Примеры решения задач.

Размер: px
Начинать показ со страницы:

Download "Примеры решения задач."

Транскрипт

1 Примеры решения задач Пример 6 Один конец тонкого однородного стержня длиной жестко закреплен на поверхности однородного шара так, что центры масс стержня и шара, а также точка крепления находятся на одной прямой Массы шара и стержня равны, а радиус шара в раза меньше длины стержня Определить период малых колебаний этой системы относительно горизонтальной оси, проходящей перпендикулярно стержню через точку, удаленную на четверть длины стержня от его свободного конца Дано: m m R Решение: Система «шар+стержень» представляет собой физический маятник, период малых колебаний которого определяется выражением T π I m g C, ()

2 T? Масса системы где I момент инерции системы относительно оси подвеса, проходящей через точку подвеса т О перпендикулярно стержню (Рис 36), m масса системы, C центра тяжести системы до оси подвеса m m + m m () расстояние от Момент инерции I системы относительно оси подвеса равен сумме моментов инерций стержня I I относительно этой оси: Для нахождения I I I + I (3) и I I C + воспользуемся теоремой Штейнера: I ma, (5) I C + I ma, () и шара m I C где момент инерции стержня относительно оси, проходящей через его центр масс (т С )

3 перпендикулярно стержню (Рис 36); O C C a a a C y y Рис 36 проходящей через т С ; 0 y y C расстояние между осью подвеса и параллельной ей осью, mr I C 5 момент инерции шара относительно оси, проходящей через его центр масс (т С );

4 3 a R расстояние между осью подвеса и параллельной ей осью, проходящей через т С (по R условию ) С учетом этого и равенства масс стержня и шара m m m m 7m I и (6) mr m m m I + m + m выражения () и (5) принимают вид (7) Подставив (6) и (7) в (3), находим момент инерции системы относительно оси подвеса: 7m m 8m I (8) Так как центр тяжести и центр масс системы совпадают, то расстояние ac от центра тяжести системы до оси подвеса равно координате yc центра масс системы Согласно определению центра масс системы:

5 + m y + m y ma + ma a + a 5 C y C m + m m 8 (9) Период малых колебаний системы получим, подставив выражения (), (8) и (9) в формулу (): 8m 8 8 T π π 0 m g 5 300g 8 T π Ответ: 300g

6 Пример 7 Частица массой 0 г совершает колебания вдоль оси Ox по закону 5π x( t) 0,cos t 6 (м) Определить период колебаний частицы и энергию ее колебаний Найти в момент времени 0, с проекцию вектора скорости и проекцию упругой силы Дано: m 0 г 0 кг 5π x( t) 0,cos t 6 (м) t 0, с ) T? Решение: Закон движения частицы, совершающей гармонические колебания вдоль оси Ox, имеет вид x( t) cos( ω 0t + α 0 ) Сравнивая этого уравнение с заданным законом движения, получаем, что амплитуда смещения равна ) W? 3) υ x ( t )? А 0, м, 5π ω 0 собственная циклическая частота колебаний составляет 6 рад/с,

7 ) F x ( t )? а начальная фаза колебаний α 0 0 ) Период колебаний T найдем из его связи с собственной циклической частотой ω 0 : π π 6 T, ω0 5π (с) ) Энергия колебаний W частицы равна максимальному значению потенциальной энергии W W p max где коэффициент упругости, p W max : Коэффициент упругости, масса частицы m и собственная циклическая частота связаны соотношением ω 0 m,

8 откуда mω 0, тогда энергия колебаний W частицы равна mω W 0 Подставим числовые значения и вычислим: 3) Зависимость υ x (t) времени: 0 W 5 π 0,0 36, (Дж),37 (мдж) проекции на ось Ox скорости частицы от времени найдем как производную смещения x по d x υ x ( t) ω0 sin( ω0t) dt, тогда в момент времени t проекция вектора скорости равна

9 υ x ( t) ω0 sin( ω0 t) Подставим числовые значения и вычислим: 5π 5π π π 3, 3 υ x ( t ) 0, sin 0, sin ,5 (м/с) ) Зависимость проекции на ось Ox силы упругости F x (t) от времени при гармонических колебаниях имеет вид F x ( t) x( t) cos( ω0t) mω0 cos( ω0t), тогда в момент времени t проекция силы упругости равна F x ( t) mω0 cos( ω0 t) Подставим числовые значения и вычислим: F x ( t 5π 36 5π 5 0 π 0, cos 0, 6 36 π 5 0 3, cos 3 36 ) 0 6, (Н) 6,85 (мн)

10 T Ответ: ) π, ω 0 с; mω W ) 0,37 мдж; υ x ( t) ω0 sin( ω0 t) 3) 0,5 м/с; ) F x ( t) mω0 cos( ω0 t) 6,85 мн Пример 8 Азот (N ) находится в равновесном состоянии, при котором средняя кинетическая энергия поступательного движения одной его молекулы составляет 6, 0 Дж Определить: ) среднюю кинетическую энергию вращательного движения молекулы; ) среднюю энергию теплового движения молекулы; 3) среднюю квадратичную скорость молекулы Молекула жесткая

11 Дано: i 5 Решение: Согласно закону о равном распределении средней энергии по степеням W пост ) W вращ ) W? 3) υ кв? 6, 0 Дж? свободы в состоянии теплового равновесия на каждую степень свободы молекулы приходится в среднем одинаковая энергия, равная T/, где постоянная Больцмана, Т абсолютная температура газа Для двухатомной молекулы с жесткой связью между атомами общее число степеней свободы i 5, из них число степеней свободы поступательного движения движения i вращ Тогда средняя кинетическая энергия поступательного движения молекулы: W пост i пост T i пост 3 3 T ; () и число степеней вращательного средняя кинетическая энергия вращательного движения молекулы:

12 W iвращ T T T ; () вращ средняя энергия теплового движения молекулы: i 5 W T T (3) W пост T Из уравнения () выразим 3 и, подставив в уравнение (), получим выражение для средней кинетической энергии вращательного движения молекулы: () W вращ W пост 3

13 Подставим числовые значения: W вращ 6, 0 3, 0 (Дж) Подставив () в уравнение (3), получим выражение для средней энергии теплового движения молекулы: 5 W пост 5 W W 3 3 Подставим числовые значения: W 5 6, 0 3 пост 0,35 0 (Дж) Средняя квадратичная скорость υкв молекулы массой m0 газа, находящегося при температуре Т, равна υ кв 3T m 0 (5)

