Тема 5. Напряженное и деформированное состояние в точке. Лекция 6

Save this PDF as:

Размер: px
Начинать показ со страницы:

Download "Тема 5. Напряженное и деформированное состояние в точке. Лекция 6"

Транскрипт

1 Тема 5 Напряженное и деформированное состояние в точке. Лекция 6 Объемное напряженное состояние. 6. Главные напряжения и главные площадки. 6. Площадки экстремальных касательных напряжений. 6. Деформированное состояние в точке. Основные понятия. Направляющие косинусы внешней нормали к площадке, решение системы линейных однородных алгебраических уравнений (СЛОАУ), вычисление определителя третьего порядка, главные напряжения и главные площадки, инварианты напряженного состояния, экстремальные касательные напряжения, деформированное состояние в точке, главные деформации.

2 6. Главные напряжения и главные площадки. Рассмотрим некоторое тело, нагруженное системой сил, удовлетворяющей условиям равновесия (рис. 6. а). Тремя парами параллельных плоскостей выделим в окрестности точки A элементарный параллелепипед (рис. 6. б). Рис. 6. Объемное напряженное состояние (а). Главные площадки (б) Напряжения, действующие на гранях элементарного параллелепипеда в общем случае объемного напряженного состояния (рис. 6. б), сведем в матрицу (тензор напряжений) T Если записать уравнения равновесия параллелепипеда: сумма моментов всех сил относительно осей,,, то получим численные равенства закона парности касательных напряжений:,, (6.) В двух взаимно перпендикулярных площадках составляющие касательных напряжений, перпендикулярные общему ребру, равны друг другу и направлены обе либо к общему ребру, либо от ребра. Поэтому матрица T симметрична. Меняя ориентировку параллелепипеда (рис. 6. в), можно найти такое его положение, когда на всех гранях касательные напряжения будут равны нулю. Такие площадки и действующие на них нормальные напряжения называются главными напряжениями и главными площадками. Рассмотрим способ их определения. Предположим, что нам известен наклон какойлибо главной площадки, определяемой нормалью γ (рис.6. а). Направляющие косинусы нормали: l cos(, ) m cos(, ) n cos(, ) l m n (6.) (6.) Сечением, параллельным этой площадке, выделим из исходного параллелепипеда тетраэдр (рис 6. б).

3 Рис. 6. Наклонная площадка (а) и равновесие тетраэдра, выделенного главной площадкой (б) Примем площадь наклонной грани тетраэдра da=, тогда площади других граней будут равны: da da l da m da n (6.4) Напряжение, действующее на главной площадке, обозначим гл. Составим условия равновесия тетраэдра в виде суммы проекций действующих на него сил на ось : l l m n 0 (6.5) Аналогичные уравнения будут для осей,. Запишем эти уравнения в виде системы линейных однородных алгебраических уравнений (СЛОАУ) относительно неизвестных направляющих косинусов, : l m, n ( ) l m n 0 l ( ) m n 0 l m ( ) n 0 Решение СЛОАУ l 0, m 0, n 0нам не подходит, т.к. должно выполняться условие (6.): l m n. Поэтому найдем решение (6.6) отличное от нуля. Для этого, потребуем, чтобы определитель системы равнялся нулю, т.е. ( ) det ( ) 0 ( ) (6.6) (6.7) Раскрываем определитель (6.7) получаем: (6.8) I I I 0 Из симметрии матрицы определителя (6.8) следует, что все три корня уравнения (6.8) будут действительные числа:

4 , (6.9) Коэффициенты уравнения (6.8) с учетом закона парности касательных напряжений (6.) вычисляются по формулам: I I I ( ) (6.0) Коэффициенты (6.0) не зависят от выбора осей координат, так как при любых исходных площадках уравнение (6.9) должно давать одни и те же корни:,,. Поэтому величины I, I, I называются первым, вторым и третьим инвариантами напряженного состояния (тензора напряжений). Если площадки элементарного параллелепипеда, выделенного в окрестности точки, являются главными, то для инвариантов напряженного состояния имеем следующие формулы: I ( ) Для определения l m, n I I (6.),, соответствующих одному из трех главных напряжений, значение этого напряжения надо подставить в уравнение (6.6) вместо σ. Совместное решение (6.) и (6.6) даст искомые направляющие косинусы l, m, n. Пример 6. Предположим, что рассматривая напряженное состояние в точке, мы выделили в ее окрестности элементарный параллелепипед и на его гранях обнаружили систему нормальных и касательных напряжений, обладающих тем свойством, что все компоненты оказались равными друг другу τ (рис. 6. а). Определим главные напряжения и установим, что же это за напряженное состояние. Рис. 6. Напряжения на гранях параллелепипеда (а). Выделение элементарного параллелепипеда исходного состояния (б) Вычислим инварианты по формулам (6.0), уравнение (6.8) примет вид, корни которого равны:, I 0, I 0, I 0 0 Таким образом, на рис. 6.,а представлено одноосное напряженное состояние с напряжением (Рис 6. б). На рис 6., б показана тройка взаимно перпендикулярных секущих площадок имеющих равный наклон к оси растянутого стержня.

5 Пример 6. Предположим, что рассматривая напряженное состояние в точке, мы выделили в ее окрестности элементарный параллелепипед и на его гранях обнаружили систему только равных касательных напряжений τ (рис.6.4,а). Рис. 6.4 Напряженное состояние в точке (а), главные площадки исходного состояния (б) Вычислим инварианты по формулам(6.0), уравнение (6.8) примет вид, корни которого равны: I 0, I, I 0, Следовательно, рассматриваемое состояние является трехосным (рис. 6.4 б). 6. Площадки экстремальных касательных напряжений. Максимальное касательное напряжение для данной точки равно половине разности максимального и минимального главных напряжений и действует на площадке, наклоненной к ним под углом 45 0 ( ). ma (6.) Рис 6.5. Площадки экстремальных касательных напряжений (оси,, параллельны главным напряжениям, )

6 6. Деформированное состояние в точке. Рассмотрим особенности деформирования материала в окрестности точки М деформированного тела (рис.6.6,а). Выделим элемент d, d, d в окрестности этой точки Рис. 6.6 Совокупность деформаций для всевозможных осей, проведенных через точку М, представляет деформированное состояние в точке (а); деформации элемента в плоскости - (б) Линейные и угловые деформации (углы сдвига) элемента в трех ортогональных плоскостях представим в виде тензора деформаций : (6.) T Если мысленно вращать вокруг точки М оси,,, переводя их во всевозможные ' ' ' положения,,,то деформации (6.) будут непрерывно изменяться (рис. 6.6 а). Совокупность относительных удлинений и углов сдвига для всевозможных направлений осей, проведенных через данную точку, называется деформированным состоянием в точке. Деформации,, в направлениях, для которых отсутствуют углы сдвига, называются главными деформациями в точке и определяются по формулам (формулы обобщенного закона Гука): ( ( )) ( ( )) ( ( )) (6.5) E E E


5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки Теория напряженного состояния Понятие о тензоре напряжений, главные напряжения Линейное, плоское и объемное напряженное состояние Определение напряжений при линейном и плоском напряженном состоянии Решения

Подробнее

p x = σ x l + τ yx m + τ zx n, σ ν = p x l + p y m + p z n. (11.1.5)

p x = σ x l + τ yx m + τ zx n, σ ν = p x l + p y m + p z n. (11.1.5) ГЛАВА 11 РАСЧЕТ НА ПРОЧНОСТЬ ПРИ СЛОЖНОМ НАПРЯЖЕННОМ СО- СТОЯНИИ В гл. 9 в примерах 9.3, 9.4 мы столкнулись с напряженными состояниями, которые отличаются от простых состояний растяжения-сжатия и чистого

Подробнее

Виды напряженного состояния. 1. Напряженное состояние при значениях, является ОТВЕТ: 1) объемным; 2) плоским; 3) линейным; 4) чистого сдвига.

Виды напряженного состояния. 1. Напряженное состояние при значениях, является ОТВЕТ: 1) объемным; 2) плоским; 3) линейным; 4) чистого сдвига. Виды напряженного состояния 1. Напряженное состояние при значениях, является 2. Напряженное состояние элементарного объема является 3. Напряженное состояние элементарного объема, показанное на рисунке,

Подробнее

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

Подробнее

Тема 5. Напряженное состояние в точке. Лекция 5. Плоское напряженное состояние. Основные понятия.

Тема 5. Напряженное состояние в точке. Лекция 5. Плоское напряженное состояние. Основные понятия. Тема 5 Напряженное состояние в точке. Лекция 5 Плоское напряженное состояние. 5.1 Напряженное состояние в точке. 5.2 Напряжения в наклонных площадках. 5.3 Главные площадки и главные напряжения. 5.4 Экстремальные

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 4. ОБЪЕМНОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ И ТЕОРИИ ПРОЧНОСТИ

Подробнее

Тычина К.А. С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е

Тычина К.А. С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е www.tchina.pro Тычина К.А. IX С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е П о л н о е н а п р я ж е н и е в п р о и з в о л ь н о й п л о щ а д к е Совокупность напряжений для всего множества

Подробнее

ГЛАВА 10. ВЫЧИСЛЕНИЕ ГЛАВНЫХ И ЭКВИВАЛЕНТНЫХ НАПРЯЖЕНИЙ

ГЛАВА 10. ВЫЧИСЛЕНИЕ ГЛАВНЫХ И ЭКВИВАЛЕНТНЫХ НАПРЯЖЕНИЙ ГЛАВА ВЫЧИСЛЕНИЕ ГЛАВНЫХ И ЭКВИВАЛЕНТНЫХ НАПРЯЖЕНИЙ При расчете строительных конструкций нет необходимости определять напряжения по всем площадкам проходящим через данную точку а достаточно знать минимальные

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ 7 Элементы теории напряженного состояния. 1 Напряженное состояние в точке (НС)

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ 7 Элементы теории напряженного состояния. 1 Напряженное состояние в точке (НС) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 7 Элементы теории напряженного состояния 1 Напряженное состояние в точке (НС) Как было сказано ранее, НС в точке это совокупность напряжений,

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

площадке компоненты (σn и τn соответственно). Пусть S- площадь наклонной площадки, тогда равенство сил в направлении нормали запишется в виде:

площадке компоненты (σn и τn соответственно). Пусть S- площадь наклонной площадки, тогда равенство сил в направлении нормали запишется в виде: Круги Мора Рассмотрим некоторый элемент (см. рис. в системе координат главных осей. Так как оси (ось перпендикулярна плоскости рис.- главные, то касательные напряжения на площадках, перпендикулярных к

Подробнее

Лекция 3. Плоская задача теории упругости.

Лекция 3. Плоская задача теории упругости. Лекция 3 Плоская задача теории упругости. 3.1 Плоское напряженное состояние. 3. Плоская деформация. 3.3 Основные уравнения плоской задачи. 3.4 Использование функции напряжений 3.5 Решение плоской задачи

Подробнее

Упругость анизотропных материалов

Упругость анизотропных материалов Упругость анизотропных материалов А. А. Ташкинов 7 марта 2010 г. 2 Оглавление 1 Теория деформаций 7 1.1 Введение............................... 7 1.2 Малые деформации......................... 9 1.3 Малые

Подробнее

Анализ напряжённо-деформированного состояния в точке твёрдого тела

Анализ напряжённо-деформированного состояния в точке твёрдого тела МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им РЕ АЛЕКСЕЕВА»

Подробнее

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р.

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р. Векторная алгебра Аналитическая геометрия Ищанов ТР h://schowru/veor-lger-lches-geomerhml Задача Написать разложение вектора по векторам r 8 r Требуется представить вектор в виде r где числа Найдем их

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая

Подробнее

ЛЕКЦИЯ 9. Сплошная среда характеризуется наличием в любом еѐ элементарном объеме dv массы dm dv

ЛЕКЦИЯ 9. Сплошная среда характеризуется наличием в любом еѐ элементарном объеме dv массы dm dv ЛЕКЦИЯ 9 ОСНОВНЫЕ ПОНЯТИЯ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ ТЕНЗОР НАПРЯЖЕНИЙ ПОЛЕ НАПРЯ- ЖЕНИЙ СПЛОШНОЙ СРЕДЫ ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ НЕОБХОДИМЫЕ УСЛОВИЯ РАВ- НОВЕСИЯ СПЛОШНОЙ СРЕДЫ СВОЙСТВА ТЕНЗОРА НАПРЯЖЕНИЙ

Подробнее

Задачи по аналитической геометрии 2012, мех-мат. МГУ

Задачи по аналитической геометрии 2012, мех-мат. МГУ Задачи по аналитической геометрии мех-мат МГУ Задача Дан тетраэдр O Выразить через векторы O O O вектор EF с началом в середине E ребра O и концом в точке F пересечения медиан треугольника Решение Пусть

Подробнее

Анализ напряжённо-деформированного состояния в точке твёрдого тела

Анализ напряжённо-деформированного состояния в точке твёрдого тела МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. АЛЕКСЕЕВА» Кафедра

Подробнее

Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ

Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ Курс составлен на основе лекций, читающихся для студентов 3 курса МФТИ факультета аэрофизики и космических исследований. Предполагает знание основ тензорного

Подробнее

+ = ψ, то никакого разрыва напряжений

+ = ψ, то никакого разрыва напряжений Линии разрыва напряжений Итак, линия разрыва напряжений это некоторая линия (поверхность в теле, на которой напряжения терпят разрыв Выделим мысленно в теле слой толщины δ, включающий в себя линию разрыва

Подробнее

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора Задача Кузнецов Аналитическая геометрия 1-3 Написать разложение вектора по векторам : Искомое разложение вектора имеет вид: Или в виде системы: Получаем: Ко второй строке прибавим третью: Вычтем из первой

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ " (ПГУПС) А.

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

Полное касательное напряжение определяется выражением. Аналогичным образом на площадке с нормалью, составляющей угол α + 90 напряжением σ, имеем

Полное касательное напряжение определяется выражением. Аналогичным образом на площадке с нормалью, составляющей угол α + 90 напряжением σ, имеем Лекция 0 Сложное напряженное состояние Понятия о теориях прочности В теории упругости доказывается что в каждой точке любого напряженного тела можно указать три взаимно перпендикулярные площадки через

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

z удовлетворяют уравнению F ( x,

z удовлетворяют уравнению F ( x, Аналитическая геометрия в пространстве В главе будут рассмотрены некоторые линии и поверхности в пространстве Будем исходить из наглядного представление о линии и поверхности известного из курса математики

Подробнее

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ):

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ): Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

Подробнее

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны Лекция 9. Теорема о разгрузке. Итак, рассмотрен ряд теорий о поведении материала за пределами упругости. Теперь обратимся к другому вопросу: что будет, если начать разгружать образец, который уже находится

Подробнее

При определении напряжений в качестве вспомогательной единицы измерения используется также кн/см 2 (1 кн/см 2 = 10 МПа).

При определении напряжений в качестве вспомогательной единицы измерения используется также кн/см 2 (1 кн/см 2 = 10 МПа). ПРЕДИСЛОВИЕ Учебное пособие предназначено для оказания помощи студентам строительных специальностей вузов при выполнении расчётно-графических работ по сопротивлению материалов основам строительной механики

Подробнее

10. АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ

10. АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ . АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ.. ЛИНИИ ПЕРВОГО ПОРЯДКА (ПРЯМЫЕ НА ПЛОСКОСТИ... ОСНОВНЫЕ ТИПЫ УРАВНЕНИЙ ПРЯМЫХ НА ПЛОСКОСТИ Ненулевой вектор n перпендикулярный заданной прямой называется нормальным

Подробнее

Линейная алгебра Лекция 7. Векторы

Линейная алгебра Лекция 7. Векторы Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Подробнее

Лекция 2. Основы теории напряжений. Связь между напряжениями и деформациями

Лекция 2. Основы теории напряжений. Связь между напряжениями и деформациями Лекция 2. Основы теории напряжений. Связь между напряжениями и деформациями Теория напряжений описывае динамику упругих процессов. которые возникают в среде в ответ на воздействие внешних сил. Силы в теории

Подробнее

Задача 1. Рис.1.1. Решение.

Задача 1. Рис.1.1. Решение. Задача 1 Стержень квадратного поперечного сечения со стороной квадрата равной a и длиной 2l изготовлен из изотропного упругого материала с модулем упругости и коэффициентом Пуассона μ. Стержень вставляется

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Строительный факультет

МИНИСТЕРСТВО ОБРАЗОВАНИЯ НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Строительный факультет МИНИСТЕРСТВО ОБРАЗОВАНИЯ НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Чувашский государственный университет имени ИН Ульянова» Строительный

Подробнее

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2)

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2) Занятие 9 Прямая на плоскости и плоскость в пространстве На этом занятии мы будем заниматься кривыми и поверхностями, которые задаются простейшими уравнениями алгебраическими уравнениями первой степени.

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ РОСЖЕЛДОР Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ростовский государственный университет путей сообщения» (ФГБОУ ВПО РГУПС) ТВ Суворова ЭЛЕМЕНТЫ

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

x i dt + ξ α 1 ( ) ε iα = 1 2 ( vi x α + vα x i ).

x i dt + ξ α 1 ( ) ε iα = 1 2 ( vi x α + vα x i ). Тензор скоростей деформации. Чтобы замкнуть систему пяти дифференциальных уравнений, состоящую из законов сохранения, делают различные предположения о свойствах сплошной среды. Пусть за время dt вектор

Подробнее

Теория поверхностей в дифференциальной геометрии

Теория поверхностей в дифференциальной геометрии Теория поверхностей в дифференциальной геометрии Элементарная поверхность Определение Область на плоскости называется элементарной областью, если она является образом открытого круга при гомеоморфизме,

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

Лекция Дифференцирование сложной функции

Лекция Дифференцирование сложной функции Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

Подробнее

Лекция 3 Скалярное, векторное и смешанное произведение векторов

Лекция 3 Скалярное, векторное и смешанное произведение векторов Лекция 3 Скалярное, векторное и смешанное произведение векторов 1. ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1,

Подробнее

Московский государственный технический университет им. Н.Э.Баумана. Кафедра «Технологии обработки давлением» Власов А.В.

Московский государственный технический университет им. Н.Э.Баумана. Кафедра «Технологии обработки давлением» Власов А.В. Московский государственный технический университет им. Н.Э.Баумана Кафедра «Технологии обработки давлением» Власов А.В. Основы теории напряженного и деформированного состояний Учебное пособие по курсу

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3.. Напряжения Уровень оценки прочности по нагрузке отличают простота и доступность. Расчеты при этом чаще всего минимальны - требуется определить только саму нагрузку. Для

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

Лабораторная работа 5. Краткая теория

Лабораторная работа 5. Краткая теория Лабораторная работа 5 Определение модуля сдвига по крутильным колебаниям Целью работы является изучение деформации сдвига и кручения, определение модуля сдвига металлического стержня. Краткая теория Модуль

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

СТАТИКА. Тема 1. ПРОИЗВОЛЬНАЯ ПЛОСКАЯ СИСТЕМА СИЛ. Задание 1

СТАТИКА. Тема 1. ПРОИЗВОЛЬНАЯ ПЛОСКАЯ СИСТЕМА СИЛ. Задание 1 СТАТИКА Тема 1. ПРОИЗВОЛЬНАЯ ПЛОСКАЯ СИСТЕМА СИЛ Задание 1 Найти реакции связей (опор), наложенных на основное тело конструкции балку или сварной стержень. Исходные данные приведены в таблице 1.1. Схемы

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

Лекция 6. f 1 = c 1 1e 1 + c 2 1e 2, f 2 = c 1 2e 1 + c 2 2e 2. c 1 1 c 2 1 E = (e 1,e 2 ), F = (f 1,f 2 ), C =. c 1 2 c 2 2 F = EC.

Лекция 6. f 1 = c 1 1e 1 + c 2 1e 2, f 2 = c 1 2e 1 + c 2 2e 2. c 1 1 c 2 1 E = (e 1,e 2 ), F = (f 1,f 2 ), C =. c 1 2 c 2 2 F = EC. Лекция 6 1 ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1, f Векторы нового базиса можно выразить через векторы старого

Подробнее

Задания для самостоятельного решения. 5. Напишите уравнение касательной к графику функции f ( x) x 3 1в точках с абсциссами x 0 =-1 и x 0 =2

Задания для самостоятельного решения. 5. Напишите уравнение касательной к графику функции f ( x) x 3 1в точках с абсциссами x 0 =-1 и x 0 =2 Задания для самостоятельного решения. Найдите область определения функции 6x. Найдите тангенс угла наклона к оси абсцисс касательной, проходящей через точку М (;) графика функции. Найдите тангенс угла

Подробнее

Условия сохранения покоя твердого тела

Условия сохранения покоя твердого тела Лекция 3 1 Условия покоя произвольной дискретной механической системы Необходимые условия равновесия внешних сил системы. Рассмотрим дискретную систему n материальных точек. Система находится в покое,

Подробнее

В. К. Манжосов РАСЧЕТ СТЕРЖНЯ ПРИ РАСТЯЖЕНИИ-СЖАТИИ

В. К. Манжосов РАСЧЕТ СТЕРЖНЯ ПРИ РАСТЯЖЕНИИ-СЖАТИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В. К. Манжосов

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

ТЕОРИЯ УПРУГОСТИ и ПЛАСТИЧНОСТИ

ТЕОРИЯ УПРУГОСТИ и ПЛАСТИЧНОСТИ ТЕОРИЯ УПРУГОСТИ и ПЛАСТИЧНОСТИ IV семестр (-й курс, II семестр) 7 лекций, 9 практических занятий, коллоквиума. Отчѐт по самостоятельной работе. Зачѐт. ВВЕДЕНИЕ Теория упругости представляет собой раздел

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

ЛЕКЦИЯ 6. Этот факт позволяет ввести единичный вектор нормали к поверхности n, где

ЛЕКЦИЯ 6. Этот факт позволяет ввести единичный вектор нормали к поверхности n, где ЛЕКЦИЯ 6 ВТОРАЯ И ТРЕТЬЯ ФУНДАМЕНТАЛЬНЫЕ ФОРМЫ ПОВЕРХНОСТИ УРАВНЕНИЯ АУССА И КО- ДАЦЦИ КРИВЫЕ НА ПОВЕРХНОСТИ ТЕОРЕМА МЕНЬЕ ПАРАЛЛЕЛЬНЫЕ ВЕКТОРНЫЕ ПОЛЯ ТЕОРЕМА АУССА БОННЕ 34 ВТОРАЯ И ТРЕТЬЯ ФУНДАМЕНТАЛЬНЫЕ

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

p y dz p n p x dy p z a dg

p y dz p n p x dy p z a dg 2. ГИДРОСТАТИКА 2.1. Свойства гидростатического давления 2.2. Основное уравнение гидростатики 2.3. Дифференциальные уравнения равновесия жидкости 2.4. Сила давления жидкости на плоскую стенку 2.5. Сила

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1

РЕШЕНИЯ ЗАДАЧ по теме ВЕКТОРНАЯ АЛГЕБРА Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1 РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: ВПБелкин Пример Занятие Действия над векторами Построить векторы,,, где ( 4;) и ( ; ) Найти их проекции на координатные оси Решение Построим точки

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН АТЫРАУСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА КУРС ЛЕКЦИЙ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН АТЫРАУСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА КУРС ЛЕКЦИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН АТЫРАУСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА копии КУРС ЛЕКЦИЙ По дисциплине «Теория упругости и пластичности» Для специальности - Промышленно-гражданское строительство

Подробнее

14.1. Система с двумя степенями свободы

14.1. Система с двумя степенями свободы Глава 14 МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ В разделе МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ вы научитесь определять частоты малых собственных колебаний механической системы с двумя степенями свободы. Другие темы этого раздела,

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Методические указания к выполнению индивидуальных домашних заданий ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ m n называется прямоугольная табли- Матрицей размера ца

Подробнее

1. Геометрия масс (продолжение) Рис. 10.1

1. Геометрия масс (продолжение) Рис. 10.1 ЛЕКЦИЯ 10 ЭЛЛИПСОИД ИНЕРЦИИ. КИНЕТИЧЕСКИЙ МОМЕНТ И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ПРИ ВРАЩЕНИИ ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ. ДИНАМИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА. СЛУЧАЙ ЭЙЛЕРА 1. Геометрия масс (продолжение) Рис. 10.1 Выберем

Подробнее

6.1 Работа силы на перемещении

6.1 Работа силы на перемещении 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ. ТЕОРЕМА ВЗАИМНОСТИ РАБОТ ФОРМУЛА МАКСВЕЛЛА-МОРА 6.1 Работа силы на перемещении Пусть к точке приложена сила F и точка получает перемещение u по направлению действия силы

Подробнее

T T T. e 1. e 2 , T 2 + T 21 T T , T 3 + T 22 + T 23

T T T. e 1. e 2 , T 2 + T 21 T T , T 3 + T 22 + T 23 0. Главные оси симметрического тензора -го ранга В 8 было показано, что для любого тензора второго ранга и для любого направления μ (единичного вектора) можно поставить в соответствие вектор-проекцию pr

Подробнее

Задачи с параметрами. (10 11 классы) Параметры это те же числа, просто заранее не известные. 1. Линейные уравнения и неравенства с параметрами

Задачи с параметрами. (10 11 классы) Параметры это те же числа, просто заранее не известные. 1. Линейные уравнения и неравенства с параметрами Задачи с параметрами (10 11 классы) Параметры это те же числа, просто заранее не известные 1 Линейные уравнения и неравенства с параметрами Линейная функция: - уравнение прямой с угловым коэффициентом

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgry0 0.5 setgry1 1 Лекция 10 ЛИНИИ И ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА 1. Приведение уравнения кривой второго порядка к каноническому виду Определение 1. Линией второго порядка на плоскости называется

Подробнее

МЕХАНИКА СПЛОШНОЙ СРЕДЫ

МЕХАНИКА СПЛОШНОЙ СРЕДЫ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет МЕХАНИКА СПЛОШНОЙ СРЕДЫ Методические

Подробнее

5. Динамика вращательного движения твердого тела

5. Динамика вращательного движения твердого тела 5. Динамика вращательного движения твердого тела Твердое тело это система материальных точек, расстояния между которыми не меняются в процессе движения. При вращательном движении твердого тела все его

Подробнее

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством Определители Определитель второго порядка задается равенством Определитель третьего порядка задается равенством Свойства определителей Определитель равен нулю если он содержит две одинаковые или пропорциональные

Подробнее

a 2 - малая полуось эллипса, b 2 - большая полуось эллипса. Фокусы эллипса лежат на прямой, параллельной оси Oy, т.к. b a.

a 2 - малая полуось эллипса, b 2 - большая полуось эллипса. Фокусы эллипса лежат на прямой, параллельной оси Oy, т.к. b a. 1) Привести уравнение кривой второго порядка x 4x y 0 к каноническому виду и найти точки пересечения её с прямой x y 0. Выполните графическую иллюстрацию полученного решения. x 4x y 0 x x 1 y 0 x 1 y 4

Подробнее

p = λ x x x x (. (7.3) 3xx

p = λ x x x x (. (7.3) 3xx 7 НЕКОТОРЫЕ КЛАССИЧЕСКИЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ 7 Задача о всестороннем равномерном давлении на тело Одна из простейших задач теории упругости это задача о теле произвольной формы, нагруженном всесторонним

Подробнее

МАТЕМАТИКА ЕГЭ 2011, ЗАДАЧИ С2 (лекция для учителей в издательстве «Бином» ) Замечания и пожелания направляйте по адресу:

МАТЕМАТИКА ЕГЭ 2011, ЗАДАЧИ С2 (лекция для учителей в издательстве «Бином» ) Замечания и пожелания направляйте по адресу: МАТЕМАТИКА ЕГЭ 0, ЗАДАЧИ С (лекция для учителей в издательстве «Бином» 000) Замечания и пожелания направляйте по адресу: prokof@nderu Различные методы решения задач на определение углов в пространстве

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

Тексты лекций «Теория кривых второго порядка»

Тексты лекций «Теория кривых второго порядка» ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ КАФЕДРА Математика и финансовые приложения Е.С. Волкова Тексты лекций «Теория кривых второго порядка» Москва 00 Аннотация Курс лекций содержит

Подробнее

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы)

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) 1 Классификация внутренних силовых факторов

Подробнее

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее