmo.ru/cat 1 / 28 Содержание Формулировка задачи 1. Формулировка

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

Метод сокращения отрицательных индексных элементов при поиске начального базисного псевдооптимального решения задачи линейного программирования

Метод сокращения отрицательных индексных элементов при поиске начального базисного псевдооптимального решения задачи линейного программирования Истомин Леонид Александрович Кандидат физико-математических наук, доцент кафедры математического обеспечения и администрирования информационных систем Уральский государственный экономический университет

Подробнее

МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД

МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД В. Н. Малозёмов malv@math.spbu.ru 20 ноября 2010 г. Симплекс-метод решения задач линейного программирования является одним из выдающихся математических достижений 20-го

Подробнее

Моделир.экон.процес.и систем_рус_2кр_вес_мадияровак_уиа(2к4, 1к3 очн)

Моделир.экон.процес.и систем_рус_2кр_вес_мадияровак_уиа(2к4, 1к3 очн) Моделир.экон.процес.и систем_рус_2кр_вес_мадияровак_уиа(2к4, 1к3 очн) 1 Транспортная задача называется закрытой, если выполняется условия: 2 В транспортной задаче план является невырожденным, если: 3 В

Подробнее

5 Транспортная задача

5 Транспортная задача 5 Транспортная задача Важный частный случай задач линейного программирования транспортные задачи. Это математические модели разнообразных прикладных задач по оптимизации перевозок. Распространенность в

Подробнее

Лекция 13. Методы решения равновесных задач и вариационных неравенств

Лекция 13. Методы решения равновесных задач и вариационных неравенств Лекция 13. Методы решения равновесных задач и вариационных неравенств Вспомним основные определения равновесных задач и вариационных неравенств. Пусть D R n - непустое замкнутое выпуклое множество. Определение

Подробнее

ЛЕКЦИЯ 8. Линейное программирование (ЛП)

ЛЕКЦИЯ 8. Линейное программирование (ЛП) ЛЕКЦИЯ 8 Линейное программирование (ЛП) 1. Симплекс-метод 2. Теория двойственности -1- Содержательное описание с.-м. x(t), t 0 : x σ(i) (t) = x σ(i) z is t, x s (t) = t, (4) x j (t) = 0, j S \s -2- Содержательное

Подробнее

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

Симплекс-метод решения задач линейного программирования

Симплекс-метод решения задач линейного программирования Симплекс-метод решения задач линейного программирования Основным численным методом решения задач линейного программирования является так называемый симплекс-метод. Термин «симплекс-метод» связан с тем

Подробнее

Краткая теория Пусть требуется найти максимальное значение функции. 1 max (1) при условиях

Краткая теория Пусть требуется найти максимальное значение функции. 1 max (1) при условиях Лабораторная работа Тема: «Симплексный метод» Цель работы: Получить практические навыки решения задач линейного программирования симплексным методом. Предварительная подготовка: спец. дисциплина «Математические

Подробнее

Оптимизация производственной программы

Оптимизация производственной программы Оптимизация производственной программы Методические указания к лабораторной работе по экономике электротехнической промышленности Ульяновск 009 В 9 Васильев, В. Н. Оптимизация производственной программы

Подробнее

Тема 3. Симплекс-метод решения задачи линейного программирования

Тема 3. Симплекс-метод решения задачи линейного программирования Тема 3. Симплекс-метод решения задачи линейного программирования Цель: познакомить читателя с симплекс-методом решения задачи линейного программирования и основными понятиями и теоремами теории двойственности

Подробнее

Тема: Симплекс-метод решения задачи линейного программирования.

Тема: Симплекс-метод решения задачи линейного программирования. Тема: Симплекс-метод решения задачи линейного программирования Общая математическая формулировка основной задачи линейного программирования: дана система m линейных уравнений с n неизвестными a11x1 a12

Подробнее

определяется матрицей A.