14 Массу m 0 одной молекулы можно выразить через молярную массу М этого газа: m 0 M N где N 6,0 0 3 моль постоянная Авогадро, (6) В «Основных физических константах и величинах» находим значение молярной массы M азота (N ) (M равна произведению относительной молекулярной массы М кг/моль M 3 r 8 азота на множитель 0 кг/моль): Подставив в (5) выражения (6) и (), выражение для средней квадратичной скорости молекулы примет вид: υ кв 3T N M Подставим числовые значения: 3 N M W пост 3 N W M пост υ кв 3 6,0 0 6, (м/с)

15 W W вращ Ответ: ) 3 W пост 5 W ) 3 N W υкв 3) M пост, 0 Дж; 0,35 0 Дж; пост 57 м/с

16 p p 3 p p 0 Рис 37 Пример 9 Идеальный двухатомный (с жесткой связью) газ находится под давлением p 00 кпа, занимая при этом объем 00 л Над газом последовательно проводят следующие процессы: изотермическое сжатие до объема 5 понижение давления до p 3 p процесса: ) изменение внутренней энергии газа; ; 3 изобарное увеличение объема до 3 5 ; 3 изохорное На p-диаграмме изобразить график процесса 3 Определить в ходе всего ) работу сил давления газа; 3) количество теплоты, переданное при этом газу Дано: Решение:

17 Па i 5 p 00 кпа л 0, м 3 T T, 5 p 3 p, 3 5 3, p 3 p ) ΔU? )? Физическая система представляет собой идеальный двухатомный газ (каждая двухатомная жесткая молекула имеет число степеней свободы i 5), который последовательно подвергается изотермическому сжатию ( ), изобарному расширению ( 3 ) и изохорному уменьшению давления ( 3 ) На p-диаграмме (Рис 37) изображены графики этих процессов: изотерма ( ), изобара ( 3 ) и изохора ( 3 ) Выразим давление p газа в состоянии через давление p в состоянии Так как процесс изотермический, то p p, откуда Изменение внутренней энергии p p 5p () Δ U идеального газа не зависит от типа процесса, поскольку внутренняя энергия является функцией состояния Поэтому изменение 3) Q? внутренней энергии газа в ходе процесса 3 будет равно

18 i ΔU ν R ( T i T ) ( ν RT ν RT где ν количество вещества газа, T и T соответственно, R универсальная газовая постоянная ), () температура газа в состоянии (конечном) и (начальном) Параметры газа в состояниях и связаны уравнением Менделеева-Клапейрона: p ν RT тогда выражение () можно записать так: i ΔU ( p Учитывая, что p 3 p p и p ν RT ) и 3 получаем следующее выражение:, 3 5, для изменения внутренней энергии U Δ газа в ходе процесса ΔU i (3p 5 p ) i 7 p 5 7 i 0 p (3)

19 Элементарная работа δ сил давления газа при малом изменении его объема d равна δ p d, () тогда работу сил давления газа при конечном изменении его объема от до можно вычислить как где p p( ) p( ) d, (5) зависимость давления газа от его объема Поскольку вид функции p p( ) зависит от типа процесса, в ходе которого изменяется объем газа, то работа, совершаемая газом, также зависит от типа процесса Поэтому работу сил давления газа в ходе процесса 3 необходимо представить в виде алгебраической суммы работ, совершаемых силами давления газа в каждом отдельном процессе: при изотермическом сжатии, 3 при изобарном расширении, при изохорном процессе: (6) Вид функции p p( ) в каждом отдельном процессе можно получить из уравнения Менделеева-Клапейрона:

20 p ν RT При изотермическом процессе (количество вещества газа ν const и его температура T const) зависимость давления p газа от его объема имеет вид ν RT ( ) p, тогда работа сил давления газа при его изотермическом сжатии от объема до объема будет равна Учитывая, что p ν RT ν RT d d ν RT ν RT ln ν RT (ln ln ) ν RT ln и 5, получаем ln p ln p ln 5 5 (7) p

21 При изобарном процессе 3 давление газа остается постоянным p const, поэтому работа 3 при его изобарном расширении от объема до объема p d p( 3 ) С учетом выражения () p 5 p p 3 p будет равна, а также условия задачи 5 и p 3p 5 5 (8) получаем сил давления газа При изохорном процессе 3 объем газа не изменяется, поэтому работы силы давления газа не совершают: 0 3 (9) Подставляя выражения (7), (8) и (9) в выражение (3), найдем работу сил давления газа в ходе процесса 3 : ( ln 5 3) p ln 5 + 3p p + (0)

22 Согласно I началу термодинамики количество теплоты Q, переданное газу в процессе 3, равно сумме изменения внутренней энергии Δ U газа и работы, совершаемой его силами давления этом процессе: Q ΔU + Учитывая выражения (3) и (0), количество теплоты Q, переданное газу в процессе 3, будет равно 7 i 7 i Q p + p ( ln 5 + 3) p ln 5 + Подставляя в (3), (0) и () числовые значения, получаем ΔU Q 0 5 0, 0, 3,5 0 (Дж) 35 (кдж), ( ln5 + 3) 0 (,6 + 3), 0 (Дж) 7 5 0, ln (3,5,6 + 3),9 0 () (кдж), (Дж) 9 (кдж)

23 Ответ: ) ΔU 7 i 0 p 35кДж ; ) p ( ln5 + 3) кдж Q 3) 7 i p ln ; 9кДж Пример 0 Идеальный газ совершает цикл Карно Определить температуру холодильника, если температура нагревателя равна 608 К, а количество теплоты, подводимое к газу за цикл, в,9 раза больше работы, совершаемой при этом силами давления газа Дано: Решение: T 608 К Q n,9 Физическая система представляет собой идеальный газ, совершающий цикл Карно, КПД которого равен

24 η T T T T T, () T? где T и T температура нагревателя и холодильника соответственно В то же время КПД любого циклического процесса показывает, какая доля количества теплоты, подводимого к газу за цикл, преобразуется в механическую работу, те η Q Q Q Q, () где Q количество теплоты, подводимое газу за цикл, Q количество теплоты, отводимое от газа за цикл, Q Q работа, совершаемая силами давления газа за цикл Приравняем правые части равенств () и (): T T Q

