ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ"

Транскрипт

1 В.В.Поддубный ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ 1. Введение и основные определения Многие задачи естествознания и техники связаны с решением уравнений, содержащих неизвестные функции некоторых независимых переменных (времени, пространственных координат или других параметров) и их производные по этим независимым переменным. Уравнения, в которые неизвестная функция входит под знаком производной или дифференциала, называются дифференциальными уравнениями. Дифференциальные уравнения связывают независимые переменные, неизвестную функцию и ее производные некоторыми соотношениями. Теория дифференциальных уравнений возникла в конце 17 в. Вместе с дифференциальным и интегральным исчислением. Термины «дифференциальное исчисление», «дифференциальные уравнения» введены Лейбницем. Готфрид Вильгельм Лейбниц ( ) немецкий математик, физик и философ, организатор и первый президент Берлинской АН (1700). Примеры: 1) d x() t m F() t, dt ) dt x t

2 (здесь t независимая переменная, x(t) неизвестная функция), 3) d a (здесь x независимая переменная, (x) неизвестная функция), 4) z x z 0 (здесь x, независимые переменные, z(x,) неизвестная функция), 5) x 0 (здесь x независимая переменная, (x) неизвестная функция или наоборот, независимая переменная, x() неизвестная функция ). Нахождение неизвестных функций, удовлетворяющих дифференциальному уравнению, является основной задачей теории дифференциальных уравнений. Если неизвестная функция, входящая в дифференциальное уравнение, является функцией одной независимой переменной, то дифференциальное уравнение называется обыкновенным. Примеры: 1) () t dt xt () 0 или, что то же, x( t) x() t 0,

3 ) d b a sin x, 3) ( x ) ( x ) 0. Если неизвестная функция, входящая в дифференциальное уравнение, является функцией двух или большего числа независимых переменных, то дифференциальное уравнение называется уравнением в частных производных. Примеры: 1) u x u u 0, z ) u x u a 0, t 3) x z x z z, 4) x z( x, dzx ) (, ) 0. В дальнейшем мы будем рассматривать только обыкновенные дифференциальные уравнения и лишь частично затронем уравнения в частных производных. Порядком дифференциального уравнения называется максимальный порядок входящей в уравнение производной (дифференциала) неизвестной функции.

4 Например, уравнения d z z a sin 0, 1 x являются уравнениями второго порядка (производные имеют максимум второй порядок), а уравнения dt sin t, x x 0 уравнениями первого порядка. В дальнейшем независимую переменную мы будем обозначать x (или t, если она имеет смысл времени), а зависимую переменную. Тогда дифференциальное уравнение в общем виде может быть записано в неявной форме как ( n) x,,,,, 0 F, где ( n) означают производные 1-го, -го,..., n-го порядков.,,, Если левая часть дифференциального уравнения ( Fx,,,,, n ) 0 является многочленом по отношению к производной максимального порядка от неизвестной функции, то степень этого многочлена называется степенью дифференциального уравнения.

5 Например, x x x 0 уравнение -го порядка 3-й степени, 0 уравнение 1-го порядка -й степени. Решением (или интегралом) дифференциального уравнения называется функция, которая при подстановке в дифференциальное уравнение обращает его в тождество. Например, t () e t решение дифференциального уравнения Действительно, дифференцируя e t по t и подставляя dt dt. e t и e t в t t уравнение, получаем тождество: e e. Уравнение d 0 имеет решения: ( x) cosx и ( x) sinx, что также легко проверить подстановкой решений в уравнение. График решения обыкновенного дифференциального уравнения называется интегральной кривой этого уравнения. Семейство решений, содержащее все без исключения решения данного дифференциального уравнения, называется общим решением (общим интегралом). Процесс нахождения решения дифференциального уравнения называется интегрированием дифференциального уравнения. Дифференциальное уравнение считается проинтегрированным, если его решение найдено в явном виде ( x) или определяется в неявном виде конечным уравнением xx, ( ) 0, не содержащим производных. Последнее тоже называется интегралом дифференциального уравнения.

6 . Дифференциальные уравнения первого порядка.1. Уравнения 1-го порядка, разрешенные относительно производной В общем случае дифференциальное уравнение первого порядка имеет вид Fx,, 0, где функция F линейная относительно производной. Разрешив уравнение относительно, получим уравнение, разрешенное относительно производной: f x,. Простейший пример такого уравнения, когда f является функцией только x, рассматривается в курсе дифференциального и интегрального исчисления. В этом случае решение уравнения легко находится простым интегрированием: x ( ) c f( x ) и содержит произвольную постоянную c. Как видим, в общем случае уравнение имеет множество решений. Постоянная c может быть определена, если задано x. Тогда значение решения 0 в некоторой точке x 0 : 0 0 x ( ) f( x ). 0 x x0 В дальнейшем мы сформулируем ограничения на функцию f ( x, ), которых достаточно для того, чтобы и уравнение f ( x, ) имело единственное x. Общее решение этого решение, удовлетворяющее условию 0 0 уравнения также зависит от одной произвольной постоянной.

7 Поле направлений касательных к интегральным кривым Дифференциальное уравнение f ( x, ) устанавливает зависимость между координатами точки ( x, ) и угловым коэффициентом касательной к интегральной кривой в той же точке. Зная x и, можно вычислить через f ( x, ). Следовательно, дифференциальное уравнение данного вида определяет поле направлений касательных к интегральным кривым, и задача интегрирования дифференциального уравнения заключается в том, чтобы найти кривые, направления касательных к которым в каждой точке совпадают с направлениями этого поля. На рис.1 стрелками представлено поле направлений касательных к интегральным кривым уравнения 7 x ln1 для трех условий =, 3, 4 при x = 0. В этом примере использовано численное решение дифференциального уравнения, поскольку аналитическое решение получить для него не удается Y X

8 Рис.1 Поле направлений касательных к интегральным кривым уравнения 7 x ln 1 Однако для ряда сравнительно простых дифференциальных уравнений можно легко получить аналитическое решение и построить как интегральные кривые, так и поля направлений касательных к ним в любых заданных точках. Например, на рис. представлены интегральные кривые и поля направлений касательных к ним для дифференциального уравнения x, которое имеет общее решение cx, так что его интегральные кривые лучи, исходящие из точки (0,0). Направления касательных совпадают с направлениями лучей. 6 4 Y X Рис.. Поле направлений касательных к интегральным кривым уравнения x На рис.3 представлены интегральные кривые и поля направлений касательных к ним для уравнения x, которое имеет общее решение x c, так что его интегральные кривые окружности радиуса c с центром в точке (0,0).

9 4 3 1 Y X Рис.3. Поле направлений касательных к интегральным кривым уравнения x Y X Рис.4. Поле направлений касательных к интегральным кривым уравнения x

10 На рис.4 представлены интегральные кривые и поля направлений касательных к ним для дифференциального уравнения x, которое имеет общее решение c x (c произвольная вещественная постоянная) и x 0, так что его интегральными кривыми являются гиперболы (при c 0), горизонтальная прямая 0 (при c 0) и вертикальная прямая x 0. Изоклины Поле направлений удобно строить, находя линии, являющиеся геометрическим местом точек равных направлений касательных. Такие линии называются изоклинами. Уравнения изоклин получаются фиксацией производной k, k const, так что соотношение f ( x, ) k является уравнением изоклины с заданным k. Например, для дифференциального уравнения x, задав k, получим уравнение изоклины x k. Это уравнение окружности, причем угловой коэффициент касательной к интегральным кривым, пересекающим изоклину, равен радиусу окружности k. Семейства изоклин (окружностей) и интегральных кривых для этого дифференциального уравнения приведены на рис. 5. Стрелками показаны направления касательных к интегральным кривым на изоклинах.

11 Y X Рис.5. Изоклины и интегральные кривые уравнения x Эквивалентные уравнения Во многих задачах переменные x и совершенно равноправны (особенно в геометрических задачах). Поэтому наряду с уравнением f ( x, ) (A) естественно рассмотреть и уравнение 1 f ( x, ). (B) Оба уравнения эквивалентны. Функция ( x) является решением уравнения

12 (A), а обратная функция x x( ) решением уравнения (B). Обе интегральные кривые одинаковы. Уравнение (B) вместо уравнения (A) имеет смысл рассматривать в случае, если в некоторой точке ( x, ) функция f ( x, ) обращается в (уравнение (A) теряет смысл), тогда как уравнение (B) имеет смысл и позволяет найти дополнительное решение. Например, уравнение x (уравнение (A)) при x 0 теряет смысл, тогда как x (уравнение (B)) позволяет найти дополнительно к решению cx (c 0) еще одно решение x 0 (соответствующее c 0)... Уравнения с разделяющимися переменными Дифференциальное уравнение вида f ( ) f ( x) (1) 1 называется уравнением с разделенными переменными. Функции f1 ( x ) и f ( ) будем считать непрерывными. Пусть ( x) решение этого уравнения. Подставив его в уравнение (1), получим тождество, интегрируя которое, будем иметь: f( ) f1( x) c, () где c произвольная постоянная. Мы получили конечное уравнение, которому удовлетворяют все решения уравнения (1), так как любая функция, обращающая это уравнение в тождество, после дифференцирования этого тождества удовлетворяет также исходному

13 уравнению. Следовательно, соотношение () является общим интегралом уравнения (1). Естественно, чтобы уравнение имело смысл и решение, f ( ) 0. Как видим, решение уравнения с разделёнными переменными находится простым интегрированием его. Замечание. Даже если интегралы в выражении () не берутся, решение, найденное в квадратурах, является законченным решением дифференциального уравнения, так как от задачи решения дифференциального уравнения мы пришли к более простой задаче взятия интегралов. уравнения Частное решение, удовлетворяющее условию x, определяется из 0 0 f ( ) f ( x), 1 0 x0 x получаемого из () при условии x. 0 0 Примеры: 1) x 0, x c, x c. Решение семейство окружностей с центром в точке (0, 0). x ) e x, e ln c. ln Эти интегралы не берутся в элементарных функциях, тем не менее исходное уравнение считается проинтегрированным, так как задача доведена до квадратур.

14 Уравнения вида ( x) ( ) ( x) ( ), 1 1 в которых коэффициенты при дифференциалах распадаются на множители, зависящие только от x или только от, называются уравнениями с разделяющимися переменными, так как путем деления на 1( ) ( x ) они приводятся к уравнениям с разделенными переменными: 1 ( x) ( ) ( x) ( ). (Эта операция называется разделением переменных.) Заметим, что указанное деление может привести к потере частных решений, обращающих в нуль произведение 1( ) ( x ), а если функции 1 ( ) и ( x ) могут быть разрывными, то к появлению лишних решений, обращающих ( ) ( x ). в нуль множитель Примеры: 1). x 1 1 Разделяем переменные: x, интегрируем: 1 x ln c (lnc произвольная постоянная, c 0), ln ln x lnc, cx. Гладкие решения образуют две ветви: cx (c 0). Но при делении на мы потеряли решение 0, так что, положив c 0 в общем решении cx, мы включим и это решение. Замечание. Если считать переменные равноправными, то уравнение, теряющее смысл при x 0, надо дополнить обратным уравнением x x, которое имеет еще одно решение x 0 в дополнение к cx. Решение: ) x 1 1 x 0. x, 1 1 x 1 c 1 x (c 0). x 1 c 1 ln, ln1 ln1 x lnc, 1 x

15 3) 4 t x. dt Решение: tdt, d x dt c x, x t c, x t c (c 0).

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения.

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения. 4 Дифференциальные уравнения высших порядков Понижение порядка уравнения 4 Основные понятия и определения Дифференциальными уравнениями высшего порядка называют уравнения порядка выше первого В общем случае

Подробнее

Лекция 1. Дифференциальные уравнения первого порядка

Лекция 1. Дифференциальные уравнения первого порядка Лекция 1 Дифференциальные уравнения первого порядка 1 Понятие дифференциального уравнения и его решения Обыкновенным дифференциальным уравнением 1-го порядка называется выражение вида F( x, y, y ) 0, где

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

Лекция2. Дифференциальные уравнения первого порядка

Лекция2. Дифференциальные уравнения первого порядка Лекция. Дифференциальные уравнения первого порядка Уравнения с разделяющимися переменными... Однородные уравнения... 3 Линейные уравнения первого порядка.... 7 Линейные однородные дифференциальные уравнения....

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения.

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения. Глава Введение Лекция Понятие дифференциального уравнения Основные определения Определение Дифференциальным уравнением (ДУ) называют уравнение, в котором неизвестная функция находится под знаком производной

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Образцы решения уравнений из «Сборника типовых заданий по курсу высшей математики» Кузнецова Л.А. Авторы: Смирнов А.Н., Беловодский В.Н., кафедра компьютерных систем мониторинга,

Подробнее

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА Бабичева ТА Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Махачкала УДК 5(75) ББК я 7 Учебное пособие

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию у f х и производные искомой функции n n :

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Часть 1. Основные понятия. 1.1. Введение 2 1.2. Начальные условия 4 1.3. Составление дифференциальных уравнений 5 1.4.

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФГОУ ВПО «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ В.Д. ГУНЬКО, Л.Ю. СУХОВЕЕВА, В.М. СМОЛЕНЦЕВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПРИМЕРЫ И ТИПОВЫЕ ЗАДАНИЯ Учебное пособие Краснодар

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений»

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» Задание Выясните, являются ли функции ( ) e и e решениями дифференциального уравнения d ( ) d 0 на промежутке ( ; )..

Подробнее

Авторский коллектив: В. К. Романко, Н. Х. Агаханов, В. В. Власов, Л. И. Коваленко

Авторский коллектив: В. К. Романко, Н. Х. Агаханов, В. В. Власов, Л. И. Коваленко 3-... 2012 УДК 517.9 ББК 22.161.1 C23 Авторский коллектив: В. К. Романко, Н. Х. Агаханов, В. В. Власов, Л. И. Коваленко C23 Сборник задач по дифференциальным уравнениям и вариационному исчислению / В.

Подробнее

5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения

5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения УРАВНЕНИЯ НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения Уравнениями первого порядка неразрешенными относительно производной называются уравнения вида F ( x ) () Уравнение () можно решать следующими

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Л. Н. Феофанова ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ Учебное пособие

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

А.В. Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА

А.В. Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА МАТЭМАТЫКА 9 УДК 579 АВ Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА Рассматривается метод построения общего интеграла специальной формы для нелинейного дифференциального

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» В. М. Сафро,

Подробнее

Однородные дифференциальные уравнения 1-го порядка

Однородные дифференциальные уравнения 1-го порядка Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ Уфимский государственный нефтяной технический университет. Вариант 500. Дифференциальное уравнение P (, ) d Q(, ) d 0 порядка, если: будет однородным уравнением первого Ответы: ). P и Q однородные функции

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

DIRECTION FIELDS AND THEIR CORRESPONDING TRAJECTORIES. å. à. Çàòàä M. I. VISHIK. This paper is an introduction

DIRECTION FIELDS AND THEIR CORRESPONDING TRAJECTORIES. å. à. Çàòàä M. I. VISHIK. This paper is an introduction ÇË ËÍ å.à., 1996 DIRECTION FIELDS AND THEIR CORRESONDING TRAJECTORIES M. I. VISHIK This paper is an introduction to the theory of the first order ordinary differential equations on a plane. The following

Подробнее

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши)

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Лекция 7 Дифференциальные уравнения Дифференциальные уравнения -го порядка f (, ). Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Дифференциальным

Подробнее

Интегралы и дифференциальные уравнения. Лекция 15

Интегралы и дифференциальные уравнения. Лекция 15 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция 15 Решение

Подробнее

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика»

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева ЕГ Определение: Уравнение

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

Производная функции. 1. Производные некоторых функций: C Свойства производных: 4. Общий смысл производной.

Производная функции. 1. Производные некоторых функций: C Свойства производных: 4. Общий смысл производной. Производная функции. 1. Производные некоторых функций: C 0 2. 3. Свойства производных: 4. Общий смысл производной. Геометрический смысл производной есть тангенс угла наклона касательной, проведенной к

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГБОУ ВПО АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ Н.В. НИГЕЙ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПОСОБИЕ ДЛЯ САМОПОДГОТОВКИ г. Благовещенск МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Подробнее

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Первообразная и неопределённый интеграл Основная задача дифференциального исчисления состоит в нахождении производной (или дифференциала) данной функции. Интегральное исчисление

Подробнее

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Дифференциальные уравнения высших порядков, допускающие понижение порядка Занятие 13 Дифференциальные уравнения высших порядков, допускающие понижение порядка 13.1 Задача и теорема Коши Задачей Коши для дифференциального уравнения порядка n, разрешённого относительно старшей

Подробнее

Лекция 26 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ(4)

Лекция 26 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ(4) Лекция 26 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ(4) Вычисление площадей плоских фигур Площадь в полярных координатах Вычисление объемов тел Вычисление объема тела по известным

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

Метод разделения переменных (метод Фурье)

Метод разделения переменных (метод Фурье) Метод разделения переменных (метод Фурье) Общие принципы метода разделения переменных Для простейшего уравнения с частными производными разделение переменных это поиски решений вида только от t. u (x,t

Подробнее

ПРИКЛАДНАЯ МАТЕМАТИКА

ПРИКЛАДНАЯ МАТЕМАТИКА ПРИКЛАДНАЯ МАТЕМАТИКА ЕАКОГАН ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ Учебное пособие по дисциплине математика для студентов обучающихся по специальности Автомобиле-и тракторостроение

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный машиностроительный

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.»

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Министерство образования Республики Беларусь Министерство образования Республики Беларусь Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Кафедра теоретичской и прикладной математики.

Подробнее

Эпиграф. Какой знак имеет производная от настроения по расстоянию до кресла зубного врача? П.В.Грес. Иванов О.В., Кудряшова Л.В.

Эпиграф. Какой знак имеет производная от настроения по расстоянию до кресла зубного врача? П.В.Грес. Иванов О.В., Кудряшова Л.В. Лекция 6. Производная и дифференциал 6-1 Определение производной 6-2 Нахождение производных 6-3 Производные элементарных функций 6-4 Дифференциал функции 23 сентября 2007 г. Эпиграф Какой знак имеет производная

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

ЛЕКЦИЯ 1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной

ЛЕКЦИЯ 1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной ЛЕКЦИЯ. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной. Введение. Задача решения (интегрирования) дифференциальных уравнений это задача, обратная дифференцированию.

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ТЕСТОВЫЕ ЗАДАНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ТЕСТОВЫЕ ЗАДАНИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет»

Подробнее

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ИВ Ребро, СЮ Кузьмин, НН Короткова, ДА Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее

РАБОЧАЯ ПРОГРАММА дисциплины

РАБОЧАЯ ПРОГРАММА дисциплины ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

Функции комплексного переменного. Дифференцирование функций комплексного переменного

Функции комплексного переменного. Дифференцирование функций комплексного переменного Функции Дифференцирование функций 1 Правила дифференцирования Так как производная функции определяется, как и в действительной области, т.е. в виде предела, то, используя это определение и свойства пределов,

Подробнее

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме ОГЛАВЛЕНИЕ Предисловие............................................. 5 Глава 1 Введение в теорию обыкновенных дифференциальных уравнений первого порядка................................. 8 1. Основные понятия

Подробнее

1 Дифференциальные уравнения 1 порядка

1 Дифференциальные уравнения 1 порядка 1 Дифференциальные уравнения 1 порядка Дифференциальным уравнением (ДУ) 1 порядка, разрешённым относительно производной, называется уравнение d dx = F (x, ), где = (x) искомая функция; функция F задана

Подробнее

( ) n ( ) ( ) ( ) ( x) ( ) ( ) ( ) Лекция 2. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ

( ) n ( ) ( ) ( ) ( x) ( ) ( ) ( ) Лекция 2. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Лекция ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Рациональные дроби Интегрирование простейших рациональных дробей Разложение рациональной дроби на простейшие дроби Интегрирование рациональных дробей Рациональные

Подробнее

x - заданные непрерывные функции от х (или

x - заданные непрерывные функции от х (или ЛЕКЦИЯ 3 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Определение: Линейным уравнением -го порядка называет уравнение, линейное относительно неизвестной функции и ее производной. Оно имеет вид:

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики (МИРЭА) кафедра высшей

Подробнее

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ. Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ. Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ на проведение практических занятий по теме «Интегральное исчисление» Кривулин Н.П., Мойко Н.В. г. Пенза

Подробнее

Дифференциальные уравнения первого порядка (продолжение)

Дифференциальные уравнения первого порядка (продолжение) Занятие 12 Дифференциальные уравнения первого порядка (продолжение) 12.1 Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли. Линейным дифференциальным уравнением первого порядка называется

Подробнее

5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода

5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода 5 ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА ПО ПЛОЩАДИ ПОВЕРХНОСТИ Поверхностный интеграл I рода представляет собой такое же обобщение двойного интеграла каким криволинейный интеграл I рода является по отношению к

Подробнее

Тема: Криволинейный интеграл II рода

Тема: Криволинейный интеграл II рода Математический анализ Раздел: Интегрирование ФНП Тема: Криволинейный интеграл II рода Лектор Пахомова Е.Г. 2013 г. 10 10. Криволинейный Криволинейный интеграл интеграл II II рода рода по по координатам

Подробнее

С.А. Лавренченко. Производная функции, фундаментальное понятие дифференциального исчисления, определяется как предел разностного отношения.

С.А. Лавренченко. Производная функции, фундаментальное понятие дифференциального исчисления, определяется как предел разностного отношения. Лекция 6 1 СА Лавренченко Производные 1 Определения производной Производная функции фундаментальное понятие дифференциального исчисления определяется как предел разностного отношения Определение 11 (производной

Подробнее

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции.

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции. Решение типового варианта ИДЗ «Дифференциальные уравнения» Задание Убедиться, что функция = (ln + C) удовлетворяет уравнению = Найдём производную данной функции = ln + C + = ln + C + Подставим данное выражение

Подробнее

Семинар по теме Интегралы с параметрами

Семинар по теме Интегралы с параметрами Семинар по теме Интегралы с параметрами апреля 6 г. Бета-функция Эйлера Порой приходится иметь дело с интегралами вида: B(p, q) = t p ( t) q dt или интегралами, которые сводятся к интегралам такого вида

Подробнее

Рассмотрим систему двух автономных обыкновенных ди ф- ференциальных уравнений общего вида: dx dt dy dt

Рассмотрим систему двух автономных обыкновенных ди ф- ференциальных уравнений общего вида: dx dt dy dt Семинар 4 Система двух обыкновенных дифференциальных уравнений (ОДУ). Фазовая плоскость. Фазовый портрет. Кинетические кривые. Особые точки. Устойчивость стационарного состояния. Линеаризация системы в

Подробнее

51 Методические указания к выполнению контрольной работы 3 «Неопределенный и определенный интегралы»

51 Методические указания к выполнению контрольной работы 3 «Неопределенный и определенный интегралы» Методические указания к выполнению контрольной работы «Неопределенный и определенный интегралы» Интегрирование представляет собой операцию, обратную дифференцированию, поэтому основные формулы интегрирования

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания Решение типовых вариантов контрольной работы по теме Интегралы функции одной переменной Методические указания УДК 517.91 Методические указания содержат подробные решения типовых вариантов контрольной работы

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

Кафедра математики и информатики МАТЕМАТИКА ВЫЧИСЛЕНИЕ КРИВОЛИНЕЙНЫХ ИНТЕГРАЛОВ

Кафедра математики и информатики МАТЕМАТИКА ВЫЧИСЛЕНИЕ КРИВОЛИНЕЙНЫХ ИНТЕГРАЛОВ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее