ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ СО СПЕЦИАЛЬНЫМ УРАВНЕНИЕМ СОСТОЯНИЯ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ СО СПЕЦИАЛЬНЫМ УРАВНЕНИЕМ СОСТОЯНИЯ"

Транскрипт

1 ISSN Уфимский математический журнал Том 1 (9) С УДК ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ СО СПЕЦИАЛЬНЫМ УРАВНЕНИЕМ СОСТОЯНИЯ ЛЗ УРАЗБАХТИНА Аннотация В работе приведена классификация инвариантных подмоделей построенных на трехмерных подалгебрах из оптимальной системы Классификация подмоделей проведена по порядку инвариантной подмодели модифицированной с помощью нормализатора и дополнительных интегралов Ключевые слова: уравнения газовой динамики уравнение состояния подалгебра подмодель нормализатор 1 Введение Рассмотрим уравнения газовой динамики (УГД) ρ d u dρ ds + p = + ρdiv u = d d d = (1) со специальным уравнением состояния описывающие движение жидкости при больших давлениях и высоких температурах [1] p = Bρ γ + F (S) Здесь u вектор скорости; ρ плотность; p давление; F (S) функция энтропии; B γ постоянные Bγ > γ 1; d/d = + u оператор полного дифференцирования Скорость звука c определяется по формуле c = Bγρ γ 1 В этом случае УГД (1) допускают группу преобразований с 1-мерной алгеброй Ли Неподобные подалгебры сведены в оптимальную систему [] Базис алгебры Ли L 1 состоит из операторов: X 1 X 1 где X 1 X X переносы по пространственным координатам; X 4 X 5 X 6 галилеевы переносы; X 7 X 8 X 9 вращения; X 1 перенос по времени; X 11 равномерное растяжение независимых декартовых переменных x y z ; X 1 = u u v v w w ( γ )ρ ρ γp p растяжение γ = γ(γ 1) 1 γ ; X 1 перенос по давлению В оптимальной системе имеется 7 серий трехмерных подалгебр с одним инвариантом зависящим от независимых переменных Все они сведены в таблицу (см Приложение) В первом столбце указан номер подалгебры из оптимальной системы [] Первая цифра номера указывает на размерность подалгебры Последующие цифры номера указывают на порядковый номер поадлгебры данной размерности Номер подалгебры с одним штрихом указывает на то что параметр γ = 1 с двумя штрихами γ = 1 Во втором столбце записаны инварианты в декартовых переменных x y z u v w или в цилиндрических переменных x r θ U V W а в третьем столбце записан номер нормализатора LZ Urazbachina Invarian submodels of a rank of one gas dynamics wih he special equaion of sae c Уразбахтина ЛЗ 9 Работа поддержана грантом ГНТП-РБ госконтракт 1/-ФМ Поступила августа 9 г 19

2 14 ЛЗ УРАЗБАХТИНА На трехмерных подалгебрах такого типа можно строить инвариантные подмодели Для того чтобы получить подмодель нужно записать представление решения Оно получается приравниванием инвариантов зависящих от газодинамических функций к новым функциям от инварианта зависящего от независимых переменных Затем из этих выражений находим искомые газодинамические функции После их подстановки в УГД (1) получаем инвариантую подмодель которая представляет собой систему из 5 обыкновенных дифференциальных уравнений первого порядка [] Основная задача найти интегралы у этой фактор-системы Согласно теореме Коши- Ковалевской любая подмодель является интегрируемой Однако очень сложно найти интегралы в простой алгебраической форме С помощью нормализатора подалгебры можно понизить порядок фактор-системы или найти интегралы Порядок нормализатора определяет число интегралов Поэтому для последующей классификации в таблице (см Приложение) в последнем столбце указана размерность нормализатора Если размерность нормализатора равняется то подалгебра самонормализована и симметрий наследуемых из L 1 у подмодели нет Порядок инвариантной подмодели можно понизить за счет симметрий нормализатора или за счет дополнительных интегралов не связанных с этими симметриями Дополнительные интегралы получаются эвристическим путем по аналогии с известными примерами [4] Классификация подмоделей проводится по порядку инвариантной подмодели модифицированной с помощью нормализатора и дополнительных интегралов В уравнения подмодели входят параметры: алгебраические коэффициетны из оптимальной системы или постоянные интегралы При некоторых соотношениях на параметры можно найти новые интегралы и подмодель полностью интегрируется Во второй части статьи рассмотрены подалгебры 6 Эти подалгебры имеют нормализаторы размерности 6 и 7 Все эти подмодели сводятся к обыкновенному дифференциальному уравнению Риккати При некоторых значения параметров уравнения Риккати интегрируются В третьей части работы рассмотрены подалгебры Подмодели подалгебр 1 4 сводятся к линейным фактор-системам дифференциальных уравнений второго порядка В четвертом пункте описаны подалгебры У фактор-системы подалгебры найдены особое и частное решения У фактор-системы подалгебры найдены квадратура и интеграл В пятой части рассмотрена самонормализованная подалгебра 6 У подмодели найден один интеграл и получено точное(особое) решение Подмодели сводящиеся к одному обыкновенному дифференциальному уравнению Сделано оригинальное наблюдение: подмодели с нормализаторами размерности 6 и 7 сводятся к одному уравнению Риккати Это достигается нахождением дополнительных интегралов Для некоторых значений параметров уравнение Риккати интегрируется 1 Подалгебра Представление инвариантного решения имеет вид (см Приложение): u = x + u 1(z) v = y + v 1(z) w = w 1(z) ρ = () p = y a + p 1(z) a a

3 ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ 141 После подстановки представления в УГД (1) получим фактор-систему w 1 u 1 = w 1 v 1 = 1 w 1 (1 w aρ 1) = p 1 1 a + w 1 + = w 1 p 1 ab(w 1 + ) = p 1 v 1 w 1 w 1 Из первого уравнения видно что u 1 = C иначе возникает противоречие в четвертом уравнении Постоянную C можно положить нулем тк она убирается галилеевым переносом по оси x (оператор X 4 ) а решения УГД мы рассматриваем с точностью до допускаемых преобразований Ненулевые операторы нормализатора в инвариантах подалгебры примут вид: X 1 = u1 X = v1 p1 X = z X 11 = z z + u 1 u1 + v 1 v1 + w 1 w1 ρ1 + p 1 p1 Инварианты нормализатора назначим новыми функциями: p = p 1 v 1 w 1 ρ = w 1 В этих переменных операторы нормализатора примут простейший вид По простейшему виду нормализатора можно понять каким образом можно понизить порядок системы Фактор-система () в новых переменных примет вид: () v 1 = 1 aρ w 1 p = w 1 = ρ B (ρ + B) p ρ a(ρ + B) ρ = ρ w 1 ρ p a(ρ + B) + Bp (ρ + B) + abρ (ρ + B) + 1 aρ () В системе () поделим 1-е -е и 4-е уравнения на -е уравнение Таким образом перейдем от дифференцирования по переменной z к дифференцированию по переменной s = ρ Для определения p получим уравнение Риккати a(s + B)p s = p + abp s a B + Bs Приведем последнее уравнение к каноническому виду с помощью замены p = p + abs 1 : a(s + B)p s = p a B + (a B + 1)s Для того чтобы привести уравнение Риккати к линейному неоднородному уравнению необходимо найти частное решение Частное решение будем искать в виде p = Ds 1 Существует действительное частное решение p = (6as) 1 при условии на постоянные 1aβ = 1(B = β ) Тогда p = (4as) 1 + aφ s Φ 1 (s β ) где для упрощения записи введена новая функция Φ = Φ(s) такая что Φ s = s 4/ a(s β ) 5/ Из системы () определим оставшиеся функции v 1 = v + w s 7/ Φds w 1 = w s 1/ Φ z = z w a s 4/ Φds

4 14 ЛЗ УРАЗБАХТИНА где v w z постоянные После подстановки найденных функций u 1 v 1 w 1 ρ p в представление решения физические величины примут вид: u = x v = y w Φd(s 4/ ) w = w s 1/ Φ 4a ρ = s4/ w Φ z = z + w Φd(s 1/ ) (4) p = y a + w s 4/ dφ + w Φ s s 1/ (s β ) 4a Замечание Значения параметра s берутся из интервала [ β) или (β + ) так как интеграл s s4/ (s β ) 5/ ds сходится при s < β и в этом случае Φ < а интеграл s 4/ (s β ) 5/ ds сходится при s > β и Φ > Тогда функция z = z(s) однозначно s определена монотонна и значит обратима Вывод Фактор-система () является полностью интегрируемой в квадратурах если выполнено соотношение 1aβ = 1 Подалгебра Подалгебра имеет представление инвариантного решения вида (см Приложение) u = x ln + u 1(z) v = y + v 1(z) w = w 1(z) ρ = () p = y a + p 1(z) a a После подстановки представления в УГД (1) получим фактор-систему w 1 u 1 = 1 w 1 v 1 = 1 w 1 (1 w aρ 1) = p 1 1 a + w 1 + = w 1 p 1 ab(w 1 + ) = p 1 v 1 w 1 w 1 Из первого уравнения системы определяется u 1 Оставшиеся уравнения системы совпадают с уравнениями () Таким образом физическое представление решения отличается от (4) лишь формулой: u = x ln s1/ Вывод Фактор-система (5) является полностью интегрируемой в квадратурах для значения параметра 1aβ = 1 Подалгебра 6 b Представление инвариантного решения имеет вид (см Приложение) u = ay b + u 1(z) v = y b + v 1(z) w = w 1(z) ρ = (z) p = y b + p 1(z) b где a b произвольные постоянные После подстановки представления в УГД (1) получим фактор-систему w 1 u 1 = u 1 av 1 w 1 v 1 = 1 w 1 (1 w bρ 1) = p 1 1 b + w 1 + = w 1 p 1 bb(w 1 + 1) = p 1 v 1 w 1 w 1 Ненулевые операторы нормализатора в инвариантах подалгебры примут вид: X = a u1 v1 p1 X = z X 11 = z z + u 1 u1 + v 1 w1 + w 1 w1 p1 (5) (6)

5 ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ 14 С помощью инвариантов нормализатора сделаем замену: p = p 1 v 1 w 1 ρ = w 1 Третий инвариант нормализатора мы использовать не будем так как функция u 1 входит только в 1-е уравнение которое служит для определения u 1 Фактор-система (6) в новых переменных примет вид: w 1 u 1 = u 1 av 1 v 1 = 1 bρ w 1 = ρ B (ρ + B) p ρ b(ρ + B) ρ = ρ w 1 w 1 p = ρ p b(ρ + B) + Bp (ρ + B) + bbρ (ρ + B) + 1 bρ По аналогии с интегрированием системы () подалгебры в системе (7) поделим 1-е -е и 4-е уравнение на -е уравнение Таким образом перейдем от дифференцирования по переменной z к дифференцированию по переменной s = ρ Для определения p получим уравнение Риккати b(s + B)p s = p + bbp s b B + Bs Приведем последнее уравнение к каноническому виду с помощью следующей замены p = p + (1/)bBs 1 b(s + B)p s = p b B + ((/4)b B + 1)Bs У последнего уравнения существует действительное частное решение p = (4bs) 1 при условии выполнения равенства на постоянные 6bβ = 1(B = β ) Для того чтобы упростить запись введем новую функцию Φ = Φ(s) такую что Φ s = s / b s β 7/4 Тогда p = (bs) 1 + bφ s Φ 1 (s β ) Из системы (7) определим оставшиеся функции u 1 = u s 1/ + a s 1/ v 1 s 1/ ds v 1 = v + w s 5/ Φds b w 1 = s 1/ w Φ z = z w s / Φds где u v w z постоянные После подстановки найденных функций u 1 v 1 w 1 ρ p в представление решения физические величины примут вид: u = y b + u s 1/ + a s 1/ v 1 s 1/ ds v = y b b + w s 5/ Φds b w = w Φ s 1/ ρ = s / w Φ z = z w s / Φds p = y b + w s / dφ + w Φ s s 1/ (s β ) b Замечание Так как интеграл s / s β 7/4 ds сходится при s > β и s s s / s β 7/4 ds сходится при < s < β то функция z = z(s) будет монотонной и значит обратимой на соответствующих интервалах Вывод Фактор-система (6) является полностью интегрируемой в квадратурах если выполнено равенство 6bβ = 1 (7)

6 144 ЛЗ УРАЗБАХТИНА Подмодели сводящиеся к системе двух обыкновенных дифференциальных уравнений Основным результатом данного параграфа является тот факт что некоторые полученные системы являются линейными Теория интегрирования линейных систем достаточно хорошо развита [5] 1 Подалгебра 1 c = b Представление решения имеет вид x a ln u = + u 1(z) y ln v = y ln p = b Подставим представление в УГД (1) + v 1(z) + p 1(z) b w = w 1(z) ρ = (z) w 1 u 1 = a w 1v 1 = 1 1 w 1 (1 w bρ 1) = p 1 1 b + w 1 + = w 1 p 1 + bβ (w 1 + ) 1 = p 1 v 1 w 1 w 1 Ненулевые операторы нормализатора 67 в инвариантах подалгебры примут вид: X 1 = u1 X = v1 p1 X = z Инварианты нормализатора имеют вид p = p 1 v 1 Сделаем дополнительные замены ρ = w 1 и p = p 1 v В последней системе перейдем к дифференцированию по новой переменной s = β 1 ρ и введем новую постоянную d = bβ и функцию w = dw 1 В результате система примет вид: u 1s = a s v 1s = 1 s + w d s w s = ( p 1 s = (s 1) 1 d s У последней системы имеются две квадратуры ) w ( s s ) w s + 1 sp (s 1) + 1 s p (s 1) u 1 = u a ln s v 1 = v 1 ln s + I I = 1 w ds d s где u v постоянные Подмодель сводится к системе двух линейных уравнений с переменными коэффициентами ( p s = Физические величины примут вид u = x a ln s ( w s = s s s 1 ) w 1 (s 1) 1 d s ) w + p (s 1) sp (s 1) + 1 s v = y ln s + I w = w d ρ = βds w p = y + p ln s + I b где p w определяются из системы (9) Связь между переменными s и z такова z = z 1 s 1 w ds d где z постоянная (8) (9)

7 ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ 145 Вывод Фактор-система (8) сводится к системе двух линейных уравнений (9) и трем квадратурам Подалгебра 4 c = b Подалгебра имеет представление инвариантного решения вида (см Приложение) u = a(y ln ) b + u 1(z) y ln v = b y ln p = b + v 1(z) + p 1(z) w = w 1(z) ρ = (z) b После подстановки представления в УГД (1) получим фактор-систему w 1 u 1 = a + u 1 av 1 w 1 v 1 = 1 1 w 1 (1 w bρ 1) = p 1 1 b + w 1 + (1) = w 1 p 1 bb(w 1 + 1) = p 1 v w 1 w 1 Ненулевые операторы пятимерного нормализатора в инвариантах подалгебры имеют вид X = a u1 v1 p1 X = z С помощью инвариантов нормализатора в системе (1) сделаем замену p = p 1 v u = u 1 av 1 и дополнительную замену ρ = w 1 Систему (1) запишем в виде разрешенном относительно производных по переменной s = β 1 ρ u s = u s aw d s v 1s = 1 s + w d s ( 1 w s = s s ) w s + p 1 s 1 ( p 1 s = (s 1) 1 ) sp w d s (s 1) + 1 s где d = bβ w = dw 1 Решения первых двух уравнений системы находятся в квадратурах ( u = u a w (s) ds d s / ) s 1/ v 1 = v 1 ln s + I I = 1 w (s) ds d s где u v постоянные Оставшиеся уравнения образуют систему линейных уравнений второго порядка ( 1 w s = s s ) w s + p 1 s 1 ( p 1 s = (s 1) 1 ) sp w d s (s 1) + 1 (11) s Связь между переменными s и z такова z = z (d) 1 s 1 w (s)ds где z постоянная Физические величины имеют вид u = a (y ln s 1/ s 1/ ) w (s) + I ds + u s 1/ b d s / b v = y ln s 1/ + I w = w (s) ρ = βds d w (s) p = y ln s 1/ + p (s) + I b

8 146 ЛЗ УРАЗБАХТИНА Вывод Фактор-система (1) сводится к системе двух линейных уравнений (11) и трем квадратурам Подалгебра 4 c b Представление решения имеет вид u = a ln ay b + u 1(I) v = b y ln + v 1(I) w = w 1(I) + z ρ = (I) p = z c + p 1(I) c где I = y ln c 1 bz Нормализатор у подалгебры 6-мерный В инвариантах подалгебры ненулевые операторы нормализатора имеют вид X 1 = u1 X = I v1 X = b c I w1 p1 В фактор-системе сделаем замены J = I + v 1 bc 1 w p = p 1 w 1 ρ = J где J p инварианты нормализатора Ju 1 = u 1 a v 1 = J 1 p + w 1 w 1 = b(p + w 1) c Jρ cρ c = ρ ρ p + w 1 p J cb(j + ) = ρ Из первого уравнения находим квадратуру u 1 (I) = u exp J 1 di + a где u постоянная В оставшихся уравнениях обозначим ρ = s и поделим -е -е и 5-е уравнения на 4-е уравнение Получим систему линейных уравнений третьего порядка csj s + (bs + 1)w 1s + p s = c(j + 1) s(c s b)w 1s bsp s = c J cbsj s s w 1s s p s = cbj + sp Связь между переменными s и I дается квадратурой I = I 1 Jds s где I постоянная Замечание Если исключить w 1s из системы (1) то получим систему второго порядка для функций J и p Вывод Система (1) сводится к линейной системе двух уравнений и трем квадратурам 4 Подалгебра 1 Представление инвариантного решения имеет вид (см Приложение): u = u 1 (z) exp( y) v = v 1 (z) exp( y) w = w 1 (z) exp( y) ρ = (z) exp(y) p = p 1 (z) exp( y) + После подстановки представления в УГД (1) получим фактор-систему (1) + w 1 w 1 + v 1 w 1 w 1 u 1 = u 1 v 1 w 1 v 1 = v 1 p 1 w 1 (v 1 w 1) = p 1 = 1 + v 1 p 1 + w 1 p 1 + Bρ1/ 1 (w 1 v 1 ) = (1)

9 ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ 147 Запишем ненулевые операторы нормализатора в инвариантах подалгебры X = u 1 u1 + v 1 v1 + w 1 w1 ρ1 p 1 p1 X = z Вычислив инварианты нормализатора сделаем замену u = / 1 u 1 v = / 1 v 1 w = / 1 w 1 p = ρ 1/ 1 p 1 При исследовании подмоделей мы пытаемся понизить порядок системы с помощью нормализатора Но у некоторых систем интегралы находятся без использования нормализатора Из первого уравнения с помощью четвертого уравнения системы найдем интеграл u w = u где u постоянная Оставшиеся уравнения системы (1) в новых переменных примут вид: w v w v v + p = w w w w v + p + p = w + w + v = 1 + v p + w p + w p + B(w v ) B w = 9 У системы (14) можно найти еще один интеграл слудующим образом: прибавим к первому уравнению умноженному на v второе уравнение умноженное на w и полученный результат упростим с помощью четвертого и пятого уравнений Получим обыкновенное дифференциальное уравнение ((v + w B)w ) = Интегрирование с точностью до переноса по z дает интеграл v = z w + B w Если у системы (14) найти все производные то из уравнения для получим квадратуру ( ( ) ) v = ρ exp + p v + 1 w w (w B ) dz В силу найденых интегралов остается два уравнения (14) (w B )w = (1 + p v ) w (w B )p = p (1 + p v ) p v B w (15) Уравнения системы (15) после исключения z в силу интеграла в переменных s = w v = s 1/4 V (s) p = s 1/4 p(s) примут вид 4s 1/ V p = (s B) 1 + pv 4s5/4 p = B (s B) 1 + pv Вывод Фактор-система (1) сводится к системе двух нелинейных уравнений 5 Подалгебра 14 Подалгебра имеет четырехмерный нормализатор Значит должен определиться всего один интеграл Но без использования нормализатора возможно найти два дополнительных интеграла подмодели Представление решения имеет вид (см Приложение) U = U 1 (r) exp( θ/a) V = V 1 (r) exp( θ/a) W = W 1 (r) exp( θ/a) ρ = (r) exp(θ/a) p = p(r) exp(θ/a) + Ненулевой оператор нормализатора в инвариантах подалгебры имеет вид X 1 = U 1 U1 + V 1 V1 + W 1 W1 ρ1 p 1 p1

10 148 ЛЗ УРАЗБАХТИНА Вычислив инварианты нормализатора сделаем замену U = / 1 U 1 V = / 1 V 1 W = / 1 W 1 p = ρ 1/ 1 p 1 После подстановки представления решения УГД (1) примут вид: V U r U V r U W ar = V V r + p V r + p V W ar = W r V W r W V r + V W r 1 + p V + p V + p ar = W ar V + V r r + W p + B ar (V V Запишем систему (16) в виде системы Коши-Ковалевской + W ar + V r = r W ar + V r ) = (16) ( B V )V U U = 1 m (B V )V = ( B V ) V r m ( B V )V W = ( B V )( p + av W ar ) + W m ( B V )V = m ( B V ) W ar ( B V )V p = ( B V ) (p B) m где m = 1 + (ar) 1 p W + (V + W )V r 1 Из системы (17) видно что функции U и определяются через квадратуры (следствие инвариантности относительно оператора X 1 ) ( U = U exp ( ( = ρ exp mdr V (B V ) ) m V (B V ) W arv ) ) dr где U ρ постоянные Первое уравнение системы (16) умножим на (U V ) 1 и результат прибавим к четвертому уравнению деленному на V Получим интеграл V U = C 1 r 1 C 1 постоянная который равносилен квадратуре для U Второе и третье уравнения умножим на V 1 W 1 соответственно сложим и результат подставим в 5-е уравнение найдем еще один интеграл (V + W B)V = r + C r 1 где C постоянная Оставшиеся уравнения системы (16) с учетом найденных интегралов образуют систему второго порядка ( B V )V = ( B V ) V r m ( B V )V p = ( B V ) (p B) m Вывод Фактор-система (16) сводится к системе двух дифференциальных уравнений двум квадратурам и интегралу 4 Подмодели сводящиеся к системе трех обыкновенных дифференциальных уравнений 41 Подалгебра c Для подалгебры представление решения имеет вид (см Приложение) U = U 1(r) + x V = V 1(r) W = W 1(r) ρ = (r) p = x p 1(r) c (17)

11 ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ 149 Подставим представление решения в УГД (1) V 1 U = V 1 V 1 V 1 p 1 = W 1 c c r V 1W 1 W 1 = V 1W 1 r ( V 1 ) + + V 1 r = p 1 + U 1 p 1V 1 + cβ (1 + V 1 + V 1 r ) = Ненулевые операторы нормализатора 55 в инвариантах подалгебры имеют вид X 1 = U1 + p1 X 11 = r r + U 1 U1 + V 1 V1 + W 1 W1 ρ1 + p 1 p1 Вычислив инварианты нормализатора сделаем замены V = V 1 r W = W 1 r ρ = r p = p 1 + U 1 r Из первого уравнения системы (18) находим функцию dr U 1 (r) = U cρ V где U постоянная Тем самым использована инвариантность относительно оператора X 1 В новых переменных V W ρ p s = ln r система (18) становится автономной системой V V s p s = W V + V + p 1 cρ cρ c ρ V V W s = W V W (ρ V ) s + ρ V + ρ = (19) V p s + cb ρ V s = p (1 V ) 1 cρ + cβ ρ (1 + V ) Условие автономности возможно в силу инвариантности относительно оператора X 11 Поделим второе уравнение системы (19) на V W а третье уравнение на ρ V и исключая V получим интеграл ρ V W = C exp 5s где C постоянная После подстановки функции W найденную из интеграла в систему (19) получим систему третьего порядка cρ V V s p s = cc exp 5s V cρ V + cρ V + p 1 cρ V (ρ V ) s + ρ V + ρ = ρ V p s + cbv s ρ p (1 V ) c 1 + cβ (1 + V ) У этой системы имеется особое решение когда определитель матрицы при производных равен нулю: U 1 = U 6r V = W = ρ = β p = 4 6 Физические величины примут вид U = x 4 6r V = r W = ρ = β r p = x ± 15r () c Подмодель (18) имеет частное решение U 1 = r4 4cC C V 1 = r W 1 = = C r 4 p 1 = C где 1cβ = 1 C C постоянные (18)

12 15 ЛЗ УРАЗБАХТИНА Физические величины в данном случае примут вид U = r4 4cC + x V = r W = ρ = C r p = x 4 c (1) Вывод Фактор-система (18) сводится к системе трех уравнений одному интегралу и одной квадратуре Найдены точных решения () и (1) 4 Подалгебра b Рассматривается подалгебра с четырехмерным нормализатором У подалгебры с четырехмерным нормализатором найдено интеграла Один интеграл найден с помощью нормализатора другой интеграл найден по аналогии с нахождением интеграла типа Бернулли Представление инвариантного решения имеет вид (см Приложение) U = U 1 (r) exp(α) V = V 1 (r) exp(α) W = W 1 (r) exp(α) ρ = (r) exp( α) p = p 1 (r) exp( α) + α = aθ x b Запишем ненулевой оператор нормализатора в инвариантах подалгебры X 1 = U 1 U1 + V 1 V1 + W 1 W1 ρ1 p 1 p1 Вычислив инварианты нормализатора сделаем замену U = / 1 U 1 V = / 1 V 1 W = / 1 W 1 p = ρ 1/ 1 p 1 Подставим представление решения в УГД (1) и используя замену получим факторсистему: U b n + V U U V + p b = V b n + V V V 1 + (p B )n b + V p + V p + p + p = W r W b n + V W W V ap br = V W r b n = V + V + V r + B (V + V r V ) = где n = U aw r 1 У фактор-системы () найдем интеграл типа Бернулли Умножим первое уравнение на U второе уравнение на V третье уравнение на W Сложим полученные уравнения Из полученного вычтем пятое уравнение Затем исключим величину nb 1 + V ρ 1 1 найденную из четвертого уравнения В результате получим интеграл V ( U B) = r + Cr 1 где C постоянная Запишем в новых переменных оператор X 1 = ρ1 Значит в системе () исключается величина ρ 1 1 Для получим квадратуру ( ) k (B V = ρ exp )nb 1 V ( B V dr ) где k = 1 + b 1 np + (V + W )V r 1 ρ произвольная постоянная ()

13 ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ 151 Останется система трех уравнений в силу полученного интеграла: ( B V )V = ( B V ) V r k ( B V )V W = ( B V )( ap bv W ) + kw br ( B V )V p = ( B V ) k(p B) У системы имеется особое решение при V = β β = B При этом физические величины примут вид U = U ρ 1/ 1 exp(α) V = βρ 1/ 1 exp(α) W = W ρ 1/ 1 exp(α) ρ = (r) exp( α) p = b (r + β (β + W )) / 1 exp( α) + rn где U W произвольные Вывод Фактор-система () сводится к системе трех уравнений одной квадратуре и интегралу Найдено точное решение () 5 Подмодель для самонормализованной подалгебры Рассматривается самонормализованная подалгебра 6 Представление инвариантного решения имеет вид (см Приложение) U = U 1 (s)r α V = V 1 (s)r α W = W 1 (s)r α ρ = (s)r ( γ )α p = p 1 (s)r α γ + α = 1 γ + 1 s = x r УГД (1) редуцируются к виду: (U 1 sv 1 )U 1 + αu 1 V 1 + p 1 = (U 1 sv 1 )V 1 + αv 1 sp 1 + α γ p 1 = W 1 (U 1 sv 1 )W 1 + (α + 1)V 1 W 1 = ((U 1 sv 1 ) ) + (α( γ 1) + ) V 1 = 1 + (U 1 sv 1 )p 1 + α γp 1 V 1 + Bγρ γ 1(U 1 + (α + 1)V 1 sv 1) = Поделим третье уравнение системы на (U 1 sv 1 )W 1 четвертое на (U 1 sv 1 ) и исключая величину (U 1 sv 1 ) 1 V 1 получим интеграл (U 1 sv 1 ) = W W ( γ+1)α 1 где W постоянная Значит система (4) сводится к системе четвертого порядка Если в полученном интеграле положить W 1 = то найдем точное решение при γ = 1/7: ( 1 p U 1 = sv 1 p 1 = 4 s + 1 V 1 = B/7 p 1 4 s + 1) 1 (s + 1) 5/4 = B ρ /7 p 1 + p s + 1 Bρ1/7 1 p 4 s + 1 Замечание Полученное точное решение совпадает с особым решением системы (4) Если в интеграле положить γ = 1/7 тогда (U 1 sv 1 ) = W Четвертое уравнение системы (4) обращается в тождество и останется система четвертого порядка Вывод У фактор-системы (4) найден один интеграл и точное(особое) решение () (4)

14 15 ЛЗ УРАЗБАХТИНА 6 Приложение Таблица трехмерных подалгебр с одним инвариантом зависящим от независимых переменных 6 z (1 γ)/ γ ; (u x + ay)z 1 vz 1/ γ wz 1/ γ ; =6 ρz ( γ)/ γ (p y)z 1 7 z γ/(1 γ) ; uz 1/ γ ; ρz ( γ)/ γ (p y)z 1 =7 14 γ = 1 : r; U exp(θ/a); ρ exp( θ/a) (p ) exp( θ/a) 45 γ 1 β = ( γ + 1) 1 : θ + aβ ln r ; Ur β ; ρr ( γ)β (p )r γβ 4 α = 1/ γ : θ + aα ln r ; Ur α ; ρr ( γ)α (p x)r α = ( γ + 1) 1 : xr 1 ; Ur α ; ρr ( γ)α (p )r α γ =6 9 r γ/(1 γ) ; Ur 1 ; ρ 1 r 1/( γ) (p x)r 1 =9 1 c = b : z; u x + a ln v y + ln w; 67 ρ 1 bp y + ln a = c : y ln bc 1 z; u x + a ln v y + ln w z; ρ 1 cp z z; u x + ln v y w; ρ 1 ap y 67a = z; u x v y w; ρ 1 ap y 78 4 c = b : z; bu ai v I w z; ρ 1 bp I 514 c : I bc 1 z; cu az cv bz w z; ρ 1 cp z a = b = I = y ln 6 b : z; bu ay v y w; ρ 1 bp y 6 7 a b : z (a+1)/a ; (u x)z 1 (v y)z 1 wz 1/a ; 46 ρz 1/a (bp y)z 1 8 a c : z 1 1/a ; (u bc 1 y)z 1 (v y)z 1 wz 1 ; 47 ρz 1 (cp y)z 1 9 d + c + a = : (α(u x) + β)z 1 (αv βd)z 1 =9 αwz 1 ρz (αp β)z 1 α = d + c a β = y ax b + e : ; ((e b)(u x) + z bx) I 1 ((e b)v dz + dbx) I 1 ((e b)w ez + ebx) I 1 ρi ((e b)p z + bx) I 1 I = α(z bx) β(e b) 1 b : ; (u ay)i 1 vi 1 (w by)i 1 ; Iρ (p y)i 1 =1 I = z by 11 ; (u ay)z 1 vz 1 wz 1 ; ρz (p y)z (y 1 b )z 1 ; (u a)z 1/ (v b)z 1/ wz 1/ ; =1 b ρz 1/ (p )z 1/ 1 a : z exp ; (au by) exp v exp w exp ; 444 ρ exp (ap y) exp 16 θ + 1 a ln r ; (U b)r 1/ V r 1/ W r 1/ ; 447 ρr 1/ (p )r 1/ 18 b : θ a ln r 1 ; (U x)r 1 V r 1 W r 1 ; ρr (bp x)r 1 19 c : (b + 1) ln r b ln aθ; (U cp)r 1 V r 1 W r 1 ; 449 ρr 1 (cp x)r 1 (x 1 )r 1 ; (U )r 1/ V r 1/ W r 1/ ; = ρr 1/ (p )r 1/

15 ИНВАРИАНТНЫЕ ПОДМОДЕЛИ РАНГА ОДИН ГАЗОВОЙ ДИНАМИКИ 15 1 c a + b = 1 : r; U x + aθ + b ln V W ; ρ cp x + aθ + b ln a = b = c : r; U x V W ; ρ 1 cp x 55 b ln r aθ + ; Ur 1 ; ρr (p x)r 1 46 γ = 1 1 z; u exp(y); ρ exp( y) (p ) exp( y) 5 γ = 1 b : r; UI; ρi (p )I 1 I = exp (x aθ)b 1 45 γ = 1 a = b = СПИСОК ЛИТЕРАТУРЫ 1 Станюкович КП Неустановившиеся движения сплошной среды М: ГИТТЛ c Хабиров СВ Оптимальные системы подалгебр допускаемых уравнениями газовой динамики Препринт института механики УНЦ РАН Уфа 1998 с Овсянников ЛВ Групповой анализ дифференциальных уравнений М: Наука с 4 Хабиров СВ Аналитические методы в газовой динамике Уфа: Гилем 19 с 5 Тихонов АН Васильева АБ Свешников АГ Дифференциальные уравнения М: ФИЗМАТЛИТ 56 с Лилия Зинфировна Уразбахтина Уфимский государственный авиационный технический университет ул К Маркса г Уфа Россия

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли Математический анализ Раздел: Дифференциальные уравнения Тема: Однородные уравнения Линейные уравнения Уравнения Бернулли Лектор Рожкова СВ 07 год 8 Однородные уравнения Функция M, называется однородной

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

ОБ АВТОМОРФНЫХ СИСТЕМАХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И GL 2 (C)-ОРБИТАХ БИНАРНЫХ ФОРМ

ОБ АВТОМОРФНЫХ СИСТЕМАХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И GL 2 (C)-ОРБИТАХ БИНАРНЫХ ФОРМ ISSN 2074-1863 Уфимский математический журнал. Том 4. 4 (2012). С. 38-44. УДК 517.957 + 512.745 ОБ АВТОМОРФНЫХ СИСТЕМАХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И GL 2 (C)-ОРБИТАХ БИНАРНЫХ ФОРМ П.В. БИБИКОВ Аннотация.

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Тема 2-19: Билинейные и квадратичные формы

Тема 2-19: Билинейные и квадратичные формы Тема 2-19: Билинейные и квадратичные формы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

ОПТИМАЛЬНАЯ СИСТЕМА ПОДАЛГЕБР АЛГЕБРЫ ЛИ ТОЧЕЧНОЙ ГРУППЫ СИММЕТРИИ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ БЕЗ ИСТОЧНИКА

ОПТИМАЛЬНАЯ СИСТЕМА ПОДАЛГЕБР АЛГЕБРЫ ЛИ ТОЧЕЧНОЙ ГРУППЫ СИММЕТРИИ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ БЕЗ ИСТОЧНИКА ISSN 2074-1871 Уфимский математический журнал. Том 5. 3 (2013). С. 54-66. УДК 517.956.4 ОПТИМАЛЬНАЯ СИСТЕМА ПОДАЛГЕБР АЛГЕБРЫ ЛИ ТОЧЕЧНОЙ ГРУППЫ СИММЕТРИИ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ БЕЗ ИСТОЧНИКА

Подробнее

О ГРУППОВЫХ СВОЙСТВАХ И ЗАКОНАХ СОХРАНЕНИЯ ДЛЯ КВАЗИЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

О ГРУППОВЫХ СВОЙСТВАХ И ЗАКОНАХ СОХРАНЕНИЯ ДЛЯ КВАЗИЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА 64 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2009. Т. 50, N- 3 УДК 57.944+59.46 О ГРУППОВЫХ СВОЙСТВАХ И ЗАКОНАХ СОХРАНЕНИЯ ДЛЯ КВАЗИЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА Ю. А. Чиркунов Новосибирский

Подробнее

В.А. Кыров. Классификация четыреметрических физических структур ранга (2,2)

В.А. Кыров. Классификация четыреметрических физических структур ранга (2,2) Приложение I В.А. Кыров Классификация четыреметрических физических структур ранга (2,2) В теории физических структур исключительно важное значение имеет классификация невырожденных метрических функций,

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

ПОСТРОЕНИЕ ТОЧНЫХ РЕШЕНИЙ УРАВНЕНИЯ СИНУС-ГОРДОНА НА ОСНОВЕ ЕГО ХАРАКТЕРИСТИЧЕСКОГО КОЛЬЦА ЛИ

ПОСТРОЕНИЕ ТОЧНЫХ РЕШЕНИЙ УРАВНЕНИЯ СИНУС-ГОРДОНА НА ОСНОВЕ ЕГО ХАРАКТЕРИСТИЧЕСКОГО КОЛЬЦА ЛИ ISSN 2074-1871 Уфимский математический журнал. Том 8. 3 (2016). С. 49-58. УДК 517.9 ПОСТРОЕНИЕ ТОЧНЫХ РЕШЕНИЙ УРАВНЕНИЯ СИНУС-ГОРДОНА НА ОСНОВЕ ЕГО ХАРАКТЕРИСТИЧЕСКОГО КОЛЬЦА ЛИ А.В. ЖИБЕР, С.Н. КАМАЕВА

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

11. Задача о собственных векторах

11. Задача о собственных векторах Задача о собственных векторах 59 Линейные преобразования Вновь вернёмся к линейным преобразованиям A : L L как частному случаю линейных отображений В этом случае пространства совпадают и мы в обеих пространствах

Подробнее

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Кафедра высшей математики (ВМ) Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ Практическое

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

Основы теории специальных функций

Основы теории специальных функций Основы теории специальных функций Необходимость изучения специальных функций математической физики связана с двумя основными обстоятельствами. Во-первых, при разработке математической модели физического

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: НЕМНОГО ТЕОРИИ И РЕШЕНИЯ ЗАДАЧ. Балакина Е.Ю.

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: НЕМНОГО ТЕОРИИ И РЕШЕНИЯ ЗАДАЧ. Балакина Е.Ю. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский национальный исследовательский государственный университет» СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

ПРОСТОЙ СПОСОБ ОБОСНОВАНИЯ МЕТОДА ИСКЛЮЧЕНИЯ ПРИ РЕШЕНИИ НОРМАЛЬНОЙ ЛИНЕЙНОЙ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

ПРОСТОЙ СПОСОБ ОБОСНОВАНИЯ МЕТОДА ИСКЛЮЧЕНИЯ ПРИ РЕШЕНИИ НОРМАЛЬНОЙ ЛИНЕЙНОЙ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ ISSN 2079-8490 Электронное научное издание «Ученые заметки ТОГУ» 2014, Том 5, 4, С. 1357 1363 Свидетельство Эл ФС 77-39676 от 05.05.2010 http://pnu.edu.ru/ru/ejournal/about/ ejournal@pnu.edu.ru УДК 517.95

Подробнее

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида...

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида... Системы линейных алгебраических уравнений Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида a a a, a a a,, a a a Ее можно представить в виде матричного уравнения

Подробнее

Пример решения варианта контрольной работы 1.

Пример решения варианта контрольной работы 1. Пример решения варианта контрольной работы Задание Вычислить определитель Решение: при решении подобных задач используются следующие свойства определителя: ) Если в определителе все элементы какой-либо

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

1. При каких значениях ранг матрицы. Решение:

1. При каких значениях ранг матрицы. Решение: . При каких значениях ранг матрицы равен двум? Решение: Ранг матрицы равен порядку базисного минора. Поскольку требуется, чтобы ранг матрицы был равен двум, то базисным должен быть какой-либо минор второго

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

13. Билинейные и квадратичные функции

13. Билинейные и квадратичные функции 95 Билинейные и квадратичные функции Билинейная функция Определение Билинейной функцией (билинейной формой) на линейном пространстве L называется функция от двух векторов из L линейная по каждому из своих

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

Комплексные числа. ЛОДУ с постоянными коэффициентами.

Комплексные числа. ЛОДУ с постоянными коэффициентами. Занятие 14 Комплексные числа. ЛОДУ с постоянными коэффициентами. 14.1 Комплексные числа Комплексным числом называется выражение вида z = x+iy,где x R. Имеется взаимно однозначное соответствие между множеством

Подробнее

MATRICES AND SYSTEMS OF LINEAR EQUATIONS

MATRICES AND SYSTEMS OF LINEAR EQUATIONS МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ В. А. БРУСИН Нижегородский государственный архитектурно-строительный университет MATRICES AND SYSTEMS OF LINEAR EQUATIONS V. A. BRUSIN The paper is a continuation of

Подробнее

Гипергеометрические функции

Гипергеометрические функции Гипергеометрические функции 1 Канонический вид уравнения гипергеометрического типа Уравнение гипергеометрического типа σy + τy + λy =, (1.1) где σ(z) полином не старше второй степени, τ(z) полином не старше

Подробнее

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА Бабичева ТА Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Махачкала УДК 5(75) ББК я 7 Учебное пособие

Подробнее

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 2 Векторы Определители второго и третьего порядка

Лекция 2 Векторы Определители второго и третьего порядка Лекция 2 Векторы Определители второго и третьего порядка 1 ВЕКТОРЫ Вектор направленный отрезок Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны)

Подробнее

Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора.

Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора. Материалы к установочной лекции Вопрос 9. Матричное представление линейных операторов. Диагонализуемость матрицы линейного оператора.. Матричное представление линейных операторов Будем обозначатьчерез

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

ЗАДАЧА ГУРСА ДЛЯ НЕЛИНЕЙНЫХ ГИПЕРБОЛИЧЕСКИХ СИСТЕМ УРАВНЕНИЙ С ИНТЕГРАЛАМИ ПЕРВОГО И ВТОРОГО ПОРЯДКА

ЗАДАЧА ГУРСА ДЛЯ НЕЛИНЕЙНЫХ ГИПЕРБОЛИЧЕСКИХ СИСТЕМ УРАВНЕНИЙ С ИНТЕГРАЛАМИ ПЕРВОГО И ВТОРОГО ПОРЯДКА ISSN 074-1863 Уфимский математический журнал. Том 3. 3 011. С. 67-79. УДК 517.9 ЗАДАЧА ГУРСА ДЛЯ НЕЛИНЕЙНЫХ ГИПЕРБОЛИЧЕСКИХ СИСТЕМ УРАВНЕНИЙ С ИНТЕГРАЛАМИ ПЕРВОГО И ВТОРОГО ПОРЯДКА А.B. ЖИБЕР О.С. КОСТРИГИНА

Подробнее

Тема 2-17: Сопряженное отображение

Тема 2-17: Сопряженное отображение Тема 2-17: Сопряженное отображение А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2

Подробнее

1. Векторные пространства и линейные операторы

1. Векторные пространства и линейные операторы ЛИНЕЙНАЯ АЛГЕБРА 1 Векторные пространства и линейные операторы Определение 1 Множество V называется векторным пространством (над полем действительных чисел R), если его элементы можно складывать между

Подробнее

ПРИКЛАДНАЯ АЛГЕБРА. Часть I: Конечные поля или поля Галуа. II 1 / 78. Часть I. Конечные поля или поля Галуа. II

ПРИКЛАДНАЯ АЛГЕБРА. Часть I: Конечные поля или поля Галуа. II 1 / 78. Часть I. Конечные поля или поля Галуа. II ПРИКЛАДНАЯ АЛГЕБРА. Часть I: Конечные поля или поля Галуа. II 1 / 78 Часть I Конечные поля или поля Галуа. II ПРИКЛАДНАЯ АЛГЕБРА. Часть I: Конечные поля или поля Галуа. II 2 / 78 Поля вычетов по модулю

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

СЛУЧАИ ИНТЕГРИРУЕМОСТИ В ПРОСТРАНСТВЕННОЙ ДИНАМИКЕ ТЕЛА В НЕКОНСЕРВАТИВНОМ ПОЛЕ

СЛУЧАИ ИНТЕГРИРУЕМОСТИ В ПРОСТРАНСТВЕННОЙ ДИНАМИКЕ ТЕЛА В НЕКОНСЕРВАТИВНОМ ПОЛЕ СЛУЧАИ ИНТЕГРИРУЕМОСТИ В ПРОСТРАНСТВЕННОЙ ДИНАМИКЕ ТЕЛА В НЕКОНСЕРВАТИВНОМ ПОЛЕ М. В. Шамолин Институт механики МГУ им. М. В. Ломоносова Данные результаты появились благодаря исследованию некоторой пространственной

Подробнее

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач.

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных

Подробнее

Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА

Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА Методические указания и контрольные задания по высшей математике для

Подробнее

ПРИКЛАДНАЯ АЛГЕБРА. Часть I: Конечные поля (поля Галуа). II 1 / 78. Часть I. Конечные поля (поля Галуа). II

ПРИКЛАДНАЯ АЛГЕБРА. Часть I: Конечные поля (поля Галуа). II 1 / 78. Часть I. Конечные поля (поля Галуа). II ПРИКЛАДНАЯ АЛГЕБРА. Часть I: Конечные поля (поля Галуа). II 1 / 78 Часть I Конечные поля (поля Галуа). II ПРИКЛАДНАЯ АЛГЕБРА. Часть I: Конечные поля (поля Галуа). II 2 / 78 Поля вычетов по модулю простого

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

ФУНДАМЕНТАЛЬНЫЕ НАУКИ. Механика 3 АППРОКСИМАЦИЯ СИЛОВОЙ ФУНКЦИИ ОБЩЕЙ ЗАДАЧИ МНОГИХ ТЕЛ В МЕТРИКЕ L 2

ФУНДАМЕНТАЛЬНЫЕ НАУКИ. Механика 3 АППРОКСИМАЦИЯ СИЛОВОЙ ФУНКЦИИ ОБЩЕЙ ЗАДАЧИ МНОГИХ ТЕЛ В МЕТРИКЕ L 2 ФУНДАМЕНТАЛЬНЫЕ НАУКИ. Механика УДК 5. АППРОКСИМАЦИЯ СИЛОВОЙ ФУНКЦИИ ОБЩЕЙ ЗАДАЧИ МНОГИХ ТЕЛ В МЕТРИКЕ L д-р физ.-мат. наук, доц. Ю.В. ТРУБНИКОВ, А.М. ВОРОНОВ (Витебский государственный университет им.

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

Министерство образования Российской федерации Томский политехнический университет. А. М. Сухотин

Министерство образования Российской федерации Томский политехнический университет. А. М. Сухотин Министерство образования Российской федерации Томский политехнический университет «Утверждаю», зав каф высшей математики профессор КП Арефьев А М Сухотин ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Методические

Подробнее

Тема 2-3: Базис и размерность линейного пространства

Тема 2-3: Базис и размерность линейного пространства Тема 2-3: Базис и размерность линейного пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ S e MR ISSN 1813-3304 СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ Siberian Electronic Mathematical Reports http://semr.math.nsc.ru Том 11, стр. 605 625 (2014) УДК 517.958:533 MSC 35B06, 35Q99 ВЛОЖЕННЫЕ

Подробнее

Тема 2-20: Аффинные пространства

Тема 2-20: Аффинные пространства Тема 2-20: Аффинные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2

Подробнее

Групповая классификация уравнений модели конвекции с учетом сил плавучести

Групповая классификация уравнений модели конвекции с учетом сил плавучести Вычислительные технологии Том 13, 5, 2008 Групповая классификация уравнений модели конвекции с учетом сил плавучести А.А. Родионов, И.В. Степанова Институт вычислительного моделирования СО РАН Красноярск,

Подробнее

Лекция 7. . = [A 1,A 2,...,A n ], AX = B,

Лекция 7. . = [A 1,A 2,...,A n ], AX = B, Лекция 7 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

О дополнительной инвариантности уравнений для векторных полей

О дополнительной инвариантности уравнений для векторных полей W.I. Fushchych, Scientific Works 2000, Vol. 2, 160 164. О дополнительной инвариантности уравнений для векторных полей В.И. ФУЩИЧ, В.А. ВЛАДИМИРОВ В работах [1, 2] предложен метод исследования групповых

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

Минерально-сырьевой университет «Горный» Санкт-Петербург, E -mail Скачкообразное перемещение тел

Минерально-сырьевой университет «Горный» Санкт-Петербург, E -mail Скачкообразное перемещение тел Якубовский Евгений Георгиевич Инженер-программист Минерально-сырьевой университет «Горный» Санкт-Петербург, E -mail Yakubovski@rambler.ru Скачкообразное перемещение тел Аннотация: космические перелеты

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА 5 УРАВНЕНИЕ ШРЁДИНГЕРА Основным динамическим уравнением квантовой механики описывающим эволюцию состояния микрочастицы во времени является уравнение Шрѐдингера: () Ĥ оператор Гамильтона в общем случае

Подробнее

О ПРОСТРАНСТВЕННОМ АНАЛОГЕ ВОЛН ПРАНДТЛЯ МАЙЕРА

О ПРОСТРАНСТВЕННОМ АНАЛОГЕ ВОЛН ПРАНДТЛЯ МАЙЕРА 38 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2005. Т. 46, N- 5 УДК 533; 517.958 О ПРОСТРАНСТВЕННОМ АНАЛОГЕ ВОЛН ПРАНДТЛЯ МАЙЕРА А. П. Чупахин, Ж. А. Шахметова Институт гидродинамики им. М. А. Лаврентьева

Подробнее

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство.

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство. 79 Линейные функции Определение и примеры линейных функций Определение Будем говорить, что на линейном пространстве L задана функция от одного вектора, если каждому вектору x L сопоставлено число ( x)

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Симметричные и ортогональные матрицы и операторы 1.1 Определения. Основные свойства Действительная матрица A M n n называется симметричной (симметрической),

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

Уравнение Риккати и его общее решение.

Уравнение Риккати и его общее решение. Кравцов ГА директор ООО «НВФ «БКП-консалтинг» гкиев Уравнение Риккати и его общее решение Опубликовать мои дополнительные изыскания в области уравнений Риккати побудила книга Зеликина МИ «Однородные пространства

Подробнее

1 Экспонента линейного оператора.

1 Экспонента линейного оператора. 134 1. ЭКСПОНЕНТА ЛИНЕЙНОГО ОПЕРАТОРА. 1 Экспонента линейного оператора. 1.1 Напоминание: геометрическая формулировка основной задачи ОДУ. Напомним, что векторное поле это отображение, которое каждой точке

Подробнее

Л Е К Ц И Я 4. и получаем ортонормированный базис из его собственных векторов χ x : причем для определенности считаем спектр чисто дискретным:

Л Е К Ц И Я 4. и получаем ортонормированный базис из его собственных векторов χ x : причем для определенности считаем спектр чисто дискретным: Л Е К Ц И Я 4 А ПРЕДСТАВЛЕНИЕ КВАНТОВОЙ МЕХАНИКИ На прошлой лекции мы построили некую конкретную схему квантовой механики, взяв в качестве основного оператор координаты $ X. Делалось это так. Ставим задачу

Подробнее

ВТОРОЙ СЕМЕСТР. Занятие 1. Кольцо многочленов. Операции над многочленами

ВТОРОЙ СЕМЕСТР. Занятие 1. Кольцо многочленов. Операции над многочленами ВТОРОЙ СЕМЕСТР Занятие 1. Кольцо многочленов. Операции над многочленами 1.1. a Известно, что многочлен f(x дает остаток x + 1 при делении на x 2 + 1 и остаток 3 при делении на x + 2. Найдите остаток при

Подробнее

Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ План лекции Лекция Системы линейных уравнений Матричная запись Основная и расширенная матрицы системы; 2 Совместные и не совместные системы 2 Однородные системы

Подробнее

Квадратичные формы. Закон

Квадратичные формы. Закон Материалы к установочной лекции Вопрос 10. Квадратичные формы. Закон инерции. Условия знакоопределенности квадратичных форм. 1 Приведение квадратичной формы к каноническому виду по методу Лагранжа. Обозначения.

Подробнее

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме ОГЛАВЛЕНИЕ Предисловие............................................. 5 Глава 1 Введение в теорию обыкновенных дифференциальных уравнений первого порядка................................. 8 1. Основные понятия

Подробнее

Тема: Линейные операторы

Тема: Линейные операторы Линейная алгебра и аналитическая геометрия Тема: Линейные операторы Лектор Пахомова Е.Г. 2012 г. 11. ЛИНЕЙНЫЕ ОПЕРАТОРЫ 1. Определение линейного оператора Пусть L и V линейные пространства над F (где F

Подробнее

УДК Решение уравнения Риккати и его применение к линейным уравнениям второго порядка

УДК Решение уравнения Риккати и его применение к линейным уравнениям второго порядка 1 УДК 517 96 1. Решение уравнения Риккати и его применение к линейным уравнениям второго порядка Чочиев Тимофей Захарович, кандидат физико-математических наук, старший научный сотрудник Южный Математический

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0 ЛЕКЦИЯ 6. Метод ГАУССА и ДВОЙСТВЕННЫЙ БАЗИС. В этой лекции мы опишем алгоритм решения систем линейных уравнений, позволяющий найти и двойственный базис для любого базиса пространства F n 2. В Лекциях 7

Подробнее

V и λ R ) выполняются равенства

V и λ R ) выполняются равенства Линейные преобразования Определение линейного преобразования Пусть V линейное пространство Если указано правило по которому каждому вектору x из V ставится в соответствие единственный вектор y из V то

Подробнее

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E, 31 Обратная матрица Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы 1 Критерий существования и свойства обратной матрицы Определение Пусть A квадратная

Подробнее

ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ

ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ 1. Скобки Пуассона На прошлой лекции вводилось понятие скобки Лагранжа. Это выражение было составлено из частных производных

Подробнее

Н. Ю. Босых, А. П. Чупахин ОБ ОДНОМ ЧАСТИЧНО ИНВАРИАНТНОМ РЕШЕНИИ УРАВНЕНИЙ ГИДРОДИНАМИКИ АТМОСФЕРЫ

Н. Ю. Босых, А. П. Чупахин ОБ ОДНОМ ЧАСТИЧНО ИНВАРИАНТНОМ РЕШЕНИИ УРАВНЕНИЙ ГИДРОДИНАМИКИ АТМОСФЕРЫ УДК 517.944 + 532.5 Н. Ю. Босых, А. П. Чупахин ОБ ОДНОМ ЧАСТИЧНО ИНВАРИАНТНОМ РЕШЕНИИ УРАВНЕНИЙ ГИДРОДИНАМИКИ АТМОСФЕРЫ Уравнения гидродинамики атмосферы в приближении f плоскости допускают обширную бесконечномерную

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

Тема 1-8: Комплексные числа

Тема 1-8: Комплексные числа Тема 1-8: Комплексные числа А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1 семестр)

Подробнее

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем Г л а в а 2 ВЕКТОРНЫЕ ПРОСТРАНСТВА 9 Векторное пространство над полем 91 Аксиоматика Пусть задано поле P, элементы которого будем называть скалярами и некоторое множество V, элементы которого будем называть

Подробнее

ψ = ψ ψ ψ c 2 t t j = ψ

ψ = ψ ψ ψ c 2 t t j = ψ Л Е К Ц И Я 15 ОСНОВЫ КВАЗИРЕЛЯТИВИСТСКОЙ КВАНТОВОЙ ТЕОРИИ Продолжение УРАВНЕНИЕ КЛЕЙНА-ГОРДОНА Делая в выражении E = + µ подстановки получим или E, -, -h ψ - 1 = (- h + µ )ψ = 0 µ ψ = 0. ( ) h Вводя инвариантный

Подробнее

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Часть 1. Основные понятия. 1.1. Введение 2 1.2. Начальные условия 4 1.3. Составление дифференциальных уравнений 5 1.4.

Подробнее

О РЕШЕНИЯХ ПОЛИНОМИАЛЬНОГО РОСТА МНОГОМЕРНОЙ ОБОБЩЕННОЙ СИСТЕМЫ КОШИ-РИМАНА

О РЕШЕНИЯХ ПОЛИНОМИАЛЬНОГО РОСТА МНОГОМЕРНОЙ ОБОБЩЕННОЙ СИСТЕМЫ КОШИ-РИМАНА ISSN 074-1863 Уфимский математический журнал. Том 7. 3 (015). С. 3-8. О РЕШЕНИЯХ ПОЛИНОМИАЛЬНОГО РОСТА МНОГОМЕРНОЙ ОБОБЩЕННОЙ СИСТЕМЫ КОШИ-РИМАНА С. БАЙЗАЕВ УДК 517.9 Аннотация. Для многомерной обобщенной

Подробнее

Тема: Тройной интеграл

Тема: Тройной интеграл Математический анализ Раздел: Интегрирование ФНП Тема: Тройной интеграл Лектор Рожкова С.В. 013 г. 8. Тройной интеграл 1. Задача приводящая к понятию тройного интеграла Пусть V замкнутая ограниченная область

Подробнее

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского -

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - { общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - вронскиан однородного линейного дифференциального уравнения

Подробнее

Тема 1-7: Определители

Тема 1-7: Определители Тема 1-7: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1 семестр) Перестановки

Подробнее

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ 1 ЭКВИВАЛЕНТНОСТЬ ЛИНЕЙНЫХ СИСТЕМ Пусть нам дана еще одна линейная система того же размера a 11x 1 + a 12x 2 + + a 1nx n = b 1, a 21x 1

Подробнее

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 214, том 5, 6, с. 726 744 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ УДК 517.925.52+519.218 ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Подробнее

Симплекс-метод решения задач линейного программирования

Симплекс-метод решения задач линейного программирования Симплекс-метод решения задач линейного программирования Основным численным методом решения задач линейного программирования является так называемый симплекс-метод. Термин «симплекс-метод» связан с тем

Подробнее

Романова Л.Д., Ланцова В.А., Романова Е.Г. Контрольные задания по высшей математике и методические указания к их выполнению

Романова Л.Д., Ланцова В.А., Романова Е.Г. Контрольные задания по высшей математике и методические указания к их выполнению Федеральное агентство по образованию Пензенский государственный университет Кафедра Высшей и прикладной математики Романова ЛД, Ланцова ВА, Романова ЕГ Контрольные задания по высшей математике и методические

Подробнее

5. Релятивистски-ковариантное уравнение движения заряда в электромагнитном поле. Тензор электромагнитного поля

5. Релятивистски-ковариантное уравнение движения заряда в электромагнитном поле. Тензор электромагнитного поля 5 Релятивистски-ковариантное уравнение движения заряда в электромагнитном поле Тензор электромагнитного поля 51 Необходимость получения уравнения движения в ковариантной форме Уравнение движения заряженной

Подробнее

Уравнения математической физики. Ю. Л. Калиновский

Уравнения математической физики. Ю. Л. Калиновский Уравнения математической физики Ю. Л. Калиновский Классификация дифференциальных уравнений 1 Лекция 1.1 Классификация дифференциальных уравнений Большое число различных физических задач приводит к дифференциальным

Подробнее