25 Выразим из полученного уравнения температуру холодильника T, учитывая, что Q n : T Произведем вычисления: Ответ: T T n n T n T T T Q n n,9 0, ,9,9 88 К 88 (К)


КОНТРОЛЬНАЯ РАБОТА Частица движется так, что ее скорость изменяется со временем по закону

КОНТРОЛЬНАЯ РАБОТА Частица движется так, что ее скорость изменяется со временем по закону КОНТРОЛЬНАЯ РАБОТА 1 Таблица распределения задач по вариантам Вариант Н О М Е Р А З А Д А Ч 1 101 111 11 11 11 151 161 171 181 191 10 11 1 1 1 15 16 17 18 19 10 11 1 1 1 15 16 17 18 19 10 11 1 1 1 15 16

Подробнее

КОНТРОЛЬНАЯ РАБОТА 2. Таблица вариантов задач

КОНТРОЛЬНАЯ РАБОТА 2. Таблица вариантов задач КОНТРОЛЬНАЯ РАБОТА 2 Таблица вариантов задач Вариант Номера задач 1 2 3 4 5 6 7 8 9 10 209 214 224 232 244 260 264 275 204 220 227 238 243 254 261 278 207 217 221 236 249 251 268 278 202 218 225 235 246

Подробнее

ОСНОВНЫЕ ФОРМУЛЫ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ ВУЗОВ.. Физические основы механики.

ОСНОВНЫЕ ФОРМУЛЫ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ ВУЗОВ.. Физические основы механики. ОСНОВНЫЕ ФОРМУЛЫ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ ВУЗОВ.. Физические основы механики. Скорость мгновенная dr r- радиус-вектор материальной точки, t- время, Модуль мгновенной скорости s- расстояние вдоль

Подробнее

30 тестовых заданий по курсу «Механика. Молекулярная физика» с ответами и пояснениями

30 тестовых заданий по курсу «Механика. Молекулярная физика» с ответами и пояснениями 0 тестовых заданий по курсу «Механика Молекулярная физика» с ответами и пояснениями Механика Кинематика материальной точки Материальная точка движется в плоскости xy по закону x ( t) t, y ( t) Bt, где

Подробнее

( ) ( ) Физика для заочников. Контрольная работа 1

( ) ( ) Физика для заочников. Контрольная работа 1 Задание 8 Физика для заочников Контрольная работа 1 Диск радиусом R = 0, м вращается согласно уравнению φ = А + Вt + Сt 3, где А = 3 рад; В = 1 рад/с; C = 0,1 рад/с 3 Определите тангенциальное а τ, нормальное

Подробнее

Демонстрационный вариант 1

Демонстрационный вариант 1 Тестовые задания на экзамене по курсу «Физика. Механика. Термодинамика» Демонстрационный вариант 1 1. Материальная точка движется равномерно по окружности со скоростью v. Определите модуль изменения вектора

Подробнее

2.Молекулярная физика и термодинамика 7. Распределение Максвелла и Больцмана.

2.Молекулярная физика и термодинамика 7. Распределение Максвелла и Больцмана. Условие задачи Решение 2.Молекулярная физика и термодинамика 7. Распределение Максвелла и Больцмана. Формула Больцмана характеризует распределение частиц, находящихся в состоянии хаотического теплового

Подробнее

Задание 11 (4 балла) Критерии выставления оценки за экзамен 8 16 баллов удовлетворительно балл хорошо баллов отлично

Задание 11 (4 балла) Критерии выставления оценки за экзамен 8 16 баллов удовлетворительно балл хорошо баллов отлично 8 6 баллов удовлетворительно 7 балл хорошо Задание ( балла) На горизонтальной доске лежит брусок массы. Доску медленно наклоняют. Определить зависимость силы трения, действующей на брусок, от угла наклона

Подробнее

Демонстрационный вариант 1

Демонстрационный вариант 1 Тестовые задания на экзамене по курсу «Физика. Механика. Термодинамика» Демонстрационный вариант 1 1. Материальная точка движется вдоль оси x. Закон движения точки имеет вид x ( t ) = At, где A постоянная.

Подробнее

Основные положения термодинамики

Основные положения термодинамики Основные положения термодинамики (по учебнику А.В.Грачева и др. Физика: 10 класс) Термодинамической системой называют совокупность очень большого числа частиц (сравнимого с числом Авогадро N A 6 10 3 (моль)

Подробнее

Физика газов. Термодинамика Краткие теоретические сведения

Физика газов. Термодинамика Краткие теоретические сведения А Р, Дж 00 0 0 03 04 05 06 07 08 09 Т, К 480 485 490 495 500 505 50 55 50 55 Т, К 60 65 70 75 80 85 90 95 300 305 5. Газ совершает цикл Карно. Абсолютная температура нагревателя в n раз выше, чем температура

Подробнее

6 Молекулярная физика и термодинамика. Основные формулы и определения

6 Молекулярная физика и термодинамика. Основные формулы и определения 6 Молекулярная физика и термодинамика Основные формулы и определения Скорость каждой молекулы идеального газа представляет собой случайную величину. Функция плотности распределения вероятности случайной

Подробнее

«РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Старикова А.Л.

«РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Старикова А.Л. Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Подробнее

Число атомов в ν количестве молей равно N=N A ν, где N A = моль -1 число Авогадро. Тогда концентрация равна. 3 м. 18 м.

Число атомов в ν количестве молей равно N=N A ν, где N A = моль -1 число Авогадро. Тогда концентрация равна. 3 м. 18 м. 07 Определить количество вещества ν водорода, заполняющего сосуд объемом V=3 л, если концентрация молекул газа в сосуде n = 18 м -3 V = 3л n = 18 м -3 ν =? Число атомов в ν количестве молей равно N=N A

Подробнее

ВАРИАНТ 1. а) найти работу газа и количество теплоты, сообщенной газу. б) решить задачу при условии, что газ расширялся изобарически.

ВАРИАНТ 1. а) найти работу газа и количество теплоты, сообщенной газу. б) решить задачу при условии, что газ расширялся изобарически. ВАРИАНТ 1 1. Два сосуда емкостью 0,2 и 0,1 л разделены подвижным поршнем, не проводящим тепло. Начальная температура газа в сосудах 300 К, давление 1,01 10 5 Па. Меньший сосуд охладили до 273 К, а больший

Подробнее

РАБОТА 10 ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ВОЗДУХА ПО СКОРОСТИ ЗВУКА В ВОЗДУХЕ

РАБОТА 10 ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ВОЗДУХА ПО СКОРОСТИ ЗВУКА В ВОЗДУХЕ РАБОТА 10 ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ВОЗДУХА ПО СКОРОСТИ ЗВУКА В ВОЗДУХЕ Цель работы: определение отношения теплоемкостей воздуха по скорости звука в воздухе. Введение Теплоемкостью тела называется

Подробнее

П. А. Хило, Е. С. Петрова ФИЗИКА. ПРАКТИКУМ по курсу «Механика и молекулярная физика» для студентов технических специальностей дневной формы обучения

П. А. Хило, Е. С. Петрова ФИЗИКА. ПРАКТИКУМ по курсу «Механика и молекулярная физика» для студентов технических специальностей дневной формы обучения Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого» Кафедра «Физика» П. А. Хило, Е. С. Петрова ФИЗИКА ПРАКТИКУМ по

Подробнее

Лекция 10 Изопроцессы. Внутренняя энергия. Первый закон термодинамики. Работа и теплота в изопроцессах.

Лекция 10 Изопроцессы. Внутренняя энергия. Первый закон термодинамики. Работа и теплота в изопроцессах. Лекция 10 Изопроцессы. Внутренняя энергия. Первый закон термодинамики. Работа и теплота в изопроцессах. Нурушева Марина Борисовна старший преподаватель кафедры физики 03 НИЯУ МИФИ Уравнение Менделеева

Подробнее

Тема: «Динамика материальной точки»

Тема: «Динамика материальной точки» Тема: «Динамика материальной точки» 1. Тело можно считать материальной точкой если: а) его размерами в данной задаче можно пренебречь б) оно движется равномерно ось вращения является неподвижной угловое

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 155 (New) ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА ПО МЕТОДУ КЛЕМАНА-ДЕЗОРМА

ЛАБОРАТОРНАЯ РАБОТА 155 (New) ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА ПО МЕТОДУ КЛЕМАНА-ДЕЗОРМА ЛАБОРАТОРНАЯ РАБОТА 55 (New) ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА ПО МЕТОДУ КЛЕМАНА-ДЕЗОРМА C C P Цель работы Целью работы является изучение изохорического и адиабатического процессов идеального газа

Подробнее

П Р И М Е Р выполнения РГР по теме «Малые колебания механической системы с одной степенью свободы»

П Р И М Е Р выполнения РГР по теме «Малые колебания механической системы с одной степенью свободы» П Р И М Е Р выполнения РГР по теме «Малые колебания механической системы с одной степенью свободы» х Р УСЛОВИЕ ЗАДАЧИ Механическая система состоит из -х абсолютно твердых тел: груза, блока, стержня 3,

Подробнее

СТАТИСТИЧЕСКАЯ ФИЗИКА ТЕРМОДИНАМИКА

СТАТИСТИЧЕСКАЯ ФИЗИКА ТЕРМОДИНАМИКА СТАТИСТИЧЕСКАЯ ФИЗИКА ТЕРМОДИНАМИКА Распределение Максвелла Начала термодинамики Цикл Карно Распределение Максвелла В газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не

Подробнее

( 1) ( ) ( ) Время полета после каждого отскока. Координата второго соударения. Тогда расстояние между ударами о плоскость

( 1) ( ) ( ) Время полета после каждого отскока. Координата второго соударения. Тогда расстояние между ударами о плоскость Задача Шарик с высоты hм вертикально падает на наклонную плоскость и упруго отражается. На каком расстоянии от места падения он снова ударится о ту же плоскость? Угол наклона плоскости к горизонту α3.

Подробнее

Глава 6 Основы термодинамики 29

Глава 6 Основы термодинамики 29 Глава 6 Основы термодинамики 9 Число степеней свободы молекулы Закон равномерного распределения энергии по степеням свободы молекул Внутренняя энергия U это энергия хаотического движения микрочастиц системы

Подробнее

Кинематика 1. Материальная точка движется вдоль оси x так, что времени координата точки x( 0) B. Найдите x (t). Найдите

Кинематика 1. Материальная точка движется вдоль оси x так, что времени координата точки x( 0) B. Найдите x (t). Найдите 1 Кинематика 1 Материальная точка движется вдоль оси x так, что времени координата точки x( 0) B Найдите x (t) V x At В начальный момент Материальная точка движется вдоль оси x так, что ax A x В начальный

Подробнее

Основные законы и формулы физики Молекулярная физика Молекулярно-кинетическая теория ( / 12) m 0 C 0 C = m N M r =.

Основные законы и формулы физики Молекулярная физика Молекулярно-кинетическая теория ( / 12) m 0 C 0 C = m N M r =. Молекулярная физика Молекулярно-кинетическая теория Молекулярно-кинетическая теория объясняет строение и свойства тел движением и взаимодействием атомов молекул и ионов из которых состоят тела. В основании

Подробнее

Δα = π А 1 А 2. А Фаза результирующего колебания из построенной диаграммы α = π. Аналитически результирующее колебание

Δα = π А 1 А 2. А Фаза результирующего колебания из построенной диаграммы α = π. Аналитически результирующее колебание 1 Складываются два гармонических колебания одного направления с одинаковыми частотами x ( t) A cos( t ) x ( t) A cos( t ) 1 1 1 Построить векторную диаграмму сложения колебаний найти амплитуду и начальную

Подробнее

11.4 Число степеней свободы

11.4 Число степеней свободы Положение твердого тела определяется заданием 3-х координат его центра масс и любой, проходящей через него, плоскости. Ориентация такой плоскости задается вектором нормали, который имеет три проекции.

Подробнее

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра физики. ТЕРМОДИНАМИКА (Часть 1) ТЕРМОДИНАМИКА (Часть 1)

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра физики. ТЕРМОДИНАМИКА (Часть 1) ТЕРМОДИНАМИКА (Часть 1) ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра

Подробнее

Физика Контрольные задания для студентов заочной формы обучения Часть 1

Физика Контрольные задания для студентов заочной формы обучения Часть 1 Задача 5 Идеальная тепловая машина работает по циклу Карно При этом N% количества теплоты, получаемой от нагревателя, передаётся холодильнику Машина получает от нагревателя при температуре t количество

Подробнее

КОНТРОЛЬНАЯ РАБОТА по молекулярной физике. Варианты

КОНТРОЛЬНАЯ РАБОТА по молекулярной физике. Варианты Номера задач КОНТРОЛЬНАЯ РАБОТА по молекулярной физике Варианты 3 4 5 6 7 8 9 0 Таблица 8. 8. 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.0 8. 8. 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.0 8. 8. 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.30

Подробнее

С Б О Р Н И К ЗАДАНИЙ ПО КУРСУ ФИЗИКИ

С Б О Р Н И К ЗАДАНИЙ ПО КУРСУ ФИЗИКИ Санкт-Петербургский политехнический университет Петра Великого Институт физики, нанотехнологий и телекоммуникаций (ИФНиТ) Кафедра экспериментальной физики Гаспарян Р.А. С Б О Р Н И К ЗАДАНИЙ ПО КУРСУ ФИЗИКИ

Подробнее

/ /11

/ /11 Вариант 3580291 1. Задание 9 7729 Идеальный газ медленно переводят из состояния 1 в состояние 3. Процесс 1 2 3 представлен на графике зависимости давления газа p от его объёма V (см. рисунок). Считая,

Подробнее

Дистанционная подготовка Abitu.ru ФИЗИКА. Статья 11. Тепловые машины.

Дистанционная подготовка Abitu.ru ФИЗИКА. Статья 11. Тепловые машины. Дистанционная подготовка bituru ФИЗИКА Статья Тепловые машины Теоретический материал В этой статье мы рассмотрим замкнутые процессы с газом Любой замкнутый процесс называется циклическим процессом или

Подробнее

и 3 (10 баллов) сразу после пережигания нити? Ускорение свободного падения g считать известным.

и 3 (10 баллов) сразу после пережигания нити? Ускорение свободного падения g считать известным. 0 класс. (0 баллов) Тело бросили с начальной скоростью 0 под углом 60 к горизонту. На какой высоте нормальное и тангенциальное ускорения тела станут равны по величине? Ускорение свободного падения g считать

Подробнее

5. Молекулярная физика и термодинамика. Тепловые превращения.

5. Молекулярная физика и термодинамика. Тепловые превращения. 5. Молекулярная физика и термодинамика. Тепловые превращения. 005 1. Определить плотность газа массой 0 кг, заполняющего шар объёмом 10м 3. А) 00кг/м 3. В) 0,5 кг/м 3 С) кг/м 3 D) 10кг/м 3 E) 0кг/м 3.

Подробнее

10 класс. Контрольная работа 1 по теме «Кинематика» Вариант 1 Уровень 1.

10 класс. Контрольная работа 1 по теме «Кинематика» Вариант 1 Уровень 1. Контрольная работа 1 по теме «Кинематика» Вариант 1 Уровень 1. 10 класс 2. Мотоциклист первую часть времени проехал со скоростью 100 км/ч, а вторую 80 км/ч. Найти среднюю скорость движения мотоциклиста

Подробнее

Термодинамика и молекулярная физика

Термодинамика и молекулярная физика Термодинамика и молекулярная физика Макросистемы статистический метод термодинамический метод статистическая физика молекулярная физика МКТ термодинамика Термодинамика и молекулярная физика Законы идеальных

Подробнее

ЧАСТЬ II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

ЧАСТЬ II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСИС» Рахштадт Ю.А. ФИЗИКА Учебное пособие для абитуриентов ЧАСТЬ II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Москва 05 год ЧАСТЬ II. МОЛЕКУЛЯРНАЯ

Подробнее

Лекция 4. Кинетическая теория идеальных газов. Давление и температура. Опытные законы идеального газа. Основное уравнение молекулярнокинетической

Лекция 4. Кинетическая теория идеальных газов. Давление и температура. Опытные законы идеального газа. Основное уравнение молекулярнокинетической Лекция 4 Кинетическая теория идеальных газов. Давление и температура. Опытные законы идеального газа. Основное уравнение молекулярнокинетической теории газов. Адиабатический процесс. Термодинамика Термодинамика

Подробнее

Основное уравнение кинетической теории газов

Основное уравнение кинетической теории газов Основное уравнение кинетической теории газов До сих пор мы рассматривали термодинамические параметры (давление, температуру, теплоемкость, ), а также первое начало термодинамики и его следствия безотносительно

Подробнее

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА. Лекция 12 МОЛЕКУЛЯРНАЯ ФИЗИКА

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА. Лекция 12 МОЛЕКУЛЯРНАЯ ФИЗИКА МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Лекция 12 МОЛЕКУЛЯРНАЯ ФИЗИКА Термины и понятия Абсолютная температура газа Вакуум Длина свободного пробега Законы идеального газа Идеальный газ Изобара Изобарический

Подробнее

Статистические распределения

Статистические распределения Статистические распределения До сих пор мы рассматривали термодинамические параметры давление, температуру, теплоемкость, ), а также первое начало термодинамики и его следствия безотносительно к конкретному

Подробнее

Основы термодинамики и молекулярной физики

Основы термодинамики и молекулярной физики Основы термодинамики и молекулярной физики 1 Первое начало термодинамики. Теплоемкость как функция термодинамического процесса. 3Уравнение Майера. 4 Адиабатический процесс. Уравнение Пуассона. 5 Обратимые

Подробнее

ТЕПЛОЕМКОСТЬ ТЕРМОДИНАМИЧЕСКОЙ СИСТЕМЫ

ТЕПЛОЕМКОСТЬ ТЕРМОДИНАМИЧЕСКОЙ СИСТЕМЫ Лекция 7 ТЕПЛОЕМКОСТЬ ТЕРМОДИНАМИЧЕСКОЙ СИСТЕМЫ Термины и понятия Возбудить Вымерзать Вращательная степень свободы Вращательный квант Высокая температура Дискретный ряд значений Классическая теория теплоемкости

Подробнее

Общие требования к выполнению домашнего задания по курсу физики

Общие требования к выполнению домашнего задания по курсу физики Общие требования к выполнению домашнего задания по курсу физики Домашние задания выполняются в тетради или на сброшюрованных листах формата А4. На обложке (или на титульном листе) поместите следующую таблицу:

Подробнее

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ.

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ. МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ Кафедра физики МОЛЕКУЛЯРНАЯ ФИЗИКА, ТЕРМОДИНАМИКА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Подробнее

ФИЗИЧЕСКИЕ ОСНОВЫ ТЕРМОДИНАМИКИ

ФИЗИЧЕСКИЕ ОСНОВЫ ТЕРМОДИНАМИКИ Сегодня среда, 9 июля 04 г. ФИЗИЧЕСКИЕ ОСНОВЫ ТЕРМОДИНАМИКИ Лекция 4 Содержание лекции: *Обратимые и необратимые процессы *Число степеней свободы молекулы *Закон Больцмана *Первое начало термодинамики

Подробнее

5. Динамика вращательного движения твердого тела

5. Динамика вращательного движения твердого тела 5. Динамика вращательного движения твердого тела Твердое тело это система материальных точек, расстояния между которыми не меняются в процессе движения. При вращательном движении твердого тела все его

Подробнее

m T T 2 k 2 период колебаний, когда масса будет равна сумме масс T-? Выразим массу m 1 и m 2 тогда тогда и подставим в формулу для общего периода

m T T 2 k 2 период колебаний, когда масса будет равна сумме масс T-? Выразим массу m 1 и m 2 тогда тогда и подставим в формулу для общего периода 5 Модуль Практика Задача Когда груз, совершающий колебания на вертикальной пружине, имел массу m, период колебаний был равен с, а когда масса стала равной m, период стал равен 5с Каким будет период, если

Подробнее

Нурушева Марина Борисовна старший преподаватель кафедры физики 023 НИЯУ МИФИ

Нурушева Марина Борисовна старший преподаватель кафедры физики 023 НИЯУ МИФИ Лекция 4 Основные понятия и принципы молекулярно-кинетической теории. Газовые законы. Термодинамика. Работа газа в циклическом процессе. Тепловые двигатели. Цикл Карно Нурушева Марина Борисовна старший

Подробнее

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5)

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5) ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5) ЛЕКЦИЯ 4, (раздел 1) (лек 7 «КЛФ, ч1») Кинематика вращательного движения 1 Поступательное и вращательное движение В предыдущих лекциях мы познакомились с механикой материальной

Подробнее

Задача на применение закона сохранения массового числа и электрического заряда

Задача на применение закона сохранения массового числа и электрического заряда Задача на применение закона сохранения массового числа и электрического заряда При бомбардировке нейтронами атома алюминия какого изотопа превращается ядро алюминия? 7 13 Al испускается α частица. В ядро

Подробнее

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Кафедра физики ТЕСТЫ по курсу «ФИЗИКА» Механика. Молекулярная

Подробнее

Коллоквиум по физике: «Молекулярная физика и термодинамика»

Коллоквиум по физике: «Молекулярная физика и термодинамика» Вариант 1. 1. Можно ли использовать статистические методы при изучении поведения микроскопических тел? Почему? 2. Может ли единичная молекула находиться в состоянии термодинамического равновесия? 3. Если

Подробнее

Лабораторная работа 1.14 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАХОВИКА М.В. Козинцева, А.М. Бишаев

Лабораторная работа 1.14 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАХОВИКА М.В. Козинцева, А.М. Бишаев Лабораторная работа.4 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАХОВИКА М.В. Козинцева, А.М. Бишаев Цель работы: определение момента инерции маховика по периоду его совместных колебаний с телом, момент инерции которого

Подробнее

10 м / c. Тело падает на ступеньку высотой h = 2м. тело подлетит к ступеньке? Принять

10 м / c. Тело падает на ступеньку высотой h = 2м. тело подлетит к ступеньке? Принять Второй (заключительный) этап академического соревнования Олимпиады школьников «Шаг в будущее» по образовательному предмету «Физика», весна 7 г Вариант З А Д А Ч А Тело бросили под углом = 6 к горизонту

Подробнее

Лекция 11. Кинетическая теория идеальных газов. Давление и температура. Опытные законы идеального газа.

Лекция 11. Кинетическая теория идеальных газов. Давление и температура. Опытные законы идеального газа. Лекция 11 Кинетическая теория идеальных газов. Давление и температура. Опытные законы идеального газа. Молекулярно - кинетическая теория раздел физики, изучающий свойства вещества на основе представлений

Подробнее

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ Основные формулы Момент силы F, действующей на тело, относительно оси вращения

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ Основные формулы Момент силы F, действующей на тело, относительно оси вращения ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ Основные формулы Момент силы F действующей на тело относительно оси вращения M = F l где F проекция силы F на плоскость перпендикулярную

Подробнее

r ] для скорости точки при вращении твердого тела вокруг неподвижной оси 2) формулу

r ] для скорости точки при вращении твердого тела вокруг неподвижной оси 2) формулу Сокращения: Опр определение Ф-ка формулировка Ф-ла - формула Пр - пример 1. Кинематика точки 1) Физические модели: материальная точка, система материальных точек, абсолютно твердое тело (Опр) 2) Способы

Подробнее

8. Тесты для самостоятельного решения (часть 1 заданий ЕГЭ)

8. Тесты для самостоятельного решения (часть 1 заданий ЕГЭ) 8. Тесты для самостоятельного решения (часть 1 заданий ЕГЭ) А8.1. Какой параметр x идеального газа можно определить по формуле x p ( E) =, где: p давление газа, E средняя кинетическая энергия поступательного

Подробнее

true_answer=4 true_answer=4 true_answer=1 true_answer=3

true_answer=4 true_answer=4 true_answer=1 true_answer=3 Красным цветом на рисунке изображена F(v) - плотность вероятности распределения молекул идеального газа по скоростям при некоторой температуре. Выберите правильный вариант изменения функции F(v) при нагревании

Подробнее

Билет 1. Задача на применение закона сохранения массового числа и электрического заряда

Билет 1. Задача на применение закона сохранения массового числа и электрического заряда Билет 1 Задача на применение закона сохранения массового числа и электрического заряда При бомбардировке нейтронами атома азота испускается протон. В ядро какого изотопа превращается ядро азота? Напишите

Подробнее

/6. На диаграмме представлены изменения давления и объема идеального одноатомного газа. Какое количество теплоты

/6. На диаграмме представлены изменения давления и объема идеального одноатомного газа. Какое количество теплоты Термодинамические процессы, вычисление работы, количества теплоты, КПД 1. На диаграмме представлены изменения давления и объема идеального одноатомного газа. Какое количество теплоты было получено или

Подробнее

Молекулярно-кинетическая теория

Молекулярно-кинетическая теория Оглавление 2 Молекулярно-кинетическая теория 2 21 Строение вещества Уравнение состояния 2 211 Пример количество атомов 2 212 Пример химический состав 2 213 Пример воздух в комнате 3 214 Пример воздушный

Подробнее

Динамика вращательного движения

Динамика вращательного движения Восточно-Сибирский государственный университет технологий и управления Лекция 3 Динамика вращательного движения ВСГУТУ, кафедра «Физика» План Момент импульса частицы Момент силы Уравнение моментов Момент

Подробнее

1. Запишем уравнение Ван-дер-Ваальса для произвольного количества вещества

1. Запишем уравнение Ван-дер-Ваальса для произвольного количества вещества .. Примеры использования уравнения Ван-дер-Ваальса Пример. В сосуде вместимостью = 0 м находится азот массой m = 0, кг. Определить внутреннее давление газа р * и собственный объём молекул *.. Запишем уравнение

Подробнее

Федеральное агентство по образованию. ГОУ ВПО Уральский государственный технический университет УПИ. Кафедра физики

Федеральное агентство по образованию. ГОУ ВПО Уральский государственный технический университет УПИ. Кафедра физики Федеральное агентство по образованию ГОУ ВПО Уральский государственный технический университет УПИ Кафедра физики ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ТЕМА: ТЕРМОДИНАМИКА ИДЕАЛЬНОГО ГАЗА МЕТОДИЧЕСКИЕ

Подробнее

Работа газа при различных процессах. В предыдущих лекциях мы получили, что общая формула для работы, которую выполняет газ, имеет вид

Работа газа при различных процессах. В предыдущих лекциях мы получили, что общая формула для работы, которую выполняет газ, имеет вид Лекция 4 (8.4.5) Работа газа при различных процессах. В предыдущих лекциях мы получили, что общая формула для работы, которую выполняет газ, имеет вид A d. () Геометрический смысл этой формулы состоит

Подробнее

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. Кафедра физики. Любутина Л.Г.

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. Кафедра физики. Любутина Л.Г. РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА Кафедра физики Любутина Л.Г. 83к «ЦИКЛ КАРНО» (КОМПЬЮТЕРНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ ПО МОЛЕКУЛЯРНОЙ ФИЗИКЕ) Лабораторная работа 83к ЦИКЛ

Подробнее

2 Почему броуновские частицы совершают беспорядочное движение?

2 Почему броуновские частицы совершают беспорядочное движение? Итоговая контрольная работа. КЛАСС. (МКТ, термодинамика, электростатика) Вариант. Прочитайте задание, подумайте. Выберите из предложенных ответов один правильный. Текст задания п/п Отношение массы молекулы

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

14.1. Система с двумя степенями свободы

14.1. Система с двумя степенями свободы Глава 14 МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ В разделе МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ вы научитесь определять частоты малых собственных колебаний механической системы с двумя степенями свободы. Другие темы этого раздела,

Подробнее

R, где ω угловая скорость точки, R - радиус. Откуда ω = , где ε угловое ускорение точки. . Подставляем сюда ε = 0. t 2. ω ω.

R, где ω угловая скорость точки, R - радиус. Откуда ω = , где ε угловое ускорение точки. . Подставляем сюда ε = 0. t 2. ω ω. Решение контрольной работы по физике Задание 110 Точка движется по окружности радиусом 0 см с постоянным угловым ускорением ε Определить тангенциальное ускорение а τ точки, если известно, что за время

Подробнее

Контрольная работа 1 по физике с решением

Контрольная работа 1 по физике с решением Контрольная работа 1 по физике с решением Задача 9 На диаграмме (T-V) график процесса представляет собой прямую, соединяющую точки с координатами (300 К; 0,1 л), (600 К; 0, л). Определить работу одного

Подробнее

Вариант 1 1. Тело совершает гармонические колебания по закону x Acos( 0t. Значения при t=0 А, (см) = 900 кг/м 3, плотность воды ρ в

Вариант 1 1. Тело совершает гармонические колебания по закону x Acos( 0t. Значения при t=0 А, (см) = 900 кг/м 3, плотность воды ρ в Вариант 1 Определите период, начальную фазу колебаний Постройте векторную 4-0,42-6,36 2 Через какое время от начала движения точка, совершающая гармоническое колебание, сместится относительно положения

Подробнее

Задачи по курсу «Механика. Молекулярная физика»

Задачи по курсу «Механика. Молекулярная физика» Задачи по курсу «Механика. Молекулярная физика» (МП-А, семестр 5/6 уч. года) Механика Кинематика материальной точки. Точка движется по окружности со скоростью V t, где α положительная постоянная. Найдите

Подробнее

КОНТРОЛЬНАЯ РАБОТА ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ 1. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

КОНТРОЛЬНАЯ РАБОТА ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ 1. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ КОНТРОЛЬНАЯ РАБОТА ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ При самостоятельном изучении теоретического материала части дисциплины Физика, студенты должны выполнить одну контрольную работу (контрольная

Подробнее

Кафедра физики ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА С ПОМОЩЬЮ ТРИФИЛЯРНОГО ПОДВЕСА

Кафедра физики ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА С ПОМОЩЬЮ ТРИФИЛЯРНОГО ПОДВЕСА Министерство образования Республики Беларусь Учреждение образования «Могилевский государственный университет продовольствия» Кафедра физики ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА С ПОМОЩЬЮ

Подробнее

БЛОК 4 «МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ».

БЛОК 4 «МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ». БЛОК 4 «МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ». Основные положения МКТ (молекулярно-кинетической теории): Все тела состоят из молекул; Молекулы движутся (беспорядочно, хаотически броуновское движение); Молекулы

Подробнее

Чему равно отношение работы за весь цикл к работе при охлаждении газа?

Чему равно отношение работы за весь цикл к работе при охлаждении газа? ТЕСТЫ ДЛЯ ЗАЩИТЫ ЛАБ. РАБОТЫ «ОТНОШЕНИЕ ТЕПЛОЕМКОСТЕЙ». ВАРИАНТ 1 Каким из предложенных соотношений связаны теплота, полученная газом, изменение внутренней энергии и работа газа при переходе его из одного

Подробнее

ЛЕКЦИЯ 4. Уравнение состояния идеального газа. Универсальная газовая постоянная. Основные газовые законы.

ЛЕКЦИЯ 4. Уравнение состояния идеального газа. Универсальная газовая постоянная. Основные газовые законы. ЛЕКЦИЯ 4 Уравнение состояния идеального газа. Универсальная газовая постоянная. Основные газовые законы. Уравнения, полученные на основе МКТ, позволяют найти соотношения, которые связывают между собой

Подробнее

Определение момента инерции и положения центра тяжести физического маятника

Определение момента инерции и положения центра тяжести физического маятника МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) 4 Определение момента

Подробнее

Занятие 8 Тема: Второе начало термодинамики. Цель: Циклические процессы с газом. Цикл Карно, его к.п.д. Энтропия. Краткая теория

Занятие 8 Тема: Второе начало термодинамики. Цель: Циклические процессы с газом. Цикл Карно, его к.п.д. Энтропия. Краткая теория Занятие 8 Тема: Второе начало термодинамики Цель: Циклические процессы с газом Цикл Карно, его кпд Энтропия Краткая теория Циклический процесс - процесс, при котором начальное и конечное состояния газа

Подробнее

7. ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ. Собственные колебания

7. ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ. Собственные колебания 7 ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ Собственные колебания Гармоническими колебаниями материальной точки называется движение, при котором смещение от положения устойчивого равновесия зависит от времени по закону

Подробнее

Задания для самостоятельной работы студентов Модуль 3

Задания для самостоятельной работы студентов Модуль 3 Задания для самостоятельной работы студентов Модуль 3 Модуль 3... 3 Тема 1. Идеальный газ. Уравнение Менделеева-Клапейрона... 3 Тема 2. Уравнение МКТ для давления. Закон равнораспределения энергии молекул

Подробнее

Гармонические колебания

Гармонические колебания Гармонические колебания Колебаниями называются процессы (движение или изменение состояния), в той или иной степени повторяющийся во времени. механические колебания электромагнитные электромеханические

Подробнее

3.2. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА. РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА

3.2. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА. РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА Системой рассматриваемой в классической молекулярно-кинетической теории газов является разреженный газ состоящий из N молекул

Подробнее

Федеральное агентство по образованию ГОУ ВПО Тульский государственный университет. Кафедра физики. Семин В.А.

Федеральное агентство по образованию ГОУ ВПО Тульский государственный университет. Кафедра физики. Семин В.А. Федеральное агентство по образованию ГОУ ВПО Тульский государственный университет Кафедра физики Семин В.А. Тестовые задания по механике и молекулярной физике для проведения практических занятий и контрольных

Подробнее

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 4. МКТ. I закон термодинамики

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 4. МКТ. I закон термодинамики ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 4 МКТ. I закон термодинамики Вариант 1 1. В сосуде объемом 10 л находится 4 г гелия при температуре 17 С. Найти давление гелия. 2. В баллоне емкостью 0,05 м 3 находятся 0,12 Кмоль

Подробнее

v - среднее значение квадрата скорости

v - среднее значение квадрата скорости Теоретическая справка к лекции 3 Основы молекулярно-кинетической теории (МКТ) Газы принимают форму сосуда и полностью заполняют объѐм, ограниченный непроницаемыми для газа стенками Стремясь расшириться,

Подробнее

ТЕРМОДИНАМИКА. 1. При постоянном давлении 10 5 Па газ совершил работу 10 4 Дж. Объем газа при этом

ТЕРМОДИНАМИКА. 1. При постоянном давлении 10 5 Па газ совершил работу 10 4 Дж. Объем газа при этом p. При постоянном давлении 0 Па газ совершил работу 0. Объем газа при этом A) Увеличился на м B) Увеличился на 0 м C) Увеличился на 0, м D) Уменьшился на 0, м E) Уменьшился на 0 м ТЕРМОДИНАМИКА. Температура

Подробнее

Решения заключительного этапа Олимпиады школьников «Ломоносов» по ФИЗИКЕ класс

Решения заключительного этапа Олимпиады школьников «Ломоносов» по ФИЗИКЕ класс Решения заключительного этапа Олимпиады школьников «Ломоносов» по ФИЗИКЕ - класс Вариант Сформулируйте закон Гука Чему равна потенциальная энергия упруго деформированной пружины? Задача В устройстве, показанном

Подробнее

Контрольная работа по физике Термодинамика 10 класс. 1 вариант

Контрольная работа по физике Термодинамика 10 класс. 1 вариант 1 вариант 1. Чему равна внутренняя энергия 5 моль одноатомного газа при температуре 27 С? 2. При адиабатном расширении газ совершил работу 2 МДж. Чему равно изменение внутренней энергии газа? «Увеличилась

Подробнее

Лекция Внутренняя энергия идеального газа и количество теплоты

Лекция Внутренняя энергия идеального газа и количество теплоты Лекция Внутренняя энергия идеального газа и количество теплоты Внутренняя энергия U является одной из функций состояния термодинамической системы, рассматриваемых в термодинамике. С точки зрения кинетической

Подробнее

Колебания. Периодическая величина: функция f(t) есть периодическая функция (величина) с периодом Т если f(t)=f(t+t)

Колебания. Периодическая величина: функция f(t) есть периодическая функция (величина) с периодом Т если f(t)=f(t+t) Колебания 1 Общие сведения о колебаниях. Свободные гармонические колебания. 3 Энергия гармонического осциллятора. 4 Физический и математический маятники. Колебания Периодическая величина: функция f(t)

Подробнее

УТВЕРЖДЕНО Приказ Министра образования Республики Беларусь от

УТВЕРЖДЕНО Приказ Министра образования Республики Беларусь от Программа вступительных испытаний по учебному предмету «Физика» для лиц, имеющих общее среднее образование, для получения высшего образования І ступени, 2018 год 1 УТВЕРЖДЕНО Приказ Министра образования

Подробнее

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА 1 МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Основные положения и определения Два подхода к изучению вещества Вещество состоит из огромного числа микрочастиц - атомов и молекул Такие системы называют макросистемами

Подробнее