2. ЛИНЕЙНЫЕ СИСТЕМЫ Основные понятия

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "2. ЛИНЕЙНЫЕ СИСТЕМЫ Основные понятия"

Транскрипт

1 ЛИНЕЙНЫЕ СИСТЕМЫ Основные понятия Нормальной линейной однородной системой дифференциальных уравнений с постоянными коэффициентами порядка n называется система вида n dk akj j k n d j () где a cons kj Вводя в рассмотрение вектор-функцию и матрицу n A уравнения () можно представить в векторной форме a kj d A d () Общее решение однородной системы Фундаментальной системой решений однородной системы дифференциальных уравнений () называется совокупность n линейно независимых решений n n n n n nn () этой системы 7

2 Общее решение векторного уравнения () представляется в виде n n () где n произвольные постоянные Метод Эйлера (Метод сведения решения системы к задаче отыскания собственных значений и собственных векторов матрицы системы) Чтобы найти решения (): ) Вычислим собственные значения матрицы A решив характеристическое уравнение d A E (5) Обозначим n корни (5) вообще говоря комплексные Для собственного значения отвечающий ему собственный вектор h определяется условием Ah h h (6) ) Корни характеристического уравнения (5) действительные простые Тогда существует базис из собственных векторов матрицы A : Ah h h n Вектор-функции h n являются решениями () Общее решение векторного уравнения () есть их произвольная линейная комбинация ( постоянные) n h (8) 8

3 ) Корни характеристического уравнения (5) невещественные простые Еще раз напомним что для комплексного числа где R его действительной и мнимой частью называются соответственно R I Кроме того имеет место формула Эйлера Если среди корней характеристического уравнения (5) есть невещественный корень то комплексно сопряженное ему число также будет корнем этого уравнения (по свойству алгебраических уравнений с действительными коэффициентами) Этой комплексной паре корней соответствуют два линейно независимых частных решения векторного уравнения () h и h Поскольку ставится задача отыскания действительных решений системы дифференциальных уравнений то в качестве решений соответствующих такой паре комплексных сопряженных собственных значений матрицы A выбирают линейные комбинации решений и а именно и или R I З а м е ч а н и е вектор для числа берется не сопряженным с вектором h действительная и мнимая части соответствующего комплекснозначного решения системы будут линейными комбинациями действительных решений R h и I h найден- ных для собственного значения То если простые корни характеристического уравнения (5) то компонента общего решения системы соответствующая этой паре комплексных корней записывается в виде 9 и В более общем случае когда собственный

4 h I h R (9) где произвольные постоянные h собственный вектор отвечающий собственному значению ) Корни характеристического уравнения действительные кратные В этом случае матрица A может не иметь n линейно независимых собственных векторов Тогда для построения общего решения () используется следующее понятие Жордановой цепочкой матрицы A соответствующей собственному значению называется система векторов h h h такая что Ah h h Ah h h Ah h h Ah p h p h p () Вектор h собственный а h векторы Равенства () можно записать также в виде A Eh h A E hk hk k p () Каждой цепочке h h h p соответствует p линейно независимых решений p векторного уравнения (): h h p присоединенные p

5 h h h! h h h!! p p h () З а м е ч а н и е p p! p h! Решение неоднородной системы h! p h Приведем правило запоминания формул () Собственному вектору h соответствует решение Если везде отбросить то каждая строка правой h части () получается интегрированием по предыдущей строки причем постоянную интегрирования надо взять равной следующему по порядку вектору серии Для кратного собственного значения может существовать несколько жордановых цепочек содержащих линейно независимые собственные векторы матрицы A Компонента общего решения системы соответствующая действительному собственному значению кратности p имеет вид r r r r k l l l r r r где k произвольные постоянные k p r r Известно что для любой квадратной матрицы A существует базис составленный из ее жордановых цепочек поэтому произвольная линейная комбинация решений вида () дает общее решение векторного уравнения () Общее решение неоднородной системы p r

6 d A f d () можно найти методом вариации постоянных если известно общее решение однородной системы () с той же матрицей A Для этого в формуле общего решения () однородной a kj системы надо заменить произвольные постоянные на неизвестные функции n : n () n d d Полученные выражения для d d n d подставляем в неоднородную систему () d n n d Тк A то получаем систему для d определения n d d d d n : f (5) Неизвестные функции n находим проинтегрировав полученные при решении системы (5) функции d d n Заметим что если при нахождении функций записывать всю совокупность первообразных те сохранять в записи выражений для возникающие при интегрировании произвольные постоянные то () будет общим решением неодно-

7 родной системы Частное решение неоднородной системы () получим полагая возникающие при интегрировании произвольные постоянные равными конкретному значению например равными нулю 5 Примеры решения задач предлагавшихся на экзаменационных контрольных работах Пример (-) Найти все действительные решения системы Матрица системы A 5 9 Не все корни характеристического уравнения различны: либо а) существует базис из собственных векторов матрицы A системы либо б) строим жорданову цепочку для матрицы A системы A E h Для краткости записи используются следующие обозначения: выражение n над стрелочкой означает что перешли к эквивалентной системе алгебраических уравнений n-я строка матрицы которой представляет собой линейную комбинацию n-й и -й строк с коэффициентами и соответственно A E

8 дает h или h и h E A E A дает h и Нашли только один собственный вектор поэтому строим жорданову цепочку для матрицы A системы

9 5 h h E A ` дает h или (при ) h Общее решение Пример (-) Найти все действительные решения системы 8 7 Матрица системы 8 7 A Отметим что все корни характеристического уравнения равны h E A

10 6 E A 8 дает h или h Нашли только один собственный вектор поэтому строим жорданову цепочку матрицы A системы: h h E A 8 дает h или (при ) h h h E A 8 дает h или (при ) h Общее решение

11 7 Пример (-) Найти все действительные решения системы 5 5 Матрица системы 5 A Все корни характеристического уравнения различны следовательно существует базис из собственных векторов матрицы A системы 5 h E A E A 9 дает 9 h h E A E A дает h

12 8 В нашем случае h = = = Вектор-функции R и I действительные решения системы Общее решение 9 5 Пример (-) Найти все действительные решения системы Матрица системы A Решаем характеристическое уравнение d E A = = 5 = откуда Все корни характеристического уравнения различны поэтому существует базис из собственных векторов матрицы A системы h E A

13 A E дает h или h или h В нашем случае h = = Вектор функции R и I действительные решения системы Общее решение однородной системы Решение неоднородной системы ищем методом вариации постоянных полагая и Подставляя = и = в неоднородную исходную систему получим для определения и систему 9

14 Сокращаем оба уравнения на и умножаем первое уравнение на : К первому уравнению умноженному на прибавляем второе умноженное на : Ко второму уравнению прибавляем первое умноженное на : Полученный из первого уравнения результат подставляем во второе уравнение откуда d d c = d c = ln c аналогично находим d c = ln c Общее решение неоднородной системы ln c + ln c

15 6 Задачи для самостоятельного решения Найти все действительные решения систем уравнений: 9 (-) ( 5 ) 5 (-) 5 ( ) (-) ( ) (-) (-) 5 ( ) 6 (-) (-) 5 ( ) 7 6 (-) (-)

16 8 (-) 9 (-) 5 (-) 5 9 (-) 5 5 (-) (-) 5 5 (-) 5 (-) 6 (-) 7 (-)

17 8 (-) 5 9 (-5) 6 5 (-5) (-5) (-5) 6 5 (-6) 6 5 (-6) 55 (-6) 56 (-6)

18 7 Ответы 9 9 5

19

20 где ln c ln c 6 где 5 7 c 5 c 7 где c ln ln c 8 где c c 9 5 5

21

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) В М Ипатова О А Пыркова В Н Седов ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МЕТОДЫ РЕШЕНИЙ второе

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) В М Ипатова О А Пыркова В Н Седов ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МЕТОДЫ РЕШЕНИЙ второе

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Тема: Линейные однородные системы ДУ с постоянными коэффициентами

Тема: Линейные однородные системы ДУ с постоянными коэффициентами Математический анализ Раздел: дифференциальные уравнения Тема: Линейные однородные системы ДУ с постоянными коэффициентами Лектор Пахомова ЕГ 0 г 4 Системы линейных однородных дифференциальных уравнений

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: НЕМНОГО ТЕОРИИ И РЕШЕНИЯ ЗАДАЧ. Балакина Е.Ю.

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: НЕМНОГО ТЕОРИИ И РЕШЕНИЯ ЗАДАЧ. Балакина Е.Ю. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский национальный исследовательский государственный университет» СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

Интегралы и дифференциальные уравнения. Лекция 24

Интегралы и дифференциальные уравнения. Лекция 24 кафедра «Математическое моделирование» проф П Л Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекция 4 Однородные системы

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

6. ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

6. ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 6 ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное неоднородное дифференциальное уравнение -го порядка с постоянными коэффициентами ) ) ) L [] f ) 9) где i постоянные Так

Подробнее

Дифференциальные уравнения (лекция 10)

Дифференциальные уравнения (лекция 10) Дифференциальные уравнения лекция 0 Линейные неоднородные уравнения высших порядков Лектор Шерстнёва Анна Игоревна 6. Линейные неоднородные уравнения -го порядка. Метод вариации произвольных постоянных

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора.

Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора. Материалы к установочной лекции Вопрос 9. Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора.. Матричное представление линейных операторов Будем обозначатьчерез

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

4. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид

4. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид 4 Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид y p y g y f () (5) где p, g R Дифференциальное уравнение всегда

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Контрольная работа 1. дифференциальному уравнению первого порядка. Р е ш е н и е. Найдем первую производную от заданной функции

Контрольная работа 1. дифференциальному уравнению первого порядка. Р е ш е н и е. Найдем первую производную от заданной функции Контрольная работа 1 Задание 1 Показать, что функция удовлетворяет обыкновенному дифференциальному уравнению первого порядка Р е ш е н и е Найдем первую производную от заданной функции ( После подстановки

Подробнее

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы.

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы. Памятка для практических занятий по теме «Обыкновенные дифференциальные уравнения» Решение различных задач методом математического моделирования сводится к отысканию неизвестной функции из уравнения, содержащего

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный

Подробнее

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков.

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков. ЛЕКЦИЯ 3 Линейные дифференциальные уравнения высших порядков Линейные неоднородные и однородные дифференциальные уравнения второго порядка Интегрирование ЛОДУ и ЛНДУ второго порядка с постоянными коэффициентами

Подробнее

I. Дифференциальные уравнения 1-го порядка

I. Дифференциальные уравнения 1-го порядка Пособие предназначено для студентов - курсов МАТИ-РГТУ, изучающих в рамках курса высшей математики тему «Дифференциальные уравнения». В нем рассматриваются основные приемы решения обыкновенных дифференциальных

Подробнее

x - заданные непрерывные функции от х (или

x - заданные непрерывные функции от х (или ЛЕКЦИЯ 3 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Определение: Линейным уравнением -го порядка называет уравнение, линейное относительно неизвестной функции и ее производной. Оно имеет вид:

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

В курсе линейной алгебры мы уже сталкивались с многочленами от матриц. В различных областях математики встречаются и другие, более сложные функции.

В курсе линейной алгебры мы уже сталкивались с многочленами от матриц. В различных областях математики встречаются и другие, более сложные функции. Функции от матриц Совместный бакалавриат ВШЭ-РЭШ. 2011-2012 учебный год. Общее замечание. В этом листочке мы рассматриваем матицы над полем комплексных чисел, хотя условие задач везде вещественно. Следите

Подробнее

Линейные неавтономные системы

Линейные неавтономные системы Линейные неавтономные системы А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В предыдущих лекциях исследовались линейные автономные системы. Они допускают точные решения, которые выражаются

Подробнее

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1)

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1) ЛЕКЦИИ ПО КУРСУ «Линейная алгебра, системы ДУ с устойчивостью» 2 курс, 2 семестр Лекторы: Мельников Ю.Б., Мельникова Н.В. Оглавление 1. Системы линейных дифференциальных уравнений 4 1.1. Определения................................

Подробнее

Л.О.Д.У. с постоянными. коэффициентами. Лекция 3

Л.О.Д.У. с постоянными. коэффициентами. Лекция 3 Л.О.Д.У. с постоянными коэффициентами Лекция 3 1 Линейные однородные дифференциальные уравнения с постоянными коэффициентами второго порядка Рассмотрим линейные однородные дифференциальные уравнения с

Подробнее

Решить дифференциальное уравнение Решение: составим и решим характеристическое уравнение:

Решить дифференциальное уравнение Решение: составим и решим характеристическое уравнение: Решить дифференциальное уравнение Решение: составим и решим характеристическое уравнение:, Получены два различных действительных корня Всё, что осталось сделать записать ответ, руководствуясь формулой

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им.

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

Комплексные числа. ЛОДУ с постоянными коэффициентами.

Комплексные числа. ЛОДУ с постоянными коэффициентами. Занятие 14 Комплексные числа. ЛОДУ с постоянными коэффициентами. 14.1 Комплексные числа Комплексным числом называется выражение вида z = x+iy,где x R. Имеется взаимно однозначное соответствие между множеством

Подробнее

ЖОРДАНОВА ФОРМА МАТРИЦЫ ОПЕРАТОРА. В. В. Колыбасова, Н. Ч. Крутицкая, А. В. Овчинников

ЖОРДАНОВА ФОРМА МАТРИЦЫ ОПЕРАТОРА. В. В. Колыбасова, Н. Ч. Крутицкая, А. В. Овчинников ЖОРДАНОВА ФОРМА МАТРИЦЫ ОПЕРАТОРА В. В. Колыбасова, Н. Ч. Крутицкая, А. В. Овчинников 2. Основные понятия и теоремы.. Алгебраическая и геометрическая кратность собственного значения. Пусть линейный оператор

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

Метод разделения переменных (метод Фурье)

Метод разделения переменных (метод Фурье) Метод разделения переменных (метод Фурье) Общие принципы метода разделения переменных Для простейшего уравнения с частными производными разделение переменных это поиски решений вида только от t. u (x,t

Подробнее

Практическая работа 9 Линейные однородные дифференциальные уравнения второго порядка.

Практическая работа 9 Линейные однородные дифференциальные уравнения второго порядка. Практическая работа 9 Линейные однородные дифференциальные уравнения второго порядка. Цель работы: решать линейные однородные дифференциальные уравнения второго порядка. одержание работы. Основные понятия.

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Интегралы и дифференциальные уравнения. Лекция 15

Интегралы и дифференциальные уравнения. Лекция 15 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция 15 Решение

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

Практическая работа 20 Линейные однородные дифференциальные уравнения второго порядка.

Практическая работа 20 Линейные однородные дифференциальные уравнения второго порядка. Практическая работа Линейные однородные дифференциальные уравнения второго порядка. Цель работы: закрепить навыки решения линейных однородных дифференциальных уравнений второго порядка. одержание работы.

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

Тема : Общая теория систем линейных уравнений

Тема : Общая теория систем линейных уравнений Тема : Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики

Министерство образования и науки Российской Федерации. Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика»

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева ЕГ Определение: Уравнение

Подробнее

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы.

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы. .4. Ранг матрицы. В матрице А выделим k строк и столбцов из элементов, стоящих на их пересечении составим определитель. Будем называть его минором k-того порядка. Если минор k-того порядка отличен от нуля,

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр лектор Панов АН 1 Наиболее часто задаваемые вопросы Вопрос 11 Что такое перестановка и что такое знак перестановки? Ответ Перестановка это множество

Подробнее

ξ η K некоторое решение системы (1), то суммы K любое решение однородной системы (2), V n над числовым полем Р рассмотрим

ξ η K некоторое решение системы (1), то суммы K любое решение однородной системы (2), V n над числовым полем Р рассмотрим . ЛИНЕЙНОЕ МНОГООБРАЗИЕ (ГИПЕРПЛОСКОСТЬ) Определение: Назовем подмножество векторов пространства линейным многообразием (или гиперплоскостью), полученным путем сдвига подпространства L на вектор х, если

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция. Функции натурального аргумента (последовательности). Однородные и неоднородные линейные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Примеры Лектор - доцент Селезнева Светлана

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методическое пособие по проведению практических

Подробнее

Тема 2-19: Билинейные и квадратичные формы

Тема 2-19: Билинейные и квадратичные формы Тема 2-19: Билинейные и квадратичные формы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра «МЕХАНИКА» ДИНАМИКА

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА»

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» Задача 1. Найти общее решение дифференциального уравнения с разделяющимися переменными: 1. d d d d 1 1 0.. d d d. d d d 5. 6d 6d d d 6. d d 0 7. 8. (

Подробнее

«Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке, ) является линейным оператором.

«Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке, ) является линейным оператором. «Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке ( x 1, x2, x, x ) строку ( x1 2x2 x x, x1 x2 x, x1 2x2 x 2x,, x x 2x ) является линейным оператором.

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Московский государственный технический университет им Н Э Баумана Соболев СК Дифференциальные уравнения Методические указания к решению задач Москва МГТУ им Баумана 008 СК Соболев Дифференциальные уравнения

Подробнее

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

2 5 8 A = a) A = 2 3. ; b) B =

2 5 8 A = a) A = 2 3. ; b) B = Занятие 1 Определители 11 Матричные обозначения Основные определения Матрицей размера m n, или m n-матрицей, называется таблица чисел (или других математических выражений с m строками и n столбцами Матрица

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики (МИРЭА) кафедра высшей

Подробнее

Линейные системы со специальной правой частью

Линейные системы со специальной правой частью Линейные системы со специальной правой частью А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В этой лекции мы рассмотрим неоднородные линейные уравнения, однородная часть которых автономна.

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция 3. Последовательности, определяемые рекуррентными соотношениями. Однородные и неоднородные линейные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Примеры Лектор - доцент Селезнева

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА Бабичева ТА Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Махачкала УДК 5(75) ББК я 7 Учебное пособие

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее