Локальная теорема Коши Пикара.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Локальная теорема Коши Пикара."

Транскрипт

1 Локальная теорема Коши Пикара. Теорема (о существовании и единственности локального решения). Пусть дана задача Коши x = f(t, x) x(t 0 ) = x 0, (1) где правая часть f(t, x) определена и непрерывна в прямоугольнике = {(t, x) R 2 : t t 0 a, x x 0 } и удовлетворяет в условию Липшица по переменной x, т.е. L > 0: x 1, x 2 [ + x 0 ; x 0 + ], t[t 0 a; t 0 + a] f(t, x 1 ) f(t, x 2 ) L x 1 x 2, то на отрезке t 0 d t t 0 + d, где d = min {a; M }, M = max (t,x) f(t, x), существует единственное решение задачи (1)б к которому равномерно сходятся при n приближения x n, определяемые формулами, x 0 = x(t 0 ), t x n+1 = x 0 + f(τ; x n (τ))dτ. t 0 Доказательство: аналогичное доказательству глобальной теоремы. Пример 1. Указать какой- нибудь отрезок, на котором существует решение с задачи Коши x = t + x 3 x(0) = 0. Решение: t 0 = x 0 = 0, f(t; x) = t + x 3. Функция f(t, x) непрерывна в любом прямоугольнике = {(t, x) R 2 : t a, x }. Проверим выполнение условия Липшица: t + x 1 3 t x 2 3 = x 1 3 x x 1 x 2. Последнее неравенство получено при помощи формулы конечных приращений (теорема Лагранжа) f(a) f() f (c) a. Т.е. условие Липшица выполняется (L = 3 2 ). Следовательно, на отрезке [ d; d], где d = min {a; M }, M = max (t,x) П f(t, x) = a + 3

2 существует единственное решение данной задачи. Найдем число d = min {a; a+ 3}. Ясно, что если на каком-то сегменте I существует единственное решение, то оно существует и на каждом меньшем сегменте, вложенном в I. Отсюда следует, что желательно найти как можно больший отрезок I, т.е. max min {a; ψ(a) = a возрастает при a 0, а g(a) = при условии, что ψ(a) = g(a), т.е. a = a+ a+ a+ 3 убывает, то max min {a; 3. (*) 3}. Т.к. функция a+ 3} достигается Взяв производную от правой части (*) по переменной, найдем, что при 3 = a 2 достигается максимум a, который легко вычислить, подставив a = 2 2 в (*). 2 3 = = = a = ,66. Таким образом, можно гарантировать существование и единственность решения данной задачи на сегменте 0,66 t 0,66. Локальная теорема Коши-Пикара дает достаточные условия разрешимости задачи Коши для широкого класса ОДУ, однако прямая проверка выполнения условия Липшица в некотором (часто искусственном) цилиндре не всегда удобна. Сформулируем еще одну локальную теорему существования и единственности с более простым условием. Теорема. Пусть правая часть уравнения x = f(t, x) определена и непрерывна вместе со своими частными производными f i x j в некоторой области G R 2. Тогда (t 0, x 0 ) G существует единственное (локальное) решение системы (1) с начальными данными x(t 0 ) = x 0. Замечание. Локальные теоремы существования и единственности справедливы и для систем ОДУ, т.е. x = (x 1 (t),, x n (t)). Для проверки разрешимости задачи Коши для линейных систем можно, безусловно, пользоваться предыдущими теоремами, однако, можно доказать и более сильный результат.

3 Теорема. Задача Коши x = A(t)x + B(t), x(t 0 ) = x 0, где все элементы матрицы A(t) = (a i,j (t)) и правой части B(t) = ( i (t)) непрерывны на отрезке [t 1 ; t 2 ], где t 0 [t 1 ; t 2 ], имеет единственное решение φ с областью определения D(φ) = [t 1 ; t 2 ]. Сведение уравнения n го порядка к нормальной системе. Теорема существования и единственности для уравнений n го порядка. Рассмотрим постановку задачи Коши для уравнений n го порядка y (n) = f(t; y; y ; y" ; y (n) ). (1) Покажем, что уравнение (1) эквивалентно некоторой нормальной системе. Введем функции Тогда x 1 = y, x 2 = y, y 3 = y",, x n = y (n 1). (2) x 1 = x 2 x 2 = x 3 x n = y (n) = f(t; x 1 ; x 2 ; ; x n ), (3) Где первые (n 1) уравнений являются следствиями (2), а последнее получается из (1) и (2). Покажем, что (1) эквивалентно (3), т.е. каждому решению уравнения (1) соответствует некоторое решение системы (3) и наоборот. Пусть ψ(t) решение (1). Тогда ψ(t) - n-раз дифференцируема. Построим вектор функцию φ(t) = (ψ(t), ψ (t),, ψ (n 1) (t)), которая, как легко видеть, является решением (3). Пусть есть решение φ(t) = (φ 1 (t); φ 2 (t); ; φ(t)). Но тогда, в силу первых n 1 уравнений системы (3), имеем φ 2 = φ 1, φ 3 = φ 2 = φ 2, φ n = φ 1 (n 1). Т.о., во- первых, φ 1 C n, далее

4 φ = (φ 1 (t), φ 1 (t),..., φ 1 (n 1) (t)) и, наконец ψ = φ 1 - является решением (1), в силу последнего уравнения системы. Таким образом, приходим к определению Определение. Задачей Коши для уравнения (1) называется задача нахождения его решения, удовлетворяющего начальным данным y(t 0 ) = y 0, y (t 0 ) = y 1,, y (n 1) (t 0 ) = y n 1. (4) Теорема. Пусть правая часть уравнения (1) непрерывна вместе со своими частными производными f (k = 1,2,, n) в некоторой области (k) y G R (n+1), тогда задача Коши (1),(4) имеет единственное решение. Пример. Применение теоремы Коши - Пикара для системы ДУ. ДУ Найти отрезок, на котором существует единственное решение системы dx = dt y2 dy = dt x2. x(0) = 1 { y(0) = 2 Решение: t 0 = 0, x 0 = 1, y 0 = 2, f 1 = y 2, f 2 = x 2. f 1 и f 2 непрерывны в области Ω = {(t, x, y) R 3 : t a; (x 1) 2 + (y 2) 2 } И имеют в ней ограниченные частные производные f 1 x = 0, f 1 y = 2y, f 2 x = 2x, f 1 y = 0. Следовательно, на отрезке h t h, где h = min {a; M }, задачи. M = max (t;x;y Ω) f f 2 2, существует единственное решение рассматриваемой Так как M = max x 4 + y 4 (1 + ) 4 + (2 + ) 4 2(2 + ) 2, то из условий

5 a = M 2(2 + ), 2 ( (2 + ) 2) = 0 Находим, что = 2 и a 2 = 2 > 0,1. Следовательно, на M(2) отрезке 0,1 t 0,1 существует единственное решение данной задачи.


5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1)

5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1) Лекция 5 5 Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ Постановка задачи Задача Коши для нормальной системы ОДУ x = f (, x), () состоит в отыскании решения x =

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

2 Формулировка и доказательство принципа максимума Понтрягина для задачи со свободным концом

2 Формулировка и доказательство принципа максимума Понтрягина для задачи со свободным концом 2 Формулировка и доказательство принципа максимума Понтрягина для задачи со свободным концом Приведем формулировку и доказательство принципа максимума Понтрягина для следующего частного случая задачи оптимального

Подробнее

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных.

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных. ЛЕКЦИЯ Экстремум функции нескольких переменных Экстремум функции нескольких переменных Необходимые и достаточные условия существования экстремума Точка M, 0) называется точкой минимума максимума) функции

Подробнее

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий.

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий. Лекция 4 3 Непрерывная зависимость решения задачи Коши от параметров и начальных условий Постановка задачи Простейшим примером параметра, от которого зависит решение задачи Коши = f ( xy, ), yx ( ) = y

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

Дифференциал функции y = f(x) зависит от х и является главной частью приращения х. Также можно воспользоваться формулой:

Дифференциал функции y = f(x) зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: 2.2.7. Применение дифференциала к приближенным вычислениям. Дифференциал функции y = зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: dy d Тогда абсолютная погрешность:

Подробнее

Об одном подходе к исследованию линейной краевой задачи для систем интегро-дифференциальных уравнений с нагружениями

Об одном подходе к исследованию линейной краевой задачи для систем интегро-дифференциальных уравнений с нагружениями Д.С. Джумабаев, К.И. Усманов Об одном подходе к исследованию линейной... 42 Об одном подходе к исследованию линейной краевой задачи для систем интегро-дифференциальных уравнений с нагружениями Д.С. Джумабаев,

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

1 о. Определение асимптотически устойчивого решения. Рассмотрим нормальную систему дифференциальных уравнений в векторной форме (1)

1 о. Определение асимптотически устойчивого решения. Рассмотрим нормальную систему дифференциальных уравнений в векторной форме (1) 29. Асимптотическая устойчивость решений систем обыкновенных дифференциальных уравнений, область притяжения и методы ее оценки. Теорема В.И. Зубова о границе области притяжения. В.Д.Ногин 1 о. Определение

Подробнее

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова.

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова. 8 Устойчивость решений систем обыкновенных дифференциальных уравнений Прямой метод Ляпунова ВДНогин 1 о Введение Для того чтобы можно было поставить задачу об устойчивости, необходимо располагать объектом,

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

1. Интегрирование системы дифференциальных уравнений методом исключения переменных

1. Интегрирование системы дифференциальных уравнений методом исключения переменных Интегрирование системы дифференциальных уравнений методом исключения переменных Один из основных методов интегрирования системы дифференциальных уравнений заключается в следующем: из уравнений нормальной

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0 6 ( ) Получаем, что HP =. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. В данном случае стационарная точка P ( ) ; является точкой локального ми- Δz > P O & P : z = z =. δ

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

Нелинейные краевые задачи

Нелинейные краевые задачи МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им МВЛомоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т АБ Васильева НН Нефедов Нелинейные краевые задачи (дополнительные разделы к курсу лекций «Дифференциальные уравнения»)

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-Net.Ru Общероссийский математический портал Б. Г. Гребенщиков, Построение почти периодических решений для одной системы с линейным запаздыванием, Сиб. матем. журн., 216, том 57, номер 5, 112 12 DOI:

Подробнее

ЛЕКЦИЯ 2 Простейший случай теоремы Пикара. S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью

ЛЕКЦИЯ 2 Простейший случай теоремы Пикара. S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью ЛЕКЦИЯ 2 Простейший случай теоремы Пикара S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью Теорема 1. Пусть B банахово пространство с нормой.. Пусть функция

Подробнее

Теорема существования и единственности решения дифференциального уравнения

Теорема существования и единственности решения дифференциального уравнения Теорема существования и единственности решения дифференциального уравнения А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В этом параграфе мы докажем теорему, которой пользовались в

Подробнее

Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина.

Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т А.Б. Васильева, Н.Н. Нефедов Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина. (некоторые разделы

Подробнее

ЛЕКЦИЯ 14. Численные методы нелинейного программирования. 3. Метод Такахаши (дуализация/градиентный

ЛЕКЦИЯ 14. Численные методы нелинейного программирования. 3. Метод Такахаши (дуализация/градиентный ЛЕКЦИЯ 14 Численные методы нелинейного программирования 1. Градиентный метод 2. Теоремы сходимости 3. Метод Такахаши (дуализация/градиентный метод) -1- Численные методы НЛП Задача поиска безусловного минимума:

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Работа посвящена моделированию динамических систем с использованием элементов

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

ЛЕКЦИЯ 3. Линейное программирование. 3. Теория двойственности линейного программирования

ЛЕКЦИЯ 3. Линейное программирование. 3. Теория двойственности линейного программирования ЛЕКЦИЯ 3 Линейное программирование 1. Базисно допустимые решения 2. Критерий разрешимости 3. Теория двойственности линейного программирования -1- ЛП: понятие базисного допустимого решения (б.д.р.). Базис

Подробнее

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости В.В. Жук, А.М. Камачкин Дифференцируемость функций многих переменных. Дифференцируемость функции в точке. Достаточные условия дифференцируемости в терминах частных производных. Дифференцирование сложной

Подробнее

3 Конечномерные гладкие задачи с равенствами

3 Конечномерные гладкие задачи с равенствами 3 Конечномерные гладкие задачи с равенствами и неравенствами В этом параграфе даются необходимые и достаточные условия экстремума в гладкой конечномерной задаче с ограничениями типа равенств и неравенств.

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

ДУ 2курс 4 семестр 1 задание

ДУ 2курс 4 семестр 1 задание . ДУ курс семестр задание. Постановка задачи Коши для нормальной системы дифференциальных уравнений.. Выяснить, при каких начальных условиях существует единственное решение уравнения y y y.. Решить уравнения,

Подробнее

1 Экспонента линейного оператора.

1 Экспонента линейного оператора. 134 1. ЭКСПОНЕНТА ЛИНЕЙНОГО ОПЕРАТОРА. 1 Экспонента линейного оператора. 1.1 Напоминание: геометрическая формулировка основной задачи ОДУ. Напомним, что векторное поле это отображение, которое каждой точке

Подробнее

Семинар 5. Частные производные

Семинар 5. Частные производные Семинар 5 Частные производные О. Пусть M 0 (x 1,, x m ) внутренняя точка D(f). Частной производной (ч.п.) функции f(x 1,, x m ) по переменной x k в точке M 0 называется предел f xk (M 0 ) = f (M x 0 )

Подробнее

бесконечно малой величиной более высокого порядка малости по сравнению с ρ n ), т.е. можно представить его в форме Пеано ( ) ( )

бесконечно малой величиной более высокого порядка малости по сравнению с ρ n ), т.е. можно представить его в форме Пеано ( ) ( ) 55 является при бесконечно малой величиной более высокого порядка малости по сравнению с ρ n (, ), где ρ ( ) + ( ), те можно представить его в форме Пеано n R, ρ Пример Записать формулу Тейлора при n с

Подробнее

ЛЕКЦИЯ 4В Теорема Коши. 1. Определения. Рассмотрим задачу Коши { (1)

ЛЕКЦИЯ 4В Теорема Коши. 1. Определения. Рассмотрим задачу Коши { (1) ЛЕКЦИЯ 4В Теорема Коши В этой лекции будет доказана теорема о существовании и единственности решения задачи Коши. 1. Определения Рассмотрим задачу Коши { y = f(t, y), y( ) = y 0. (1) Пусть функция f(t,

Подробнее

1. Метод итераций. ( x ) x = ϕ. (5.1) Метод отыскания приближенных значений корня уравнения (5.1) с помощью формулы xn

1. Метод итераций. ( x ) x = ϕ. (5.1) Метод отыскания приближенных значений корня уравнения (5.1) с помощью формулы xn Метод итераций Пусть дано уравнение с одной неизвестной ( (5 Метод отыскания приближенных значений корня уравнения (5 с помощью формулы ( называют просто методом итерации При решении таких уравнений возникает

Подробнее

Численные методы. 1. Разностный метод Эйлера решения задачи Коши для дифференциальных уравнений.

Численные методы. 1. Разностный метод Эйлера решения задачи Коши для дифференциальных уравнений. Глава 9. Численные методы. Лекция 4. Разностный метод Эйлера решения задачи Коши для дифференциальных уравнений.. Дифференциальная и разностная задачи Эйлера. Определение. Дифференциальной задачей Эйлера

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Лекция 15. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

Лекция 15. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ Лекция 5. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ На практике существуют задачи оптимизации, в которых критерий качества зависит от функции, определить которую необходимо

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

Лекции 19, Локальные экстремумы функции многих переменных

Лекции 19, Локальные экстремумы функции многих переменных Лекции 9 Локальные экстремумы функции многих переменных Определение Пусть функция многих переменных f f ( задана на ( некотором множестве D и ( некоторая точка этого множества Точка называется точкой локального

Подробнее

Математический анализ Лекция 4.6

Математический анализ Лекция 4.6 Московский Государственный Технический Университет им. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Математический анализ Лекция 4.6 к.ф.-м.н. Семакин А.Н. Математический анализ, Лекция

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Принцип максимума Понтрягина Задача оптимального управления f(t, x, u): [t 0, t 1 ] R n R r R

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

ДВА МЕТОДА В ОБРАТНОЙ ЗАДАЧЕ ОПРЕДЕЛЕНИЯ ПАМЯТИ А. Л. Бухгейм, Н. И. Калинина, В. Б. Кардаков

ДВА МЕТОДА В ОБРАТНОЙ ЗАДАЧЕ ОПРЕДЕЛЕНИЯ ПАМЯТИ А. Л. Бухгейм, Н. И. Калинина, В. Б. Кардаков Сибирский математический журнал Июль август, 2. Том 1, УДК 517.2 ДВА МЕТОДА В ОБРАТНОЙ ЗАДАЧЕ ОПРЕДЕЛЕНИЯ ПАМЯТИ А. Л. Бухгейм, Н. И. Калинина, В. Б. Кардаков Аннотация: Доказаны глобальная сходимость

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

Лекция 10. Метод Галеркина в сочетании с методом монотонности.

Лекция 10. Метод Галеркина в сочетании с методом монотонности. Лекция 10. Метод Галеркина в сочетании с методом монотонности. Корпусов Максим Олегович Курс лекций по нелинейному функциональному анализу 28 октября 2011 г. Постановка задачи. div( u p 2 u) = f(x), u

Подробнее

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие Министерство общего и профессионального образования Российской Федерации Санкт-Петербургский государственный технический университет Аксёнов АП СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

Подробнее

причем а bтогда для Пусть Тогда а b = а x n + x n b а x n + x n b <ε+ε=2ε=

причем а bтогда для Пусть Тогда а b = а x n + x n b а x n + x n b <ε+ε=2ε= 1. Сформулируйте и докажите теорему о единственности предела сходящейся последовательности. Теорема (о единственности предела). Последовательность может иметь не более одного предела. Доказательство. Пусть

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Основные определения Нормальная система дифференциальных уравнений называется линейной если функции f f K f линейны относительно неизвестных функций Из этого

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

1 Организационно-методический раздел

1 Организационно-методический раздел Программа курса Обыкновенные дифференциальные уравнения 3-й и 4-й семестры, 2012-2013 учебный год Основной курс для студентов II курса, I потока Составил доцент, к.ф.-м.н. Г. А. Чумаков 1 Организационно-методический

Подробнее

Интегралы и дифференциальные уравнения. Лекция 22

Интегралы и дифференциальные уравнения. Лекция 22 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция Нормальные

Подробнее

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Лекция 9 ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Понятие экстремума функции многих переменных Некоторые сведения о квадратичных формах 3 Достаточные условия экстремума Понятие экстремума функции многих переменных

Подробнее

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды ЛЕКЦИИ 8 9 Теорема Хилле Иосиды S 3. Определение и элементарные свойства максимальных монотонных операторов Всюду на протяжении этих двух лекций символом H обозначено гильбертово пространство со скалярным

Подробнее

Аннотация: Установлены связи между решениями широкого класса систем обыкновенных

Аннотация: Установлены связи между решениями широкого класса систем обыкновенных Сибирский математический журнал Январь февраль, 26. Том 47, УДК 57.9+57.929 ОБ ОДНОМ КЛАССЕ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ОБ УРАВНЕНИЯХ С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ Г. В. Демиденко, В. А. Лихошвай,

Подробнее

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1 В.В. Жук, А.М. Камачкин 5 Функциональные последовательности и ряды. Равномерная сходимость, возможность перестановки предельных переходов, интегрирование и дифференцирование рядов и последовательностей.

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

1.Свойства определенного интеграла. 1.Если подынтегральная функция равна единице, то

1.Свойства определенного интеграла. 1.Если подынтегральная функция равна единице, то ЛЕКЦИЯ N4. Свойства определенного интеграла. Формула Ньютона-Лейбница. Теорема о среднем..свойства определенного интеграла.....теорема о среднем значении.....производная интеграла по переменной верхней

Подробнее

1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте.

1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте.. Теорема о промежуточных значениях Теорема. (Больцано-Коши) Пусть функция f непрерывна

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

ЛЕКЦИЯ 5 Пример глобальной разрешимости

ЛЕКЦИЯ 5 Пример глобальной разрешимости ЛЕКЦИЯ 5 Пример глобальной разрешимости S 9. Применение теоремы Пикара в сочетании с методом априорных оценок: доказательство глобальной разрешимости одной начально-краевой задачи 1. Классическая постановка

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

О ЛОКАЛЬНО ЯВНОЙ МОДЕЛИ ЛЮФТА

О ЛОКАЛЬНО ЯВНОЙ МОДЕЛИ ЛЮФТА УДК 579353 О ЛОКАЛЬНО ЯВНОЙ МОДЕЛИ ЛЮФТА И Н Прядко Воронежский государственный университет В статье предлагается новая модель люфта записываемая в виде локально явного уравнения В отличие от известной

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих Лекция НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА Определение и сходимость несобственных интегралов, зависящих от параметра Признаки равномерной сходимости несобственных интегралов, зависящих от параметра

Подробнее

Уравнения первого порядка

Уравнения первого порядка Глава 1. Введение Лекция 1 1. Понятие дифференциального уравнения. Основные определения. 2. Общее решение дифференциального уравнения, общий интеграл. 3. Постановка основных задач для обыкновенных дифференциальных

Подробнее

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости ГЛАВА УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ В этой главе исследуется устойчивость самого простого класса дифференциальных систем линейных систем В частности, устанавливается, что для линейных систем с постоянными

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Теория полугрупп. Полугруппы линейных операторов

Теория полугрупп. Полугруппы линейных операторов Теория полугрупп Полугруппы линейных операторов Пример Рассмотрим обыкновенное дифференциальное уравнение с постоянными коэффициентами dx ax x x Как решить эту начальную задачу или, другими словами, задачу

Подробнее

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1 3 2.2.2 Метод сжимаающих отображений Аналогичные рассуждения при определенных условиях справедливы и в общем случае. Приведем условия, при которых существует единственное решение (y(), z()) Y M задачи

Подробнее

6.1 Определения, предварительные сведения

6.1 Определения, предварительные сведения 6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

Подробнее

Лекция 13. Методы решения равновесных задач и вариационных неравенств

Лекция 13. Методы решения равновесных задач и вариационных неравенств Лекция 13. Методы решения равновесных задач и вариационных неравенств Вспомним основные определения равновесных задач и вариационных неравенств. Пусть D R n - непустое замкнутое выпуклое множество. Определение

Подробнее

4. Дифференцируемость функции многих переменных

4. Дифференцируемость функции многих переменных 4. Дифференцируемость функции многих переменных 4.1. Линейное нормированное пространство Пусть E линейное пространство над полем вещественных чисел, то есть E множество, на котором определены операция

Подробнее

Аналитические решения экстремальных задач для уравнения Лапласа

Аналитические решения экстремальных задач для уравнения Лапласа Дальневосточный математический журнал. 214. Том 14. 2. C. 231 241 УДК 517.95 MSC21 35J5 c A. A. Илларионов, Л. В. Илларионова 1 Аналитические решения экстремальных задач для уравнения Лапласа Представлены

Подробнее

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1,

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1, Глава Экстремумы функции двух переменных Экстремум функции двух переменных При решении многих экономических задач приходится вычислять наибольшее и наименьшее значения В качестве примера рассмотрим задачу

Подробнее

Лекция 9 СЛАБЫЙ ПРИНЦИП МАКСИМУМА. 1. Слабый принцип максимума в случае ограниченного решения

Лекция 9 СЛАБЫЙ ПРИНЦИП МАКСИМУМА. 1. Слабый принцип максимума в случае ограниченного решения Лекция 9 СЛАБЫЙ ПРИНЦИП МАКСИМУМА 1. Слабый принцип максимума в случае ограниченного решения Рассмотрим эллиптическое уравнение с переменными коэффициентами следующего вида: Lu(x) def a ij (x)u xi x j

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

ГЛАВА 3 (продолжение). Функции случайных величин. Характеристическая функция.

ГЛАВА 3 (продолжение). Функции случайных величин. Характеристическая функция. Оглавление ГЛАВА 3 продолжение. Функции случайных величин. Характеристическая функция... Функция одного случайного аргумента.... Основные числовые характеристики функции случайного аргумента.... Плотность

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

Глава 10. Экстремумы функций нескольких переменных

Глава 10. Экстремумы функций нескольких переменных Глава Экстремумы функций нескольких переменных Локальные экстремумы функций двух переменных Условные экстремумы Функция z f ) имеет максимум минимум) в точке M если можно найти такую окрестность точки

Подробнее

5. Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных

5. Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных Величина называется функцией переменных величин n если каждой точке М n принадлежащей некоторому множеству X поставлено

Подробнее

1. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы., 1 1

1. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы., 1 1 ЛАБОРАТОРНАЯ РАБОТА ОБРАТНЫЕ ОПЕРАТОРЫ. СХОДИМОСТЬ В L(, ). О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы. Определение. Пусть, линейные пространства и (, ). Оператор : называется правым обратным к оператору

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Необходимые и достаточные условия второго порядка в простейшей вариационной задаче Необходимые

Подробнее

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с "малым" λ.

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с малым λ. ТЕМА 4 Принцип сжимающих отображений Метод последовательных приближений для уравнения Фредгольма -рода с "малым" λ Основные определения и теоремы Пусть D оператор вообще говоря нелинейный действующий D:

Подробнее

Задачей Лагранжа называется следующая экстремальная задача

Задачей Лагранжа называется следующая экстремальная задача 1 Задача Лагранжа Все задачи, изученные нами в предыдущих пунктах, являются частными случаями или могут быть сведены к задаче (мы сформулируем ее чуть позже), поставленной Лагранжем в сочинении Аналитическая

Подробнее

Лекция 4. Вариационные методы. Полуограниченные функционалы.

Лекция 4. Вариационные методы. Полуограниченные функционалы. Лекция 4. Вариационные методы. Полуограниченные функционалы. Корпусов Максим Олегович Курс лекций по нелинейному функциональному анализу 19 сентября 212 г. Обозначения пусть B это некоторое банахово пространство

Подробнее

Тематическая лекция 4 ПРОИЗВОДНАЯ ФРЕШЕ И ЭКСТРЕМУМ ФУНКЦИОНАЛОВ. 1. Производная Фреше операторов

Тематическая лекция 4 ПРОИЗВОДНАЯ ФРЕШЕ И ЭКСТРЕМУМ ФУНКЦИОНАЛОВ. 1. Производная Фреше операторов Тематическая лекция 4 ПРОИЗВОДНАЯ ФРЕШЕ И ЭКСТРЕМУМ ФУНКЦИОНАЛОВ В этой лекции мы напомним определение производной Фреше и получим выражения для производных Фреше некоторых важных функционалов и операторов,

Подробнее

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ].

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ]. Лекция 8 Определённый интеграл Определенный интеграл Римана Пусть f ( ) некоторая функция, определенная на отрезке [, ] Произведем разбиение R отрезка [, ] на п частей: = < 1 < K < n = Выберем на каждом

Подробнее