Теоретические вопросы и задачи по математике для студентов 2-го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы

Размер: px
Начинать показ со страницы:

Download "Теоретические вопросы и задачи по математике для студентов 2-го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы"

Транскрипт

1 Теоретические вопросы и задачи по математике для студентов -го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы 1. Основные понятия и определения теории вероятностей. Классическое определение вероятности.. Сумма событий. Теорема сложения вероятностей. 3. Произведение событий. Теорема умножения вероятностей. 4. Формула полной вероятности. 5. Схема Бернулли. Формула Бернулли. 6. Локальная и интегральная теоремы Лапласа. Формула Пуассона. 7. Дискретные случайные величины. 8. Числовые характеристики дискретных случайных величин. 9. Непрерывные случайные величины. Интегральная и дифференциальная функции распределения. 10.Числовые характеристики непрерывных случайных величин. 11.Законы распределения случайных величин: Пуассона, показательный, равномерный. 1. Нормальный закон распределения. 13.Двумерные случайные величины. Интегральная и дифференциальная функции распределения вероятностей. Одномерные законы распределения. 14.Независимые случайные величины. Числовые характеристики двумерной случайной величины. Корреляционный момент. Коэффициент корреляции. 15.Основные понятия математической статистики. Генеральная совокупность и выборка. Вариационный и интервальный статистические ряды. Полигон. Гистограмма. Эмпирическая функция распределения. 16.Точечные оценки параметров распределения. Их свойства и вычисление. 17.Интервальные оценки параметров распределения. Доверительный интервал для математического ожидания нормального закона распределения при известном. 18.Интервальные оценки параметров распределения. Доверительный интервал для математического ожидания нормального закона распределения при неизвестном. 19.Статистическая проверка гипотез. Критерий ( Пирсона ). 0.Элементы корреляционного анализа. Двумерная случайная величина. Функциональная и корреляционная зависимость. 1.Линейная регрессия. Метод наименьших квадратов. Коэффициент корреляции и его свойства..примеры призводственных задач лесопромышленного комплекса, приводящих к задачам линейного программирования. 3.Постановка задачи линейного программирования. Каноническая и нормальная формы записи. Допустимый, невырожденный, базисный и оптимальный планы. 4. Геометрический метод решения задачи линейного программирования. 5.Симплекс- метод: идея симплекс-метод, построение первоначального

2 базисного плана, критерий оптимальности, алгоритм перехода к новому базисному плану. 6. М задача. Свойства решений М задачи. 7. Транспортная задача. 8.Потоки событий. Основные понятия и характеристики. Пуассоновский и простейший потоки. 9. Марковские процессы. Марковские случайные процессы с дискретными состояниями и непрерывным временем. 30. Уравнения Колмогорова для вероятностей состояний. 31. Финальные вероятности. Эргодические марковские процессы. Стационарный режим работы системы. Задачи 1. Имеется три ящика деталей: в первом ящике 50 деталей, из них 0 окрашенных; во втором 60, из них 10 окрашенных; в третьем 40, из них 15 окрашенных. Найдите вероятность того, что наугад взятая деталь из наугад взятого ящика окажется окрашенной.. Вероятность появления события А в одном испытании равна 0,8. Найдите вероятность того, что в 6 независимых испытаниях событие А появится: а) не менее 5 раз; б) хотя бы один раз. 3. В урне находятся 10 белых и 5 черных шаров. Из урны наугад извлекли 4 шара. Найти вероятность, что среди них: а) все белые; б) белые и черные. 4. Рабочий обслуживает три станка. Вероятность того, что в течение часа станок не потребет внимания рабочего, равна для первого станка 0,7, для второго 0,8 и для третьего 0,9.Построить ряд распределения и найти математическое ожидание и дисперсию числа станков, которые не потребуют внимания рабочего в течение часа. 5. Вероятрость того, что студент сдаст первый экзамен, равна 0,9, второй 0,8 и третий 0,7. Найти вероятность того, что студент сдаст: а) только один экзамен; б) все три экзамена; в) хотя бы один экзамен. 6. Вероятность выхода из строя за некоторое время Т одного конденсатора равна 0,. Найдите вероятность того, что из 100 независимо работающих конденсаторов в течение времени Т выйдет из строя: а) ровно 70 конденсаторов; б) не более 0 конденсаторов. 7. В каждой из двух урн находится по 5 белых и 10 черных шаров. Из первой во вторую перекладывают один шар. После чего из второй урны извлекают шар. Найти вероятность того, что он будет белый. 8. Три стрелка делают по одному выстрелу по мишени. Вероятность попадания в цель для первого стрелка равна 0,7, для второго 0,8, для третьего 0,9. Найти вероятность попаданий в цель: а) хотя бы одним стрелком; б) двумя стрелками. 9. На складе имеется 0 деталей, причем 1 из них изготовлено на заводе 1, а 8 на заводе. Найти вероятность того, что среди наудачу взятых деталей 3 будут изготовлены заводом Брошены три игральные кости. Найти вероятность того, что на всех выпавших гранях появится одинаковое число очков.

3 11. Прибор состоит из 10 ламп. Вероятность отказа любой лампы за время t равна 0,4. Найти вероятность того, что за время t откажут не более -ух ламп. 1. Студент знает из 0 билетов только 10. Перед ним студент вытянул билет и готовится. Найти вероятность того, что студент вытянет билет, который он знает. 15. Студент разыскивает нужную формулу в трех справочниках. Вероятность того, что формула содержится в 1-ом, -ом, 3-ем справочнике, соответственно равна 0,6; 0,7; 0,8. Найти вероятность того, что формула содержится только в двух справочниках. 16. Два стрелка производят по одному выстрелу по цели. Вероятность поражения цели первым стрелком при одном выстреле равна 0,8; вторым стрелком 0,6. Найти вероятность того, что в цель будет только одним одно попадание. 17. Всхожесть семян данного растения составляет 90%. Найдите вероятность того, что из 5 посеянных семян взойдут Два стрелка стреляют по одной мишени, делая независимо друг от друга по два выстрела. Вероятность попадания в цель для первого стрелка равна 0,5, для второго 0,6. Построить ряд распределения случайной величины X (общего числа попаданий) и найти ее характеристики M X и D X. 19. Случайная величина X задана функцией распределения 0 при x 0, 3 x Fx при 0 x 3, 7 1 при x 3. Требуется найти: а) математическое ожидание M X и дисперсию D X ; F x и плотности распределения вероятностей x б) P X M X X ; в) построить графики интегральной функции распределения p. 0. Случайная величина X распределена по нормальному закону с параметрами a 50 и 5. Найдите: а) вероятность попадания случайной величины X в заданный интервал 45, 5 ; б) P X M X. 1. Случайная величина X задана функцией распределения 0 при x 0, x Fx при 0 x, 4 1 при x. Требуется найти: а) математическое ожидание M X и дисперсию б) P X M X X F x и плотности распределения вероятностей x D X ; ; в) построить графики функции распределения p.. Из генеральной совокупности извлечена выборка объема n 50 :

4 x i n i Найти несмещенную оценку дисперсии генеральной совокупности и построить график эмпирической функции распределения. 3. Пусть в резулльтате эксперимента получены следующие наблюдения случайной величины X : 14,16,,0,14,18,0,0,18,14,16,18,16,16,0,18,16,0,16,18,18,,18,0,18,0,14, 18,,18. Необходимо записать статистический ряд, вычислить выборочное среднее значение x и несмещѐнную оценку дисперсии s. 4. Из генеральной совокупности извлечена выборка : 5,7,13,11,5,9,11,11,9,5,7,9,7,7,11,9,7,11,7,9,9,13,9,11,9,11,5,9,13,9. Необходимо записать статистический ряд, найти несмещенную оценку дисперсии генеральной совокупности и построить график эмпирической функции распределения. 3. Из генеральной совокупности извлечена выборка x i n i 1) построить полигон относительных частот; ) найти эмпирическую функцию распределения и построить еѐ график; 3) вычислить выборочное среднее значение x и несмещѐнную оценку дисперсии s. 4. Из генеральной совокупности извлечена выборка x i n i 1) построить полигон относительных частот; ) найти эмпирическую функцию распределения и построить еѐ график; 3) вычислить выборочное среднее значение x и несмещѐнную оценку дисперсии s. 5. Задан интервальный статистический ряд x i x i n i ) построить гистограмму относительных частот; ) найти эмпирическую функцию распределения и построить еѐ график; 3) вычислить выборочное среднее значение x и несмещѐнную оценку 6. Построить гистограмму относительных частот и найти выборочное среднее

5 значение x по выборке xi xi n i Даны результаты измерения в метрах длин хлыстов хвойных пород, поступающих на деревообрабатывающее предприятие для раскроя на бревна: x i x i n i ) построить гистограмму относительных частот; ) найти эмпирическую функцию распределения и построить еѐ график; 3) вычислить выборочное среднее значение x и несмещѐнную оценку дисперсии. 8. Даны значения процентного выхода пиломатериалов из бревен 1-го сорта лиственных пород: x i x i1,% n i ) построить гистограмму относительных частот; ) определить гипотетическую плотность закона распределения, исходя из вида гистограммы относительных частот; 3) найти доверительный интервал для математического ожидания с доверительной вероятностью 0, Даны результаты измерения в см. комлевых диаметров хлыстов березы, поступающей на деревообрабатывающее предприятие для раскроя на бревна: x x,см i i1 n i ) построить гистограмму относительных частот; ) определить гипотетическую плотность закона распределения, исходя из вида гистограммы относительных частот; 3) найти доверительный интервал для математического ожидания с доверительной вероятностью 0, Найти доверительный интервал для оценки с надежностью 0,99 неизвестного математического ожидания а нормально распределенного признака Х генеральной совокупности, если среднее квадратическое отклонение 4, выборочная средняя x B =10,, объем выборки n Решить задачу линейного программирования: z x x maxmin ; 1

6 0,5x1 x 3, 0 x1 5, 0 x. 3. Решить задачу линейного программирования: z x x maxmin ; 1 x1 3x 8, 3x1 x 8, 0 x1 10, x Решить графическим методом задачу линейного программирования: z x1 x max min ; 3x1 x 6, x13x 6, x1 x 1, x 0, x Решить графическим методом задачу линейного программирования: z x1 3x maxmin ; 3x1 x 6, x15x 10, x1 x 1, x 0, x На предприятии имеются бревна длиной 6.5м., которые необходимо раскряжевать на заготовки длиной,7м. в количестве 900шт.,,м. 800 шт., 1,9м. 6000шт. Необходимо составить экономикоматематическую модель плана раскряжевки бревен, который обеспечивает минимальные отходы, при условии выполнения плана по выходу заготовок. 36. На предприятии имеются бревна длиной 6.8м., которые необходимо раскряжевать на заготовки длиной,5м. в количестве 800шт.,,4м. 900шт., 1,9м. 5600шт. Необходимо составить экономикоматематическую модель плана раскряжевки бревен, который обеспечивает минимальные отходы, при условии выполнения плана по выходу заготовок. 37. На предприятии имеются бревна длиной 6.4м., которые необходимо разрезать на заготовки длиной,4м. в количестве 750шт.,,3м. 300шт., 1,9 м. 600шт. Необходимо составить экономико-математическую модель плана раскряжевки бревен, который обеспечивает минимальные отходы, при условии выполнения плана по выходу заготовок. 38. Четыре предприятия A 1, A, A3, A4 изготовляют однородную продукцию в

7 количествах 180, 40, 400, 300ед. соответственно, которую потребляют предприятия B 1, B, B3, B4 в количествах 300, 400, 00, 80ед. соответственно. Необходимо составить оптимальный план перевозок, который обеспечит минимальную стоимость перевозок, при условии вывоза всей продукции, если матрица стоимости перевозок имеет вид С , A, A A 39. Четыре предприятия A 1 3, 4 изготовляют однородную продукцию в количествах 150, 190, 30, 80ед. соответственно, которую потребляют предприятия B 1, B, B3, B4 в количествах 180, 170, 10, 00ед. соответственно. Необходимо составить оптимальный план перевозок, который обеспечит минимальную стоимость перевозок, при условии удовлетворения потребностей всех предприятий, если матрица стоимости перевозок имеет вид С Четыре предприятия A 1, A, A3, A4 изготовляют однородную продукцию в количествах 150, 190, 30, 80ед. соответственно, которую потребляют предприятия B 1, B, B3, B4 в количествах 180, 170, 10, 00 ед. соответственно. Необходимо составить оптимальный план перевозок, который обеспечит минимальную стоимость перевозок, при условии удовлетворения потребностей всех предприятий, если матрица стоимости перевозок имеет вид С Техническое устройство может находиться в одном из трех состояний S 0, S1, S. Интенсивности потоков, переводящих устройство из одного состояния в другое равны: 01, 0 0, 10 4, 1 1, 0, 1. Необходмо: 1) построить размеченный граф состояний; ) записать систему дифференциальных уравнений Колмогорова; 3) найти финальные вероятности; 4) проанализировать полученное решение 4. Техническое устройство может находиться в одном из трех состояний S 0, S1, S. Интенсивности потоков, переводящих устройство из одного состояния в другое равны: 01, 0 0, 10, 1, 0 1, 1 0 1) построить размеченный граф состояний; ) записать систему дифференциальных уравнений Колмогорова; 3) найти финальные вероятности;

8 4) проанализировать полученное решение. 43. По заданному графу состояний с интенсивностями 01 1, 0 3, 10, 0, 1 4 необходимо: записать систему дифференциальных уравнений Колмогорова, найти финальные вероятности состояний и сделать анализ полученного решения. S 0 S S По заданному графу состояний с интенсивностями 01 3,, 10, 1 1, 0 1, 1 4 необходимо: записать систему дифференциальных уравнений Колмогорова, найти финальные вероятности состояний и сделать анализ полученного решения. 0 S S 1 1 S 45.По заданному графу состояний с интенсивностями 01 3, 0, 10, 0 1, 1 4 необходимо: записать систему дифференциальных уравнений Колмогорова, найти финальные вероятности состояний и сделать анализ полученного решения. S 0 S S 1

9

10


со стороной 3 см, находящийся внутри ABCD.

со стороной 3 см, находящийся внутри ABCD. Примерные задания для подготовки к зачету по математике по теме «Теория вероятностей и математическая статистика» для студентов специальности 270100 4 семестр 1 часть. Теория вероятностей. 1.Комбинаторика.

Подробнее

КОС включают контрольные материалы для проведения промежуточной аттестации в форме дифференцированного зачета

КОС включают контрольные материалы для проведения промежуточной аттестации в форме дифференцированного зачета 1. Общие положения Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Теория вероятностей и математическая

Подробнее

Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» Дисциплина: «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» Специальность: Факультет: «МЕДИКО-БИОЛОГИЧЕСКИЙ» Учебный год: 016-017 Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

Теоремы сложения и умножения вероятностей.

Теоремы сложения и умножения вероятностей. Теоремы сложения и умножения вероятностей. 1. В урне 10 белых, 15 черных, 20 синих и 25 красных шаров. Вынули один шар. Найти вероятность того, что вынутый шар черный или синий. 2. Три стрелка независимо

Подробнее

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения.

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Варианты контрольной работы

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Принцип умножения. 2. Построение функции распределения для дискретной случайной величины. 3. Генеральная и выборочная совокупности, свойство репрезентативности. Экзаменационный

Подробнее

Решение задач по теории вероятностей. Тема 1: «Вероятность случайного события».

Решение задач по теории вероятностей. Тема 1: «Вероятность случайного события». Задание Решение задач по теории вероятностей Тема : «Вероятность случайного события». Задача. Монета подбрасывается три раза подряд. Под исходом опыта будем понимать последовательность X, X, X 3., где

Подробнее

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):. Кафедра Общие сведения. Направление подготовки Экономика Математики и математических методов в экономике

Подробнее

Вопросы к зачету по математике. IV семестр

Вопросы к зачету по математике. IV семестр Вопросы к зачету по математике для студентов заочной формы обучения специальностей: 900. ААХ, 00. МОЛК, 900. СТТМО IV семестр Теория вероятностей и математическая статистика.. Элементы комбинаторики..

Подробнее

Фонд оценочных средств по теории вероятностей и математической статистике

Фонд оценочных средств по теории вероятностей и математической статистике Вопросы к зачету Вопросы для проверки уровня обучаемости «ЗНАТЬ» 1. Комбинаторика. 2. Вычисление вероятности (классическая модель). 3. Геометрическая вероятность. 4.Основные теоремы теории вероятностей

Подробнее

4. Методом моментов найти оценки параметров α и β плотности

4. Методом моментов найти оценки параметров α и β плотности Экзаменационный билет по курсу: ИБМ, 3-й семестр (поток Грешилова А.А.). Случайные события. Определение вероятности.. Найти распределение дискретной случайной величины ξ, принимающей значения x с вероятности

Подробнее

Вопросы к зачету по математике для студентов заочной формы обучения специальности Промышленное и гражданское строительство IV семестр

Вопросы к зачету по математике для студентов заочной формы обучения специальности Промышленное и гражданское строительство IV семестр Вопросы к зачету по математике для студентов заочной формы обучения специальности 270102.65 - Промышленное и гражданское строительство IV семестр Теория вероятностей и математическая статистика. 1. Элементы

Подробнее

Riyaziyyat-2 Fənni üzrə İmtahan Sualları Rus Bölməsi. n n

Riyaziyyat-2 Fənni üzrə İmtahan Sualları Rus Bölməsi. n n Razat- Fə üzrə İmtaha Sualları Rus Bölməs. Исследовать сходимость ряда по признаку Даламбера: = 3 + 7. Исследовать сходимость ряда по интегральному признаку Коши: = 3 3. Найти радиус сходимости ряда: 3

Подробнее

Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки

Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки Этап формирования компетенции (разделы, темы дисциплины) Формируемая компетенция Формы контроля сформированност и компетенций Фонд оценочных средств для проведения промежуточной аттестации обучающихся

Подробнее

Тест 02. Б2.Б.1.3 Теория вероятности и математическая статистика шифр и наименование дисциплины по учебному плану направления подготовки

Тест 02. Б2.Б.1.3 Теория вероятности и математическая статистика шифр и наименование дисциплины по учебному плану направления подготовки Тест 01 1. Случайные события и их классификация. 2. Математическое ожидание случайной величины. 3. В ящике находятся 15 красных, 9 голубых и 6 зеленых шаров. Наудачу вынимают 6 шаров. Какова вероятность

Подробнее

Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика»

Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика» Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика» Вариант N 1 (X \ Z) (Y \ Z) Решить задачи: 2.В партии 1000 деталей, из них 20 дефектных. Какова вероятность того,

Подробнее

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск 018 018 Кафедра высшей

Подробнее

Печатается по решению кафедры теории функций и функционального анализа механико-математического факультета РГУ.

Печатается по решению кафедры теории функций и функционального анализа механико-математического факультета РГУ. Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования Российской Федерации РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кузнецов

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Определение вероятности.. 8 1. Классическое и статистическое определения вероятности.. 8 2. Геометрические вероятности... 12 Глава вторая. Основные

Подробнее

АННОТАЦИЯ. Направление подготовки (специальность) Государственное и муниципальное управление

АННОТАЦИЯ. Направление подготовки (специальность) Государственное и муниципальное управление АННОТАЦИЯ к рабочей программе дисциплины «Теория вероятностей и математическая статистика» Направление подготовки (специальность) 38.03.04 Государственное и муниципальное управление 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Подробнее

Связь с предшествующими дисциплинами (модулями), практиками, ВКР: 1 Информатика 1 ОПК-1 2 Математика 1,2 ОК-3, ПК-4

Связь с предшествующими дисциплинами (модулями), практиками, ВКР: 1 Информатика 1 ОПК-1 2 Математика 1,2 ОК-3, ПК-4 2 3 Содержание 1. Место дисциплины (модуля) в структуре образовательной программы 4 2. Планируемые результаты обучения по дисциплине (модулю) 4 3. Объем дисциплины (модуля) с распределением по семестрам

Подробнее

Интернет-экзамен в сфере профессионального образования

Интернет-экзамен в сфере профессионального образования Интернет-экзамен в сфере профессионального образования Специальность: 230201.65 Информационные системы и технологии Дисциплина: Математика (ТВ и МС) Время выполнения теста: 20 минут Количество заданий:

Подробнее

по дисциплине «Математика» для студентов второго курса строительных специальностей

по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к самостоятельной подготовке за четвертый семестр по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск

Подробнее

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1.

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1. Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем.. Теория вероятности (задачи 7.0 7.80)... Теоремы умножения

Подробнее

ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ

ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ Предисловие о ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ Глава 1. События и вероятности 13 1.1. Элементы комбинаторики 13 1.2. События 16 1.3. Понятие вероятности 17 1.4. Действия над событиями 21 1.5. Теорема сложения

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 3

ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие.......................................... 3 Глава 1 Выборочный метод математической статистики............. 4 1.1. Понятие выборки. Вариационный ряд................ 10 1.2. Наблюдения.

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный аграрный университет имени императора Петра I» Гуманитарно-правовой факультет Кафедра высшей

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Программа, контрольная работа и демонстрационный вариант по курсу «Теория вероятностей и математическая статистика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Программа, контрольная работа и демонстрационный вариант по курсу «Теория вероятностей и математическая статистика» Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет геодезии и картографии» Факультет дистанционных

Подробнее

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ В.Е.Гмурман РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ М.: Высш. школа, 1979, 400 стр. В пособии приведены необходимые теоретические сведения и формулы, даны решения

Подробнее

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА КАЛЕНДАРНЫЙ ПЛАН Дисциплина Теория вероятностей и математическая статистика УЧЕБНЫЙ ПЛАН: Факультет Разработки нефтяных и газовых месторождений

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования "Ижевский государственный технический университет" ГЛАЗОВСКИЙ ИНЖЕНЕРНО-ЭКОНОМИЧЕСКИЙ

Подробнее

1 ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ

1 ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ СОДЕРЖАНИЕ 1 ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 3 УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ 3

Подробнее

вероятностью 0,6 и 2- с вероятностью 0,5. Наудачу выбранный стрелок не попал в мишень. К какой группе вероятнее всего принадлежит этот стрелок?

вероятностью 0,6 и 2- с вероятностью 0,5. Наудачу выбранный стрелок не попал в мишень. К какой группе вероятнее всего принадлежит этот стрелок? Вопросы для подготовки к экзамену (Уравнения математической физики. Теория вероятностей.) 1. Уравнения с частными производными. Классификация линейных уравнений второго порядка. Приведение к каноническому

Подробнее

1. Случайные события. Операции над событиями. Вопросы

1. Случайные события. Операции над событиями. Вопросы ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ ПО КУРСУ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» /009г ИУ-5,7 курс, 4 семестр 1. Случайные события. Операции над событиями. Определения случайного

Подробнее

Требования к результатам освоения дисциплины:

Требования к результатам освоения дисциплины: 1. Цели и задачи дисциплины: получение базовых знаний и формирование основных навыков по теории вероятностей и математической статистике, необходимых для решения задач, возникающих в практической экономической

Подробнее

КОНТРОЛЬНЫЕ ЗАДАНИЯ Задание 1.

КОНТРОЛЬНЫЕ ЗАДАНИЯ Задание 1. КОНТРОЛЬНЫЕ ЗАДАНИЯ Задание. Необходимо решить задачу соответствующую номеру Вашего варианта. В ящике находятся катушки четырех цветов: белых 5 красных зеленых синих 0. Какова вероятность того что наудачу

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

Уважаемые студенты! Внимание!

Уважаемые студенты! Внимание! Уважаемые студенты! Номер Вашего варианта контрольной работы определяется по номеру Вашей зачетной книжки. Откройте Вашу зачетную книжку и посмотрите на две последние цифры в её номере. Обозначим эти две

Подробнее

Методические указания к практическим (семинарским) занятиям

Методические указания к практическим (семинарским) занятиям Методические указания к практическим (семинарским) занятиям Практические занятия (семинары) 3-й семестр п/п С1 С2 С3 С4 С5 С6 раздела дисциплины Наименование практических занятий (семинаров) Комбинаторика:

Подробнее

Вопросы к зачету по математике IV семестр

Вопросы к зачету по математике IV семестр Вопросы к зачету по математике IV семестр Заочное отделение специальность 240406.65 - «Технология химической переработки древесины» Раздел: Теория вероятностей и математическая статистика. 1. Элементы

Подробнее

УДК 51(075.4) Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УДК 51(075.4) Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика 3» УДК 5(075.4) Издание содержит перечень программных вопросов по разделам курса

Подробнее

Контрольная работа по курсу «Теория вероятностей и математическая статистика» Для специальности «Финансы и кредит» Заочная форма обучения Вариант N 1

Контрольная работа по курсу «Теория вероятностей и математическая статистика» Для специальности «Финансы и кредит» Заочная форма обучения Вариант N 1 Контрольная работа по курсу «Теория вероятностей и математическая статистика» Для специальности «Финансы и кредит» Заочная форма обучения Вариант N 1 (X \ Z) (Y \ Z) 2.Среди 100 элементов находится 5 бракованных.

Подробнее

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют:

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют: . На складе 00 деталей, из которых 00 изготовлено цехом, 60 цехом и 40 цехом. Вероятность брака для цеха %, для цеха % и для цеха %. Наудачу взятая со слада деталь оказалась бракованной. Найти вероятность

Подробнее

1. Пояснительная записка

1. Пояснительная записка ОГЛАВЛЕНИЕ 1. Пояснительная записка 3 2. Тематический план дисциплины 5 3. Содержание обязательного и самостоятельного изучения 6 (теоретического курса, семинарских и практических занятий) 4. Вопросы для

Подробнее

АННОТАЦИЯ Дисциплины Б2.Б3 Теория вероятностей и математическая статистика. 1. Цель и задачи изучения дисциплины (учебного курса)

АННОТАЦИЯ Дисциплины Б2.Б3 Теория вероятностей и математическая статистика. 1. Цель и задачи изучения дисциплины (учебного курса) 2 АННОТАЦИЯ Дисциплины Б2.Б3 Теория вероятностей и математическая статистика 1. Цель и задачи изучения дисциплины (учебного курса) Цель приобретение теоретических знаний по основным разделам курса, формирование

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра. Направление подготовки. Дисциплина (модуль) Математики, физики и информационных

Подробнее

A первый взятый шар белого цвета; 24. Раздел 1. Случайные события. Литература. [4], гл. I; [5], гл 1 4.

A первый взятый шар белого цвета; 24. Раздел 1. Случайные события. Литература. [4], гл. I; [5], гл 1 4. Тема 2. Элементы теории вероятностей и математической статистики Раздел. Случайные события Литература. [4], гл. I; [5], гл 4. Основные вопросы.. Испытания и события, виды случайных событий, классическое

Подробнее

«Прикладная математика и информатика»

«Прикладная математика и информатика» «Прикладная математика и информатика» Магистерская программа «Математическое и информационное обеспечение экономической деятельности» Программа экзамена разработана на основе Государственных образовательных

Подробнее

Факультет компьютерных наук Кафедра кибернетики КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Вариант 1

Факультет компьютерных наук Кафедра кибернетики КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Вариант 1 Факультет компьютерных наук Кафедра кибернетики КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ Инструкция: Выполняется один вариант заданий. Вариант студенту назначает преподаватель

Подробнее

Задание Из карточек с цифрами 1, 2, 3, 4, 5 выбирается наугад карточка с числом а, а затем карточка с числом в. Из них составляется дробь а/в.

Задание Из карточек с цифрами 1, 2, 3, 4, 5 выбирается наугад карточка с числом а, а затем карточка с числом в. Из них составляется дробь а/в. КОНТРОЛЬНЫЕ ЗАДАНИЯ Задание 1 1.1 Из карточек с цифрами 1, 2, 3, 4, 5 выбирается наугад карточка с числом а, а затем карточка с числом в. Из них составляется дробь а/в. Какова вероятность того, что эта

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Институт управления и предпринимательства. Статистические методы анализа рынков Экзаменационные материалы

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Институт управления и предпринимательства. Статистические методы анализа рынков Экзаменационные материалы ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Бизнес информатика»

Подробнее

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г.

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г. Перечень Основных контрольных вопросов для зачета (экзамена) по дисциплине Физика, математика, модуль М атематика, для студентов 1 курса медикопрофилактического факультета 1. Понятие функции. Способы задания

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки 02.03.01

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Математики и математических методов в экономике 2. Направление подготовки 01.03.02

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

"ВЫСШАЯ МАТЕМАТИКА" (раздел "Теория вероятностей и математическая статистика")

ВЫСШАЯ МАТЕМАТИКА (раздел Теория вероятностей и математическая статистика) "ВЫСШАЯ МАТЕМАТИКА" (раздел "Теория вероятностей и математическая статистика") Тема. Основные понятия теории вероятностей Основные понятия по теме:. Испытание, элементарный исход, исход испытания, событие..

Подробнее

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ОГЛАВЛЕНИЕ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ЧАСТЬ 1. Случайные события и их вероятности Глава 1. Понятие вероятности 1.1. Виды случайных событий. Дискретное множество элементарных событий. Множество исходов опыта

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКАЯ ГУМАНИТАРНАЯ АКАДЕМИЯ» Филиал в г. Тольятти ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА УЧЕБНО-МЕТОДИЧЕСКИЙ

Подробнее

Контрольная работа 5 (2 курс, 3 семестр) Тема «Теория вероятностей», «Математическая статистика»

Контрольная работа 5 (2 курс, 3 семестр) Тема «Теория вероятностей», «Математическая статистика» Контрольная работа 5 ( курс, 3 семестр) Тема «Теория вероятностей», «Математическая статистика» Вариант 1 1. Из урны, содержащей 4 красных, 5 синих и 1 белый шар, извлекли одновременно четыре шара. Какова

Подробнее

Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика Частное образовательное учреждение высшего образования «Ростовский институт защиты предпринимателя» (РИЗП) РАССМОТРЕНО И СОГЛАСОВАНО на заседании кафедры «Бухгалтерский учет и экономика» 11 от 30.06.2017

Подробнее

МГАПИ. Типовой расчет по высшей математике. Раздел: «Теория вероятностей» Вариант 31

МГАПИ. Типовой расчет по высшей математике. Раздел: «Теория вероятностей» Вариант 31 МГАПИ Типовой расчет по высшей математике Раздел: «Теория вероятностей» Вариант 31 Задача 1. Наладчик обслуживает одновременно 3 автоматических станках. Вероятность того, что в течение часа станки будут

Подробнее

«Теория вероятностей и математическая статистика»

«Теория вероятностей и математическая статистика» «КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ЭКОНОМИКИ И ФИНАНСОВ Кафедра математики и экономической информатики Методическая разработка по дисциплине «Теория вероятностей и математическая статистика»

Подробнее

СОДЕРЖАНИЕ. стр ПАСПОРТ АДАПТИРОВАННОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

СОДЕРЖАНИЕ. стр ПАСПОРТ АДАПТИРОВАННОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ СОДЕРЖАНИЕ 1. ПАСПОРТ АДАПТИРОВАННОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 3. УСЛОВИЯ РЕАЛИЗАЦИИ АДАПТИРОВАННОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 4. КОНТРОЛЬ

Подробнее

( A) КОНТРОЛЬНАЯ РАБОТА 1. Теория вероятностей

( A) КОНТРОЛЬНАЯ РАБОТА 1. Теория вероятностей КОНТРОЛЬНАЯ РАБОТА Теория вероятностей Задача В ящике находится 5 кондиционных и бракованных однотипных деталей Какова вероятность того, что среди трех наудачу выбранных деталей окажется хотя бы одна бракованная?

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ 1... 13 ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙ... 13 1. Определение теории вероятностей... 13 2. Некоторые примеры... 14 3. Устойчивость частот в массовых статистических

Подробнее

9 Событие называется случайным, если в результате испытания оно. 10 Событие называется достоверным, если в результате испытания оно

9 Событие называется случайным, если в результате испытания оно. 10 Событие называется достоверным, если в результате испытания оно Теория вероятностей и математическая статистика _рус_3кр_зим_ибрагимова С.А._ССМ(2.4.очное) 1. Метаданные теста Автор теста: Ибрагимова С.А. (для студентов преподавателя Елшибаева) Название курса: Теория

Подробнее

ВАРИАНТ 1 ЗАДАЧА 1. Построить гистограмму по группированному статистическому ряду:

ВАРИАНТ 1 ЗАДАЧА 1. Построить гистограмму по группированному статистическому ряду: ВАРИАНТ 1 Построить гистограмму по группированному статистическому ряду: Интервалы 0-2 2-4 4-6 Частоты (ν i ) 20 30 50 Построить оценку для неизвестного параметра генеральной совокупности, имеющей геометрическое

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Общие сведения 1. Кафедра Общих дисциплин 2. Направление подготовки «Экономика» 3. Дисциплина (модуль)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Общие сведения 1. Кафедра Общих дисциплин 2. Направление подготовки «Экономика» 3. Дисциплина (модуль) ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Общие сведения 1. Кафедра Общих дисциплин 2. Направление подготовки 38.03.01 «Экономика» 3. Дисциплина (модуль) Б1.Б.9 Теория вероятностей и математическая статистика Перечень компетенций

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ (Пензенский филиал) Кафедра «Менеджмент, информатика и

Подробнее

Контрольная работа 4

Контрольная работа 4 ВВЕДЕНИЕ Уважаемые студенты - заочники! В этой книжке Вы найдете контрольные задания и методические указания для их выполнения и для подготовки к экзамену по высшей математике. Для изучения материала Вам

Подробнее

Теория вероятностей. Алгебра событий. , или обоих этих событий; б) Умножение (пересечение) событий. Произведением событий B = A 1

Теория вероятностей. Алгебра событий. , или обоих этих событий; б) Умножение (пересечение) событий. Произведением событий B = A 1 Теория вероятностей В контрольную работу по этой теме входят четыре задания Приведем основные понятия теории вероятностей необходимые для их выполнения Для решения задач 50 50 необходимо знание темы Случайные

Подробнее

Математика для экономистов

Математика для экономистов МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» УГТУ Математика для экономистов

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» (приложение к рабочей программе)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» (приложение к рабочей программе) Министерство сельского хозяйства РФ федеральное государственное бюджетное образовательное учреждение высшегообразования «Санкт-Петербургский государственный аграрный университет» (ФГБОУ ВО СПбГАУ) Кафедра

Подробнее

Число способов, которыми можно разбить 10 женщин на 5 групп по 3 1 женщине в каждой, равно числу неупорядоченных разбиений 2, 2, 2, 2, 2

Число способов, которыми можно разбить 10 женщин на 5 групп по 3 1 женщине в каждой, равно числу неупорядоченных разбиений 2, 2, 2, 2, 2 ВАРИАНТ.. Группа состоит из 5 мужчин и 0 женщин. Найти вероятность того, что при случайной группировке их на 5 групп по три человека в каждой группе будет мужчина. Решение: Для решения задачи будем использовать

Подробнее

Контрольная работа 2 для слушателей ФРК заочного обучения

Контрольная работа 2 для слушателей ФРК заочного обучения Контрольная работа для слушателей ФРК заочного обучения 1. В одном ящике 5 белых и 10 красных шаров, в другом ящике 10 белых и 5 красных шаров. Найти вероятность того, что хотя бы из одного ящика будет

Подробнее

УЧЕБНО-МЕТОДИЧЕСКТЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА»

УЧЕБНО-МЕТОДИЧЕСКТЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» УЧЕБНО-МЕТОДИЧЕСКТЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» Введение Дисциплина «Математика» относится к федеральному компоненту блока общих математических и естественнонаучных дисциплин. Курс читается в

Подробнее

Б1.Б.9 Теория вероятностей и математическая статистика наименование дисциплин/практики

Б1.Б.9 Теория вероятностей и математическая статистика наименование дисциплин/практики АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ/ПРАКТИКИ Б1.Б.9 Теория вероятностей и математическая статистика наименование дисциплин/практики Автор: канд. физ.-мат. наук, доцент кафедры информационных систем

Подробнее

А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М.

А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М. А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М.: ФИЗМАТЛИТ, 2002. - 224 с. Книга предназначена для начального

Подробнее

I. Организационно-методический раздел

I. Организационно-методический раздел I. Организационно-методический раздел 1.1. Цель дисциплины: является фундаментальная подготовка обучающихся к усвоению основных математических методов и подготовка к проектно-конструкторской и научно-исследовательской

Подробнее

Фонд оценочных средств

Фонд оценочных средств ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. АЛЕКСЕЕВА» ИНСТИТУТ ТРАНСПОРТНЫХ СИСТЕМ

Подробнее

Теоретические вопросы.

Теоретические вопросы. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ Кафедра высшей математики. Дисциплина Математика Специальность 160505. Курс 2. Осенний семестр 2012 года Теоретические вопросы. РАЗДЕЛ

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). 1. Кафедра Общие сведения 2. Направление подготовки 3. Дисциплина (модуль) 4. Количество этапов формирования

Подробнее

Рассмотрена и рекомендована к утверждению на заседании кафедры аналитической экономики и эконометрики « 2014 г., протокол

Рассмотрена и рекомендована к утверждению на заседании кафедры аналитической экономики и эконометрики « 2014 г., протокол Учебная программа составлена на основе: типовой програмы по дисциплине Высшая математика, утвержденной 18.03.2009, регистрационный ТД-Е103/тип, образовательных стандартов Республики Беларусь специальностей

Подробнее

ЕН.03. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ЕН.03. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Правительство Санкт-Петербурга Комитет по науке и высшей школе Санкт-Петербургское государственное бюджетное профессиональное образовательное учреждение «Санкт-Петербургский политехнический колледж» УТВЕРЖДАЮ

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

Задача 6. По данным вариантам найти доверительный интервал для математического ожидания и среднего квадратического отклонения с надежностью.

Задача 6. По данным вариантам найти доверительный интервал для математического ожидания и среднего квадратического отклонения с надежностью. Математическая статистика. Задача 1. Записать выборочные данные в виде вариационного и статистического рядов. Построить полигон частот. а).исходные данные (Приложение 1) б).исходные данные (Приложение

Подробнее

8. Вероятность попадания в цель для двух стрелков равна соответственно 0.7 и 0.8. Тогда вероятность поражения цели равна

8. Вероятность попадания в цель для двух стрелков равна соответственно 0.7 и 0.8. Тогда вероятность поражения цели равна Тема: Теория вероятностей Дисциплина: Математика Авторы: Нефедова Г.А. Дата: 9.0.0. Вероятность случайного события может быть равна. 0.5. 3. 0. 0.7 5..5 6. - 7. 0.3. Вероятность достоверного события равна.

Подробнее

Математика. Теория вероятностей и математическая

Математика. Теория вероятностей и математическая Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Уральский государственный педагогический университет» Математический факультет Кафедра

Подробнее

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей Оглавление Предисловие Введение Теория вероятностей Глава 1. Основные понятия теории вероятностей 1.1. Опыт и событие Операция умножения событий Операция сложения событий Операция вычитания событий Операция

Подробнее

Лекционные Практические Зачет Общая трудоемкость

Лекционные Практические Зачет Общая трудоемкость 1. Цель и задачи учебной дисциплины: Целями освоения дисциплины «Теория вероятностей, математическая статистика и случайные процессы» являются: формирование математической культуры студентов, фундаментальная

Подробнее

Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной.

Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной. Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной. Представленный материал охватывает элементарные вопросы

Подробнее

Вопросы к зачету по математике 3 семестр

Вопросы к зачету по математике 3 семестр Министерство образования и науки РФ Северный (Арктический) федеральный университет Кафедра математики Вопросы к зачету по математике для студентов заочной формы обучения курса специальностей 08005.65 Фин.

Подробнее

РОССИЙСКАЯ ОТКРЫТАЯ АКАДЕМИЯ ТРАНСПОРТА МАТЕМАТИКА

РОССИЙСКАЯ ОТКРЫТАЯ АКАДЕМИЯ ТРАНСПОРТА МАТЕМАТИКА РОССИЙСКАЯ ОТКРЫТАЯ АКАДЕМИЯ ТРАНСПОРТА Одобрено кафедрой «Высшая и кладная математика» МАТЕМАТИКА Задание на контрольные работы 3-4 с методическими указаниями по выполнению для студентов-бакалавров курса

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Подробнее

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Математическая статистика занимается методами сбора и обработки статистического материала результатов наблюдений над объектами

Подробнее

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380 Задание. По выборочным данным оценить генеральную среднюю, генеральную дисперсию и среднее квадратическое отклонение. Построить полигон относительных частот. Эти же данные разбить на 5 интервалов. По интервальному

Подробнее