определяется матрицей A. Задание.Мебельная фабрика планирует выпуск двух видов продукции А и Б. Спрос на продукцию не определен, однако можно предполагать, что он может принимать одно из трех состояний (I, II и III). В зависимости

Подробнее

Предназначено для студентов специальности: Учет и аудит (2 курс 4 г.о., 1 курс 3 г.о.), очное

Предназначено для студентов специальности: Учет и аудит (2 курс 4 г.о., 1 курс 3 г.о.), очное Автор теста: Мадиярова К.З. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и аудит (2 курс 4 г.о., 1 курс 3 г.о.), очное Количество кредитов:

Подробнее

Этап 3 Методы решения задачи линейного программирования (1)

Этап 3 Методы решения задачи линейного программирования (1) стр. Этап 3 Методы решения задачи линейного программирования Дано: f (X) = x + 3x 2 extr + x x 2 () 2x + x 2 (2) x, x 2 0 (3) а) Решить задачу графически Алгоритм графического решения задачи. Построить

Подробнее

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно.

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно. ЛЕКЦИЯ 5 МЕТОД ГАУССА Мы разобрали выше два различных способа задания линейных подпространств F n 2 при помощи образующих и как множество решений системы линейных уравнений Для различных приложений нам

Подробнее

2. Симметричная каноническая форма

2. Симметричная каноническая форма 2. Симметричная каноническая форма... Свойство оптимальных решений задач линейного программирования (2.)-(2.2).... 3 Экономическая интерпретация задач линейного программирования (2.) и (2.2)... 3 Основное

Подробнее

К теме «Линейное программирование. Симплексный метод решения задач ЛП.»

К теме «Линейное программирование. Симплексный метод решения задач ЛП.» К теме «Линейное программирование. Симплексный метод решения задач ЛП.» Задачи оптимального планирования, связанные с отысканием оптимума заданной целевой функции (линейной формы) при наличии ограничений

Подробнее

Экономико-математические методы и модели.

Экономико-математические методы и модели. ИНСТИТУТ МИРОВОЙ ЭКОНОМИКИ И ИНФОРМАТИЗАЦИИ НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Экономико-математические методы и модели. МОСКВА - 00 Практические задания

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Графическое решение задачи

Графическое решение задачи Решить задачу линейного программирования, где 3x12x2 8 x14x2 10 x1 0 x 2 0 LX3x14x2 max а) геометрическим способом, б) перебором базисных решений, в) симплекс-методом. Графическое решение задачи L X 3x14

Подробнее

Решение задач исследования операций

Решение задач исследования операций Федеральное агентство по образованию Белгородский государственный технологический университет им. В. Г. Шухова Г. Л. Окунева, А. В. Борзенков, С. В. Рябцева Решение задач исследования операций Учебное

Подробнее

ЛЕКЦИЯ 3. Линейное программирование. 3. Теория двойственности линейного программирования

ЛЕКЦИЯ 3. Линейное программирование. 3. Теория двойственности линейного программирования ЛЕКЦИЯ 3 Линейное программирование 1. Базисно допустимые решения 2. Критерий разрешимости 3. Теория двойственности линейного программирования -1- ЛП: понятие базисного допустимого решения (б.д.р.). Базис

Подробнее

Введение. 1. Задача линейного программирования. Основные понятия

Введение. 1. Задача линейного программирования. Основные понятия Введение Данные методические указания адресованы студентам заочной формы обучения всех специальностей, которые будут выполнять контрольную работу т 4 по высшей математике, и охватывают раздел математического

Подробнее

Контрольная работа по ММУ. Вариант 1. Задание 1. Решить графическим методом задачу линейного программирования:

Контрольная работа по ММУ. Вариант 1. Задание 1. Решить графическим методом задачу линейного программирования: Контрольная работа по ММУ Вариант Задание Решить графическим методом задачу линейного программирования: а) найти область допустимых значений многоугольник решений); б) найти оптимумы целевой функции. Дано:

Подробнее

Часть I МЕТОДЫ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ В ЭКОНОМИКЕ. Постановка задачи математического программирования

Часть I МЕТОДЫ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ В ЭКОНОМИКЕ. Постановка задачи математического программирования Часть I МЕТОДЫ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ В ЭКОНОМИКЕ Постановка задачи математического программирования Постановка любой задачи оптимизации начинается с определения набора независимых переменных

Подробнее

Лекция 4 Транспортная задача

Лекция 4 Транспортная задача Лекция Транспортная задача Формулировка. Имеется и потребителей некоторого товара. Пусть M i количество товара, которым располагает данный i -ый поставщик, а N j количество товара, необходимое j -ому потребителю.

Подробнее

Ax = b, (1) x 0. a s1 x s 1. 0 ) = b и A( x + x s j

Ax = b, (1) x 0. a s1 x s 1. 0 ) = b и A( x + x s j Симплекс метод Рассмотрим следующую задачу линейного программирования: Задача 1. max(c, x), Ax = b, (1) x Здесь линейный оператор A действует из R n в R m, c R n, b R m. Считаем что m < n, и ранг матрицы

Подробнее

Линейная алгебра

Линейная алгебра Линейная алгебра 08.12.2012 Линейные модели в экономике Линейное программирование Линейная алгебра (лекция 13) 08.12.2012 2 / 25 Задача линейного программирования: F (x 1, x 2,..., x n ) = n c j x j max(min),

Подробнее

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса.

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Ранг матрицы. Рассмотрим прямоугольную матрицу имеющую m строк и столбцов: A. m m m Выделим в этой матрице произвольные строк и столбцов. Элементы

Подробнее

2. Методы решения общей задачи линейного программирования

2. Методы решения общей задачи линейного программирования . Методы решения общей задачи линейного программирования Современные методы ЛП делятся на две большие группы: - координатные методы и итерационные, позволяющие находить приближенные решения задач ЛП. Наиболее

Подробнее

Точка пересечения не принадлежит области. Построим область допустимых решений.

Точка пересечения не принадлежит области. Построим область допустимых решений. Задача. Решить графически ma F Находим точки пересечения прямых определяющих неравенства. Отсюда Точка пересечения не принадлежит области. Построим область допустимых решений. Построим вектор направления

Подробнее

4.7 Сопряженный конус

4.7 Сопряженный конус 4.7 Сопряженный конус 4.7.1 Определение сопряженного конуса Для наглядности представления будем рассматривать пространство R n. Определение. K конус в R n. Сопряженным конусом называется множество K :=

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Восточно-Сибирский государственный технологический университет. И.В.Корытов С.С.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Восточно-Сибирский государственный технологический университет. И.В.Корытов С.С. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Восточно-Сибирский государственный технологический университет ИВКорытов ССДашиева ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ в примерах и задачах Симплекс-метод Метод искусственного

Подробнее

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы.

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. Основные результаты Лекции 4. 1) Любое подпространство V k F n 2 размерности k задается некоторой системой из n k

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 3 СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

ЛАБОРАТОРНАЯ РАБОТА 3 СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ЛАБОРАТОРНАЯ РАБОТА СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. ЦЕЛЬ РАБОТЫ Приобретение навыков решения задач линейного программирования симплексным методом.. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

Подробнее

max f при условии, что g(x) = b i, (1)

max f при условии, что g(x) = b i, (1) Метод множителей Лагранжа Рассмотрим экстремальную задачу с ограничениями в виде равенств: найти a при условии что ) = ) на множестве допустимых значений описываемом системой уравнений где R : R R : R

Подробнее

Задание 1. Найти оптимальные стратегии игры (с седловой точкой): Решение

Задание 1. Найти оптимальные стратегии игры (с седловой точкой): Решение Сделаем ваши задания на отлично. htts://www.matburo.ru/sub_subect.h?ti Теория игр Матричные игры. Игры с природой Задание Найти оптимальные стратегии игры (с седловой точкой): Решение ma min a i } min

Подробнее

5 Транспортная задача

5 Транспортная задача 1 5 Транспортная задача Важный частный случай задач линейного программирования транспортные задачи Это математические модели разнообразных прикладных задач по оптимизации перевозок Распространенность в

Подробнее

Решение задачи линейного программирования графическим методом, симплекс-методом и через «Поиск решения» в Excel ЗАДАНИЕ. кг сырья первого типа, a

Решение задачи линейного программирования графическим методом, симплекс-методом и через «Поиск решения» в Excel ЗАДАНИЕ. кг сырья первого типа, a Решение задачи линейного программирования графическим методом, симплекс-методом и через «Поиск решения» в Ecel ЗАДАНИЕ. Предприятие выпускает два вида продукции: Изделие и Изделие. На изготовление единицы

Подробнее

Нахождение решения задачи параметрического программирования.

Нахождение решения задачи параметрического программирования. Нахождение решения задачи параметрического программирования. ешение задачи, целевая функция которой содержит параметр. Продолжим рассмотрение задачи (1)-(3). Считая значение параметра t равным некоторому

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Ижевский государственный технический университет кафедра САПР МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине "Системный анализ" на тему

Подробнее

МЕТОДЫ И ВЫЧИСЛИТЕЛЬНЫЕ ПРИЕМЫ В ЛИНЕЙНОМ ПРОГРАММИРОВАНИИ

МЕТОДЫ И ВЫЧИСЛИТЕЛЬНЫЕ ПРИЕМЫ В ЛИНЕЙНОМ ПРОГРАММИРОВАНИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ И.Я. Заботин, Я.И. Заботин МЕТОДЫ И ВЫЧИСЛИТЕЛЬНЫЕ ПРИЕМЫ В ЛИНЕЙНОМ ПРОГРАММИРОВАНИИ КАЗАНЬ 4 УДК 59.85 ББК.8 З Печатается по решению Редакционно-издательского совета

Подробнее

3 Обоснование симплекс-метода

3 Обоснование симплекс-метода 1 3 Обоснование симплекс-метода 3.1 Теоремы существования, двойственности, критерий решения Приведем три теоремы, играющие важную роль при обосновании симплекс-метода. Рассмотрим задачу линейного программирования

Подробнее

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0 ЛЕКЦИЯ 6. Метод ГАУССА и ДВОЙСТВЕННЫЙ БАЗИС. В этой лекции мы опишем алгоритм решения систем линейных уравнений, позволяющий найти и двойственный базис для любого базиса пространства F n 2. В Лекциях 7

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

U+V. Для любых u U и v V существуют a 1,..., a k, b 1,..., b m F 2 такие, что

U+V. Для любых u U и v V существуют a 1,..., a k, b 1,..., b m F 2 такие, что ЛЕКЦИЯ 2. Операции с подпространствами, число базисов число базисов и число подпространств размерности k. Основные результаты Лекции 2. 1) U V, U + V, dim(u + V ). 2) Подсчет числа плоскостей в F 4 2.

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Московский государственный университет путей сообщения Императора

Подробнее

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Кафедра высшей математики (ВМ) Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ Практическое

Подробнее

Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы

Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы Линейная алгебра Лекция Обратная матрица Ранг матрицы Обратная матрица Определение Матрица А - называется обратной по отношению к квадратной матрице если при умножении этой матрицы на данную матрицу как

Подробнее

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En 4 Обратная матрица Понятие обратной матрицы Существование и единственность обратной матрицы Присоединенная матрица Определение 4 Пусть А квадратная матрица порядка п Матрица B называется правой обратной

Подробнее

Лекция 9: Подпространства

Лекция 9: Подпространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение подпространства. Примеры подпространств (1) Определение Непустое подмножество

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

Экономико-математические методы в менеджменте Линейные модели в управление и их решение средствами программы EXCEL продукта Microsoft Office

Экономико-математические методы в менеджменте Линейные модели в управление и их решение средствами программы EXCEL продукта Microsoft Office Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Уральский государственный лесотехнический университет Кафедра

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

c m,1 c m,2 c m,n x m,1 x m,2 x m,n a m b 1 b 2 b n Рис. 1. Структура транспортной таблицы

c m,1 c m,2 c m,n x m,1 x m,2 x m,n a m b 1 b 2 b n Рис. 1. Структура транспортной таблицы Транспортная задача. 1. Транспортная задача в матричной постановке Транспортная задача формулируется следующим образом. Пусть m поставщиков располагают a i (i = 1, 2,..., m) единицами некоторой продукции,

Подробнее

33. f(x)= 5x1 +2x2 3x3 + 4x4 max х1+ 4х2 5х3 4х4 = -8 2х2 + х3 + 3х4 = 10 хj 0 (j = 1, 2, 3, 4).

33. f(x)= 5x1 +2x2 3x3 + 4x4 max х1+ 4х2 5х3 4х4 = -8 2х2 + х3 + 3х4 = 10 хj 0 (j = 1, 2, 3, 4). 33. f(x)= 5x1 +2x2 3x3 + 4x4 max х1+ 4х2 5х3 4х4 = -8 2х2 + х3 + 3х4 = 10 хj 0 (j = 1, 2, 3, 4). Найти наибольшее значение функции F = 5 x 1 + 2 x 2-3 x 3 + 4 x 4 при следующих ограничениях: x 1 + 4 x

Подробнее

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 214, том 5, 6, с. 726 744 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ УДК 517.925.52+519.218 ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

Симплекс-метод решения задачи.

Симплекс-метод решения задачи. 1) Решить симплекс-методом задачу линейного программирования 10x1 7x2 5x3 min 6x1+ 15x2 + 6x3 9 14x1+ 42x2 + 16x3 21 2x1+ 8x2 + 2x3 4 x j 0 ( j = 1, 2, 3) Симплекс-метод решения задачи. Симплексный метод

Подробнее

Математическое программирование это область математики, разрабатывающая теорию и численные методы решения задач на

Математическое программирование это область математики, разрабатывающая теорию и численные методы решения задач на 4 ПРОГРАММА Тема. Линейное программирование Задачи планирования и управления, их математические модели. Общая постановка задач оптимизации. Различные формы записи задач линейного программирования (ЛП)

Подробнее

Министерство образования и науки РФ Северный (Арктический) федеральный университет Кафедра математики

Министерство образования и науки РФ Северный (Арктический) федеральный университет Кафедра математики Министерство образования и науки РФ Северный (Арктический) федеральный университет Кафедра математики Вопросы к зачету по математике для студентов заочной формы обучения курса специальностей 8.6 Фин. и

Подробнее

Высшая и прикладная математика в примерах и задачах. Раздел «Математическое программирование»

Высшая и прикладная математика в примерах и задачах. Раздел «Математическое программирование» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ СЕМЕНА КУЗНЕЦА Высшая и прикладная математика в примерах и задачах. Раздел «Математическое программирование»

Подробнее

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a Лекция 5 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

Структура/Кафедра Математики и естественнонаучных дисциплин. Осмонова Чолпон Осмоновна, Кадырова Мира Кенешбековна. Линейное программирование

Структура/Кафедра Математики и естественнонаучных дисциплин. Осмонова Чолпон Осмоновна, Кадырова Мира Кенешбековна. Линейное программирование ЗАЯВКА на размещение информации в образовательном портале КЭУ Структура/Кафедра Математики и естественнонаучных дисциплин Авторы: Осмонова Чолпон Осмоновна, Кадырова Мира Кенешбековна Название материалаработы

Подробнее

4 Оглавление. 4 Дискретное программирование Схема метода ветвей и границ... 95

4 Оглавление. 4 Дискретное программирование Схема метода ветвей и границ... 95 Оглавление Линейное программирование 5. Общая задача линейного программирования.................. 5.. Стандартная задача линейного программирования.......... 6.. Каноническая задача линейного программирования.........

Подробнее

ЛЕКЦИЯ 2. Лагранжева теория двойственности. 4. Теория двойственности линейного программирования

ЛЕКЦИЯ 2. Лагранжева теория двойственности. 4. Теория двойственности линейного программирования ЛЕКЦИЯ 2 Лагранжева теория двойственности 1. Определения 2. Теорема о седловой точке 3. Линейное программирование 4. Теория двойственности линейного программирования -1- Лагранжева теория двойственности

Подробнее

КОНСПЕКТ ЛЕКЦИЙ Направление Физико-математическое образование. Профиль Информатика. Ведущий лектор: Сидорова О.А., к.ф.-м.н.

КОНСПЕКТ ЛЕКЦИЙ Направление Физико-математическое образование. Профиль Информатика. Ведущий лектор: Сидорова О.А., к.ф.-м.н. ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра ИНФОРМАТИКИ И МЕТОДИКИ

Подробнее

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ДЛЯ ЭКОНОМИСТОВ

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ДЛЯ ЭКОНОМИСТОВ Саратовский государственный университет им. Н.Г. Чернышевского С. И. Дудов, А. П. Хромов, И. Ю. Выгодчикова ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ДЛЯ ЭКОНОМИСТОВ Учебное пособие для студентов экономико-математических

Подробнее

Линейная алгебра и аналитическая геометрия

Линейная алгебра и аналитическая геометрия Линейная алгебра и аналитическая геометрия I семестр: 3 часа лекций, 2 часа практических занятий, 18 недель 3-4 лекции лектор Агапова Елена Григорьевна кандидат физико-математических наук, доцент кафедры

Подробнее