Лекция 3. Плоская задача теории упругости.

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "Лекция 3. Плоская задача теории упругости."

Транскрипт

1 Лекция 3 Плоская задача теории упругости. 3.1 Плоское напряженное состояние. 3. Плоская деформация. 3.3 Основные уравнения плоской задачи. 3.4 Использование функции напряжений 3.5 Решение плоской задачи с помощью функции напряжений обратным способом.

2 3.1 Плоское напряженное состояние. Представим себе плоскую пластину, нагруженную нагрузкой в ее плоскости (рис. 3.1, а). Толщина пластины мала по сравнению с размерами a и c. Нагрузка распределена равномерно по толщине пластины. Если в окрестности точки пластины выделить элементарный параллелепипед с размерами d, d,, то на его гранях возникнут напряжения,, (рис. 3.1,б) На гранях перпендикулярных оси напряжения отсутствуют 0, 0, 0. Рис 3.1 Плоское напряженное состояние Предположим, что эти напряжения равны нулю и во внутренних точках пластины. Описанное напряженное состояние называется плоским напряженным состоянием тела (ПНС). При плоском напряженном состоянии деформации в направлении оси возникают и их можно найти по формуле закона Гука 1 (3.1) ( ( )) ( ). При ПНС в каждой точке изменяется толщина пластины. (3.) ( ). Задача об определении ПНС пластины является двумерной, поскольку три неизвестных напряжения,,, вполне определяющих это состояние зависят от двух координат и. То же можно сказать и про перемещения u и v. Третья компонента w легко определяется при известных напряжениях, из соотношения w ( ) (3.3) Совместим плоскость со срединной плоскостью пластины (плоскость равноудаленная от боковых поверхностей пластины) и положив w 0 при 0, получим

3 w ( ) Перемещения w по толщине пластины изменяются по линейному закону.. (3.4) 3. Плоская деформация. Рассмотрим очень длинное цилиндрическое тело, равномерно загруженное по всей длине (рис. 3.) Рис.3. Мысленно рассечем это тело на отдельные слои толщиной 1(рис. 3.3,а). Каждый слой находится в одинаковых условиях. Каждый слой как бы зажат между двумя абсолютно жесткими поверхностями. Они обеспечивают условие неизменности толщины слоя 0. Слой деформируется в условиях показных на рис. 3.3,б Рис. 3.3 Будем считать, что у торцов цилиндра обеспечиваются такие же условия. Следовательно, w 0 и 0.При этом перемещения во всех точках тела происходят только в параллельных плоскостях. Это перемещения u u(, ), v v(, ) в плоскости. Таким образом, мы имеем случай плоской деформации тела. 1 По закону Гука имеем ( ( )) 0,тогда ) (3.5) Так как w 0 (, u и v не зависят от, то получим w u v w 0, 0 0. Задача о плоской деформации тела является двумерной. (3.6)

4 3.3 Основные уравнения плоской задачи. 1.Плоское напряженное состояние Уравнения равновесия: (3.7), X 0 Y 0 Условия на поверхности тела: l m p, l m p. (3.8) Геометрические уравнения (уравнения Коши): (3.9),,. u v u v Уравнения совместности деформаций (см.(.1)): (3.10). Закона Гука в прямой форме: (3.11),,,,. ãäå G G ( 1) Закона Гука в обратной форме ( ) ( ) 1 (3.1),, Плоская деформация. Для плоской деформации уравнения (3.7),(3.8),(3.9), (3.10) остаются в силе. Изменяются формулы закона Гука, так как 0.Например, для деформации с учетом (3.5) получим 1 1 ( ( )) ( ( ( ))) или после преобразований 0 1 ( ). (3.13) Использование функции напряжений В лекции были рассмотрены общие уравнения теории упругости в напряжениях (.14). Для плоской задачи таких уравнений будет три относительно неизвестных напряжений,,, это уравнения равновесия и уравнение совместности деформаций, X 0 Y 0, (3.14) ( ) 0,. Задачу (3.14) можно существенно упростить, если перейти к одной функции (, ), называемой функцией напряжений.

5 Пусть интенсивность объемных нагрузок будет постоянна: X const, Y const. Предположим, что существует такая функция (, ), что через нее напряжения выражаются по формулам: (3.15),, X Y. Покажем, что подстановка выражений (3.15) обращает уравнения равновесия в тождества при любой функции (, ). Действительно ( ) ( X Y) X ( ) ( ) X X 0. Аналогично проверяется второе уравнение. Таким образом, задавая всевозможные функции (, ), можно по формулам (3.15) получать «равновесные» поля напряжений в теле, т.е. поля удовлетворяющие уравнениям равновесия. Функция напряжений (, ) называется функцией Эйри (английский математик и астроном Джордж Биддэлл Эйри 186). Из всех равновесных полей истинное поле напряжений должно также удовлетворять третьему уравнению системы (3.14). Подставляем и, выраженные через (, ), получим ( )( ) ( )( ) 0, или (, ) 0, (3.16) где )( ) -двойной оператор Лапласа. После последовательного применения оператора Лапласа получим (3.17) Уравнение (3.17) называется бигармоническим уравнением плоской задачи. Оно представляет условие совместности деформаций, выраженное через функцию напряжений. Граничными условиями для уравнения (3.17) являются условия на поверхности (3.8), записанные через функцию напряжений. Если на контуре пластины или его части заданы не нагрузка, а фиксированные перемещенияu и v, то формулировка их через функцию значительно усложняется. Таким образом, решение плоской задачи свелось к необходимости решать одно дифференциальное уравнение в частных производных. Заметим, что если объемные нагрузки отсутствуют, то формулы (3.15) упрощаются,,. (3.18)

6 3.5 Решение плоской задачи с помощью функции напряжений обратным способом. Рассмотрим прямоугольную пластинку, закрепленную в центре тяжести, как показано на рис Рис.3.4 На элемент пластинки в окрестности центра тяжести наложены связи ограничивающие перемещения: вдоль оси х, вдоль оси у, угол поворота оси элемента. Исходные данные для пластики приняты следующие: (1 0 ) Функцию напряжений зададим в виде 3 50 ( 0 ) ПРОВЕРЯЕМ ВЫПОЛНЕНИЕ УРАВНЕНИЯ СОВМЕСТНОСТИ, ПОДСТАВЛЯЕМ В НЕГО ФУНКЦИЮ НАПРЯЖЕНИЙ. УРАВНЕНИЕ СОВМЕСТНОСТИ ВЫПОЛНЯЕТСЯ ОПРЕДЕЛЯЕМ НОРМАЛЬНЫЕ И КАСАТЕЛЬНЫЕ НАПРЯЖЕНИЯ ЧЕРЕЗ ФУНКЦИЮ НАПРЯЖЕНИЙ. ПО ФОРМУЛАМ ЗАКОНА ГУКА (3 0 ) УРАВНЕНИЯ СВЯЗИ ДЕФОРМАЦИЙ С ПЕРЕМЕЩЕНИЯМИ u И v. (4 0 ) ВЫБИРАЕМ ИЗ СИСТЕМЫ УРАВНЕНИЕ, СОДЕРЖАЩЕЕ ИНТЕГРИРУЕМ ЕГО ПО ПЕРЕМЕННОЙ, ПРИ ЭТОМ ДОБАВЛЯЕМ ФУНКЦИЮ ОТ И

7 (5 0 ) ВЫБИРАЕМ ИЗ СИСТЕМЫ УРАВНЕНИЕ, СОДЕРЖАЩЕЕ И ИНТЕГРИРУЕМ ЕГО ПО ПЕРЕМЕННОЙ. ПРИ ЭТОМ ДОБАВЛЯЕМ ФУНКЦИЮ ОТ (6 0 ) ВЫБИРАЕМ ИЗ СИСТЕМЫ УРАВНЕНИЕ, СОДЕРЖАЩЕЕ (7 0 ) ПОДСТАВЛЯЕМ ВЫРАЖЕНИЯ ДЛЯ ПЕРЕМЕЩЕНИЙ В ПОСЛЕДНЕЕ УРАВНЕНИЕ, ПОЛУЧАЕМ УРАВНЕНИЕ, СОДЕРЖАЩЕЕ НЕИЗВЕСТНЫЕ ФУНКЦИИ ИНТЕГРИРОВАНИЯ (7 0 ) СПРАВЕДЛИВОСТЬ УРАВНЕНИЯ МОЖЕТ БЫТЬ ОБЕСПЕЧЕНА, ЕСЛИ СУММА СЛАГАЕМЫХ, ЗАВИСЯЩИХ ТОЛЬКО ОТ И СУММА СЛАГАЕМЫХ, ЗАВИСЯЩИХ ТОЛЬКО ОТ ПОРОЗНЬ РАВНЫ КОНСТАНТЕ (8 0 ) ИНТЕГРИРУЕМ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, ПОЛУЧАЕМ (9 0 ) 150 _ F1( ) C _ C1 _ F1( ) C _ C ПОДСТАВЛЯЕМ в (5 0 ) И В (6 0 ) ПОЛУЧАЕМ:. КОНСТАНТЫ ИНТЕГРИРОВАНИЯ НАХОДИМ ИЗ УСЛОВИЙ ЗАКРЕПЛЕНИЯ ПЛАСТИНЫ В Т.( 0, 0 ) (10 0 ) УРАВНЕНИЯ ЗАПИСЫВАЕМ В Т.( 0, 0 ) РЕШАЕМ СИСТЕМУ УРАВНЕНИЙ, НАХОДИМ КОНСТАНТЫ ИНТЕГРИРОВАНИЯ.

8 ПОДСТАВЛЯЕМ В ВЫРАЖЕНИЯ ДЛЯ ПЕРЕМЕЩЕНИЙ (11 0 ) (1 0 ) ПОСЛЕ ПОДСТАНОВКИ ИСХОДНЫХ ДАННЫХ (1) ПОЛУЧАЕМ ОКОНЧАТЕЛЬНЫЕ ВЫРАЖЕНИЯ ДЛЯ ПЕРЕМЕЩЕНИЙ. (13 0 ) ОПРЕДЕЛЯЕМ ВНЕШНИЕ СИЛЫ, ДЕЙСТВУЮЩИЕ ПО КОНТУРУ ПЛАСТИНЫ: УРАВНЕНИЯ НА ПОВЕРХНОСТИ ИМЕЮТ ВИД Выражения для напряжений. ГРАННЬ 1- ( l=0, m=1, =h/) (ВЕРХНЯЯ-ГОРИЗОНТАЛЬНАЯ) ГРАННЬ 1-3 ( l=-1, m=0, =-L/ ) (ЛЕВАЯ ВЕРТИКАЛЬНАЯ) ГРАННЬ 3-4 ( l=0, m=-1, =-h/ ) (НИЖНЯЯ-ГОРИЗОНТАЛЬНАЯ) ГРАННЬ -4 ( l=1, m=0, =L/ ) (ПРАВАЯ ВЕРТИКАЛЬНАЯ) Рис.3.5 Деформированный вид пластины и поверхностные силы по торцам

9 ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ И ПЕРЕМЕЩЕНИЙ ПЛАСТИНКИ ПО ЗАДАННОЙ ФУНКЦИИ НАПРЯЖЕНИЙ. РАЗМЕРЫ ПЛАСТИНЫ [м], МОДУЛЬ УПРУГОСТИ [кн/м], КОЭФФИЦИЕНТ ПУАССОНА, МОДУЛЬ СДВИГА[кН/м]. СПИСОК АЛЬТЕРНАТИВНЫХ УСЛОВИЙ ЗАКРЕПЛЕНИЯ ПЛАСТИНКИ. УСЛОВИЙ ЗАКРЕПЛЕНИЯ ПЛАСТИНЫ т. (=0,=0) ФУНКЦИЯ НАПРЯЖЕНИЙ (, ) 0 (5) РИСУНОК ПЛАСТИНКИ С ЗАКРЕПЛЕННЫМИ ТОЧКАМИ Рис.1 Условия закрепления пластины ВЫРАЖЕНИЕ НОРМАЛЬНЫХ И КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ ЧЕРЕЗ ФУНКЦИЮ НАПРЯЖЕНИЙ. ПОДСТАВЛЯЕМ (5) В (6) И ДИФФЕРЕНЦИРУЕМ ПРОВЕРЯЕМ ВЫПОЛНЕНИЕ УРАВНЕНИЯ СОВМЕСТНОСТИ ДЕФОРМАЦИЙ

10 ПО ФОРМУЛАМ ЗАКОНА ГУКА ВЫРАЖАЕМ ДЕФОРМАЦИИ ЧЕРЕЗ НАПРЯЖЕНИЯ ПОДСТАВЛЯЯ (7) В (9), ПОЛУЧАЕМ УРАВНЕНИЯ СВЯЗИ ДЕФОРМАЦИЙ С ПЕРЕМЕЩЕНИЯМИ u И v. ПОСЛЕ ПОДСТАНОВКИ (10) В (11) ПОЛУЧИМ ВЫДЕЛЯЕМ ИЗ (1) УРАВНЕНИЕ СОДЕРЖАЩЕЕ ЧАСТНУЮ ПРОИЗВОДНУЮ ПО ОТ ФУНКЦИИ u(,) И РЕШАЕМ ЕГО. ВЫДЕЛЯЕМ ИЗ (1) УРАВНЕНИЕ СОДЕРЖАЩЕЕ ЧАСТНУЮ ПРОИЗВОДНУЮ ПО ОТ ФУНКЦИИ v(,)и РЕШАЕМ ЕГО. ВЫДЕЛЯЕМ ИЗ (1) УРАВНЕНИЕ СОДЕРЖАЩЕЕ ЧАСТНУЮ ПРОИЗВОДНУЮ ПО ОТ ФУНКЦИИ v (,) ПОДСТАВЛЯЕМ ВЫРАЖЕНИЯ ДЛЯ ПЕРЕМЕЩЕНИЙ (14), (16) В (17), ПОЛУЧАЕМ УРАВНЕНИЕ, СОДЕРЖАЩЕЕ НЕИЗВЕСТНЫЕ ФУНКЦИИ ИНТЕГРИРОВАНИЯ. СПРАВЕДЛИВОСТЬ УРАВНЕНИЯ (18) МОЖЕТ БЫТЬ ОБЕСПЕЧЕНА, ЕСЛИ СУММА СЛАГАЕМЫХ, ЗАВИСЯЩИХ ТОЛЬКО ОТ И СУММА СЛАГАЕМЫХ, ЗАВИСЯЩИХ ТОЛЬКО ОТ ПОРОЗНЬ РАВНЫ КОНСТАНТЕ. РЕШАЕМ УРАВНЕНИЯ (19), (0), ПОЛУЧАЕМ ПОДСТАВЛЯЕМ ФУНКЦИИ В ВЫРАЖЕНИЯ ДЛЯ ПЕРЕМЕЩЕНИЙ (14), (16)

11 КОНСТАНТЫ ИНТЕГРИРОВАНИЯ НАХОДИМ ИЗ УСЛОВИЙ ЗАКРЕПЛЕНИЯ ПЛАСТИНЫ (3). УРАВНЕНИЯ (5) ЗАПИСЫВАЕМ В СООТВЕТСТВУЮЩИХ ТОЧКАХ (см. (4)) РЕШАЕМ СИСТЕМУ УРАВНЕНИЙ (6), НАХОДИМ КОНСТАНТЫ ИНТЕГРИРОВАНИЯ. ПОДСТАВЛЯЕМ (7) ( И МОДУЛЬ СДВИГА ) В (3), (4) ПОСЛЕ ПОДСТАНОВКИ ИСХОДНЫХ ДАННЫХ (1) ПОЛУЧАЕМ ОКОНЧАТЕЛЬНЫЕ ВЫРАЖЕНИЯ ДЛЯ ПЕРЕМЕЩЕНИЙ. ОПРЕДЕЛЕНИЕ ВНЕШНИХ СИЛ, ДЕЙСТВУЮЩИХ ПО КОНТУРУ ПЛАСТИНЫ. УРАВНЕНИЯ НА ПОВЕРХНОСТИ ИМЕЮТ ВИД ГРАННЬ 1- ( l=0, m=1, =h/) (ВЕРХНЯЯ-ГОРИЗОНТАЛЬНАЯ) ГРАННЬ 1-3 ( l=-1, m=0, =-L/ ) (ЛЕВАЯ ВЕРТИКАЛЬНАЯ) ГРАННЬ 3-4 ( l=0, m=-1, =-h/ ) (НИЖНЯЯ-ГОРИЗОНТАЛЬНАЯ) ГРАННЬ -4 ( l=1, m=0, =L/ ) (ПРАВАЯ ВЕРТИКАЛЬНАЯ) Чистый сдвиг Рис. Деформированный вид пластины и поверхностные силы по торцам


Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 5. РАСЧЕТ ТОЛСТОСТЕННЫХ ЦИЛИНДРОВ 4.. ПОСТАНОВКА ЗАДАЧИ Цилиндр

Подробнее

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6 Тема 5 Напряженное и деформированное состояние в точке. Лекция 6 Объемное напряженное состояние. 6. Главные напряжения и главные площадки. 6. Площадки экстремальных касательных напряжений. 6. Деформированное

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3)

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3) Полная система уравнений теории упругости si F () i Лекция Полная система уравнений теории упругости. Уравнения совместности деформаций. Уравнения Бельтрами. Уравнения Ламе. Плоское напряженное и плоское

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ Методические указания к упражнениям и расчетной

Подробнее

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение 1. Электростатика 1 1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Уравнение для потенциала с источниками зарядами) уравнение Пуассона и уравнение без источников уравнение Лапласа Уравнение Пуассона

Подробнее

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны Лекция 9. Теорема о разгрузке. Итак, рассмотрен ряд теорий о поведении материала за пределами упругости. Теперь обратимся к другому вопросу: что будет, если начать разгружать образец, который уже находится

Подробнее

Тема 5. Напряженное состояние в точке. Лекция 5. Плоское напряженное состояние. Основные понятия.

Тема 5. Напряженное состояние в точке. Лекция 5. Плоское напряженное состояние. Основные понятия. Тема 5 Напряженное состояние в точке. Лекция 5 Плоское напряженное состояние. 5.1 Напряженное состояние в точке. 5.2 Напряжения в наклонных площадках. 5.3 Главные площадки и главные напряжения. 5.4 Экстремальные

Подробнее

Примеры изгиба пластин

Примеры изгиба пластин Примеры изгиба пластин. Цилиндрический изгиб пластины Рассмотрим пластину, бесконечно длинную в направлении оси, загруженную постоянной в направлении этой оси нагрузкой (рис., а). Вдоль оси нагрузка может

Подробнее

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max );

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max ); Лекция Деформация балок при изгибе Дифференциальное уравнение изогнутой оси балки Метод начальных параметров Универсальное уравнение упругой линии ДЕФОРМАЦИЯ БАЛОК ПРИ ПЛОСКОМ ИЗГИБЕ Основные понятия и

Подробнее

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука Задача 1 1 Стержень загружен крутящим моментом На поверхности стержня в точке к была замерена главная деформация Требуется определить угол поворота сечения, в котором приложен момент Решение При кручении

Подробнее

Лекция 1 Базовые понятия метода конечных элементов (МКЭ) Метод конечных элементов (МКЭ)

Лекция 1 Базовые понятия метода конечных элементов (МКЭ) Метод конечных элементов (МКЭ) Лекция 1 Базовые понятия метода конечных элементов (МКЭ) Метод конечных элементов (МКЭ) Метод конечных элементов (МКЭ) является в настоящее время одним из основных методов решения вариационных задач, в

Подробнее

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

Подробнее

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Глава 5. Упругие деформации Лабораторная работа 5. ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Цель работы Определение модуля Юнга материала равнопрочной балки и радиуса кривизны изгиба из измерений стрелы

Подробнее

ТЕОРИЯ УПРУГОСТИ. Л.Т. Шкелев, А.Н. Станкевич

ТЕОРИЯ УПРУГОСТИ. Л.Т. Шкелев, А.Н. Станкевич МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Киевский национальный университет строительства и архитектуры ЛТ Шкелев, АН Станкевич ТЕОРИЯ УПРУГОСТИ Конспект лекций для иностранных студентов, которые учатся

Подробнее

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение.

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение. Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

Подробнее

ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ

ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ Меньшенин Александр Аркадьевич Ульяновский государственный университет Задача данного

Подробнее

Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин

Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин #, декабрь 2015 УДК 539.3 Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин Баксараев Г.Д., студент Россия, 105005, г. Москва, МГТУ им Н.Э. Баумана

Подробнее

Изгиб цилиндрической оболочки при поперечном обтекании ее идеальной жидкостью

Изгиб цилиндрической оболочки при поперечном обтекании ее идеальной жидкостью Глава 2 Изгиб цилиндрической оболочки при поперечном обтекании ее идеальной жидкостью 2.1. Постановка задачи об обтекании цилиндрической оболочки Рассмотрим плоскую деформацию неподвижной бесконечной цилиндрической

Подробнее

Предмет: Использование суперкомпьютерных вычислений в инженерно-технических расчетах

Предмет: Использование суперкомпьютерных вычислений в инженерно-технических расчетах Предмет: Использование суперкомпьютерных вычислений в инженерно-технических расчетах Метод конечных элементов (МКЭ) Метод конечных элементов (МКЭ) является в настоящее время одним из основных методов решения

Подробнее

Виды напряженного состояния. 1. Напряженное состояние при значениях, является ОТВЕТ: 1) объемным; 2) плоским; 3) линейным; 4) чистого сдвига.

Виды напряженного состояния. 1. Напряженное состояние при значениях, является ОТВЕТ: 1) объемным; 2) плоским; 3) линейным; 4) чистого сдвига. Виды напряженного состояния 1. Напряженное состояние при значениях, является 2. Напряженное состояние элементарного объема является 3. Напряженное состояние элементарного объема, показанное на рисунке,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Строительный факультет

МИНИСТЕРСТВО ОБРАЗОВАНИЯ НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Строительный факультет МИНИСТЕРСТВО ОБРАЗОВАНИЯ НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Чувашский государственный университет имени ИН Ульянова» Строительный

Подробнее

МОДУЛЬ 1. ТЕПЛОПРОВОДНОСТЬ Специальность «Техническая физика» Плотность объемного тепловыделения

МОДУЛЬ 1. ТЕПЛОПРОВОДНОСТЬ Специальность «Техническая физика» Плотность объемного тепловыделения Специальность 300 «Техническая физика» Лекция 3. Теплопроводность плоской стенки при наличии внутренних источников тепла Плотность объемного тепловыделения В рассматриваемых ранее задачах внутренние источники

Подробнее

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки Теория напряженного состояния Понятие о тензоре напряжений, главные напряжения Линейное, плоское и объемное напряженное состояние Определение напряжений при линейном и плоском напряженном состоянии Решения

Подробнее

В. Л. Якушев, Д. Г. Кучерявенко. Расчет сильфонов с учетом геометрической нелинейности

В. Л. Якушев, Д. Г. Кучерявенко. Расчет сильфонов с учетом геометрической нелинейности Стр. 1 из 7 22.09.2010 15:42 В. Л. Якушев, Д. Г. Кучерявенко Расчет сильфонов с учетом геометрической нелинейности Предлагается численный метод и алгоритм расчета сильфонов с косинусоидальной гофрировкой

Подробнее

Задача 1. Рис.1.1. Решение.

Задача 1. Рис.1.1. Решение. Задача 1 Стержень квадратного поперечного сечения со стороной квадрата равной a и длиной 2l изготовлен из изотропного упругого материала с модулем упругости и коэффициентом Пуассона μ. Стержень вставляется

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 3

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 3 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 3 УРАВНЕНИЯ ЛАГРАНЖА ПЕРВОГО РОДА ПРИНЦИП ДАЛАМБЕРА-ЛАГРАНЖА (ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ) ПРИНЦИП ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ РАБОТА СИЛ ИНЕРЦИИ ТВЁРДОГО ТЕЛА Лектор:

Подробнее

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ " (ПГУПС) А.

Подробнее

+ = ψ, то никакого разрыва напряжений

+ = ψ, то никакого разрыва напряжений Линии разрыва напряжений Итак, линия разрыва напряжений это некоторая линия (поверхность в теле, на которой напряжения терпят разрыв Выделим мысленно в теле слой толщины δ, включающий в себя линию разрыва

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

F 0, то система отсчета, движущаяся поступательно со скоростью (Цсистема)

F 0, то система отсчета, движущаяся поступательно со скоростью (Цсистема) 3 ДИНАМИКА ТВЕРДОГО ТЕЛА Уравнения движения твердого тела в произвольной инерциальной системе отсчета имеют вид: () () где m масса тела скорость его центра инерции момент импульса тела внешние силы действующие

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

11.1 Двойной интеграл и его свойства

11.1 Двойной интеграл и его свойства Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Двойной интеграл» Кафедра теоретической и прикладной математики. разработана доц.дуниной Е.Б.

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

РАСЧЕТ ПЛАСТИНКИ НА ИЗГИБ МЕТОДОМ БУБНОВА ГАЛЁРКИНА

РАСЧЕТ ПЛАСТИНКИ НА ИЗГИБ МЕТОДОМ БУБНОВА ГАЛЁРКИНА Федеральное агентство по образованию Томский государственный архитектурно-строительный университет Расчет пластинки на изгиб методом Бубнова Галеркина: методические указания /Сост ИЮ Смолина, ЛЕ Путеева,

Подробнее

7.8. Упругие силы. Закон Гука

7.8. Упругие силы. Закон Гука 78 Упругие силы Закон Гука Все твердые тела в результате внешнего механического воздействия в той или иной мере изменяют свою форму, так как под действием внешних сил в этих телах изменяется расположение

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Доц. Кузьменко В.С. ЛАБОРАТОРНАЯ РАБОТА -: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Студент группы Допуск Выполнение Защита Цель работы: изучить виды деформации твердого тела и определить

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

Лабораторная работа 15 OПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА С ПОМОЩЬЮ КРУТИЛЬНОГО МАЯНИКА. Краткая теория.

Лабораторная работа 15 OПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА С ПОМОЩЬЮ КРУТИЛЬНОГО МАЯНИКА. Краткая теория. Лабораторная работа 5 OПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА С ПОМОЩЬЮ КРУТИЛЬНОГО МАЯНИКА Цель работы: определить экспериментально модуль сдвига проволоки методом крутильных колебаний. Краткая теория.. Деформация

Подробнее

Подставим эти выражения в последние две системы, и после преобразований уравнения несколько упростятся:

Подставим эти выражения в последние две системы, и после преобразований уравнения несколько упростятся: Запишем приращения функций χ ψ вдоль направления, определённого дифференциалами dx и dy: χ χ dx dy = dχ dy ϕ ϕ dx dy = dϕ y Введём новые функции и следующим образом: = χ ϕ, = χ ϕ. Тогда ϕ = ( ), χ = (

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ РОСЖЕЛДОР Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ростовский государственный университет путей сообщения» (ФГБОУ ВПО РГУПС) ТВ Суворова ЭЛЕМЕНТЫ

Подробнее

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов УДК 59. РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР 7 И. С. Ахмедьянов Самарский государственный аэрокосмический университет Рассматривается применение

Подробнее

p = λ x x x x (. (7.3) 3xx

p = λ x x x x (. (7.3) 3xx 7 НЕКОТОРЫЕ КЛАССИЧЕСКИЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ 7 Задача о всестороннем равномерном давлении на тело Одна из простейших задач теории упругости это задача о теле произвольной формы, нагруженном всесторонним

Подробнее

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными Растяжение (сжатие) элементов конструкций. Определение внутренних усилий, напряжений, деформаций (продольных и поперечных). Коэффициент поперечных деформаций (коэффициент Пуассона). Гипотеза Бернулли и

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск 36 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 200. Т. 42, N- 6 УДК 539.3 ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ ДЛЯ НЕОДНОРОДНОГО СЛОИСТОГО ТЕЛА А. Е. Алексеев, В. В. Алехин, Б. Д. Аннин Институт гидродинамики

Подробнее

ЦИКЛ ЛЕКЦИЙ ПО ТЕОРИИ ИЗГИБА ПЛАСТИН

ЦИКЛ ЛЕКЦИЙ ПО ТЕОРИИ ИЗГИБА ПЛАСТИН КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ МЕХАНИКИ И МАТЕМАТИКИ Кафедра теоретической механики А.А. САЧЕНКОВ ЦИКЛ ЛЕКЦИЙ ПО ТЕОРИИ ИЗГИБА ПЛАСТИН Учебное пособие Казань Цикл лекций посвящен изложению

Подробнее

, vy,0. Условие несжимаемости divv. 0 потенциального течения rotv. Для двумерного течения условие несжимаемости имеет вид 0, что приводит

, vy,0. Условие несжимаемости divv. 0 потенциального течения rotv. Для двумерного течения условие несжимаемости имеет вид 0, что приводит Методы расчета плоских течений Функция тока В плоском течении уменьшается количество переменных, что позволяет в случае потенциального течения существенно упростить решение задач об определении течения

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1 Труды международного симпозиума «Надежность и качество 009», Пенза том Горячев ВЯ, Савин АВ ОПРЕДЕЛЕНИЕ СВЯЗИ МЕЖДУ УСКОРЕНИЕМ И ПОПЕРЕЧНОЙ ДЕФОРМАЦИЕЙ УПРУГОГО ЭЛЕМЕНТА ДАТЧИКА Упругий элемент является

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ В.В.Поддубный ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ 1. Введение и основные определения Многие задачи естествознания и техники связаны с решением уравнений, содержащих неизвестные функции некоторых независимых

Подробнее

СТАТИКА. Тема 1. ПРОИЗВОЛЬНАЯ ПЛОСКАЯ СИСТЕМА СИЛ. Задание 1

СТАТИКА. Тема 1. ПРОИЗВОЛЬНАЯ ПЛОСКАЯ СИСТЕМА СИЛ. Задание 1 СТАТИКА Тема 1. ПРОИЗВОЛЬНАЯ ПЛОСКАЯ СИСТЕМА СИЛ Задание 1 Найти реакции связей (опор), наложенных на основное тело конструкции балку или сварной стержень. Исходные данные приведены в таблице 1.1. Схемы

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 4. ОБЪЕМНОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ И ТЕОРИИ ПРОЧНОСТИ

Подробнее

p y dz p n p x dy p z a dg

p y dz p n p x dy p z a dg 2. ГИДРОСТАТИКА 2.1. Свойства гидростатического давления 2.2. Основное уравнение гидростатики 2.3. Дифференциальные уравнения равновесия жидкости 2.4. Сила давления жидкости на плоскую стенку 2.5. Сила

Подробнее

r 2 r. E + = 2κ a, E = 2κ a

r 2 r. E + = 2κ a, E = 2κ a 1. Электростатика 1 1. Электростатика Урок 2 Теорема Гаусса 1.1. (1.19 из задачника) Используя теорему Гаусса, найти: а) поле плоскости, заряженной с поверхностной плотностью σ; б) поле плоского конденсатора;

Подробнее

УДК c Н.С. Бондаренко

УДК c Н.С. Бондаренко ISSN 683-470 Труды ИПММ НАН Украины. 009. Том 8 УДК 53.3 c 009. Н.С. Бондаренко ФУНДАМЕНТАЛЬНОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ТЕРМОУПРУГОСТИ {,0-АППРОКСИМАЦИИ ДЛЯ ТРАНСВЕРСАЛЬНО-ИЗОТРОПНЫХ ПЛАСТИН

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

При определении напряжений в качестве вспомогательной единицы измерения используется также кн/см 2 (1 кн/см 2 = 10 МПа).

При определении напряжений в качестве вспомогательной единицы измерения используется также кн/см 2 (1 кн/см 2 = 10 МПа). ПРЕДИСЛОВИЕ Учебное пособие предназначено для оказания помощи студентам строительных специальностей вузов при выполнении расчётно-графических работ по сопротивлению материалов основам строительной механики

Подробнее

главному вектору R, R, R и главному

главному вектору R, R, R и главному Лекция 08 Общий случай сложного сопротивления Косой изгиб Изгиб с растяжением или сжатием Изгиб с кручением Методики определения напряжений и деформаций, использованные при решении частных задач чистого

Подробнее

4. Задачи на условный экстремум. Рассмотрим задачу об отыскании экстремума функционала b. a, с граничными условиями. удовлетворяют уравнению связи

4. Задачи на условный экстремум. Рассмотрим задачу об отыскании экстремума функционала b. a, с граничными условиями. удовлетворяют уравнению связи Лекция 0 4 Задачи на условный экстремум Рассмотрим задачу об отыскании экстремума функционала V [ ] = F(,,,,,, где = (, = (, с граничными условиями ( = 0, ( = 0; ( =, ( = Кроме того, предположим, что функции

Подробнее

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши)

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Лекция 7 Дифференциальные уравнения Дифференциальные уравнения -го порядка f (, ). Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Дифференциальным

Подробнее

МЕТОД РЕШЕНИЯ СМЕШАННОЙ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ПРИ ОПРЕДЕЛЕНИИ НАПРЯЖЕННОГО СОСТОЯНИЯ ТВЕРДОГО ТЕЛА ПРИ ЕГО РЕЗАНИИ

МЕТОД РЕШЕНИЯ СМЕШАННОЙ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ПРИ ОПРЕДЕЛЕНИИ НАПРЯЖЕННОГО СОСТОЯНИЯ ТВЕРДОГО ТЕЛА ПРИ ЕГО РЕЗАНИИ УДК 63.36. МЕТОД РЕШЕНИЯ СМЕШАННОЙ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ПРИ ОПРЕДЕЛЕНИИ НАПРЯЖЕННОГО СОСТОЯНИЯ ТВЕРДОГО ТЕЛА ПРИ ЕГО РЕЗАНИИ Нанка О.В., доцент (Харьковский национальной технический университет сельского

Подробнее

УДК Гоголева О.С. Оренбургский государственный университет

УДК Гоголева О.С. Оренбургский государственный университет УДК 5393 Гоголева ОС Оренбургский государственный университет E-mail: ov08@inboxru ПРИМЕРЫ РЕШЕНИЯ ПЕРВОЙ ОСНОВНОЙ КРАЕВОЙ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ В ПОЛУПОЛОСЕ (СИММЕТРИЧНАЯ ЗАДАЧА) Даются примеры решения

Подробнее

УДК Изгиб и кручение тонкостенных стержней

УДК Изгиб и кручение тонкостенных стержней УДК 624.072.327 Изгиб и кручение тонкостенных стержней Гриценко О.О., Хремли Е.А. (Научный руководитель Башкевич И.В.) Белорусский национальный технический университет Минск, Беларусь Основным признаком

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21 1 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность электрического поля системы зарядов.

Подробнее

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 6 129 УДК 539.3 ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ В. В. Калашников, М. И. Карякин Ростовский

Подробнее

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.»

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Министерство образования Республики Беларусь Министерство образования Республики Беларусь Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Кафедра теоретичской и прикладной математики.

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 4 ИЗМЕРЕНИЕ МОМЕНТОВ ИНЕРЦИИ И МОДУЛЯ СДВИГА ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА 4 ИЗМЕРЕНИЕ МОМЕНТОВ ИНЕРЦИИ И МОДУЛЯ СДВИГА ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА 4 ИЗМЕРЕНИЕ МОМЕНТОВ ИНЕРЦИИ И МОДУЛЯ СДВИГА ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ Цель работы: 1. Изучить динамику и кинематику крутильных колебаний.. Измерить моменты инерции твердых

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 21 ЛЕКЦИЯ 21 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Условия медленно меняющихся полей. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность

Подробнее

Уравнение Лапласа в полярной системе координат.

Уравнение Лапласа в полярной системе координат. Линейные и нелинейные уравнения физики Уравнение Лапласа в полярной системе координат. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич 518 Глава 5. Уравнения эллиптического типа 25.2. Разделение

Подробнее

«Механика природных сред»

«Механика природных сред» ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Прикладная математика» Методические указания по дисциплине Автор Пожарский ДА Ростов-на-Дону

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ЗАДАЧИ ТРИБОФАТИКИ (часть 2)

ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ЗАДАЧИ ТРИБОФАТИКИ (часть 2) Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ЗАДАЧИ ТРИБОФАТИКИ (часть ) ВВЕДЕНИЕ ТЕМА 1. СОСРЕДОТОЧЕННЫЕ

Подробнее

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ):

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ): Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

Подробнее

D ставится в соответствие определенная точка w = u + iv. Множество D называется множеством определения

D ставится в соответствие определенная точка w = u + iv. Множество D называется множеством определения Методические указания к контрольной работе по математике Тема 1. Функции комплексной переменной Дадим определение функции комплексной переменной. Определение. Говорят что на множестве D точек комплексной

Подробнее

Расчет прямоугольной пластины методом конечных разностей

Расчет прямоугольной пластины методом конечных разностей Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Мосты и транспортные тоннели» А. А. Лахтин Расчет прямоугольной пластины методом конечных

Подробнее

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Лекция 2 (продолжение) Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Расчет статически неопределимых стержней при растяжении-сжатии Статически неопределимыми системами

Подробнее

РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК. Ю. М. Волчков,, Д. В. Важева

РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК. Ю. М. Волчков,, Д. В. Важева ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 28. Т. 49, N- 5 69 УДК 539.3 РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК Ю. М. Волчков,, Д. В. Важева Институт гидродинамики им. М.

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Краткая теория

Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Краткая теория Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Цель работы: определить модуль сдвига материала проволоки методом крутильных колебаний. Краткая теория. Деформация кручения

Подробнее

6.1 Работа силы на перемещении

6.1 Работа силы на перемещении 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ. ТЕОРЕМА ВЗАИМНОСТИ РАБОТ ФОРМУЛА МАКСВЕЛЛА-МОРА 6.1 Работа силы на перемещении Пусть к точке приложена сила F и точка получает перемещение u по направлению действия силы

Подробнее

3.3. ЯВЛЕНИЯ ПЕРЕНОСА В ГАЗАХ

3.3. ЯВЛЕНИЯ ПЕРЕНОСА В ГАЗАХ ЯВЛЕНИЯ ПЕРЕНОСА В ГАЗАХ Средняя длина свободного пробега молекулы n, где d эффективное сечение молекулы, d эффективный диаметр молекулы, n концентрация молекул Среднее число соударений, испытываемое молекулой

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНЫ, ЗАЩЕМЛЕННОЙ ПО ДВУМ ПРОТИВОПОЛОЖНЫМ КРАЯМ

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНЫ, ЗАЩЕМЛЕННОЙ ПО ДВУМ ПРОТИВОПОЛОЖНЫМ КРАЯМ ТЕХНИКА УДК.. (.) (0) АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНЫ ЗАЩЕМЛЕННОЙ ПО ДВУМ ПРОТИВОПОЛОЖНЫМ КРАЯМ В.Э. Еремьянц докт. техн. наук профессор Л.Т. Панова канд. техн. наук доцент

Подробнее

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра «МЕХАНИКА» ДИНАМИКА

Подробнее

АНАЛИЗ И ОСОБЕННОСТИ МЕТОДОВ ПРИ РАСЧЕТЕ ПЛАСТИН И ОБОЛОЧЕК НА ИЗГИБ. Авторы : Косауров А.П., Тимофеев П.В Научный руководитель: доцент Скворцов В.И.

АНАЛИЗ И ОСОБЕННОСТИ МЕТОДОВ ПРИ РАСЧЕТЕ ПЛАСТИН И ОБОЛОЧЕК НА ИЗГИБ. Авторы : Косауров А.П., Тимофеев П.В Научный руководитель: доцент Скворцов В.И. АНАЛИЗ И ОСОБЕННОСТИ МЕТОДОВ ПРИ РАСЧЕТЕ ПЛАСТИН И ОБОЛОЧЕК НА ИЗГИБ Авторы : Косауров А.П., Тимофеев П.В Научный руководитель: доцент Скворцов В.И. г. Москва 03 Задачи об изгибе пластин и оболочек играют

Подробнее

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8 Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Подробнее

Лабораторная работа 5. Краткая теория

Лабораторная работа 5. Краткая теория Лабораторная работа 5 Определение модуля сдвига по крутильным колебаниям Целью работы является изучение деформации сдвига и кручения, определение модуля сдвига металлического стержня. Краткая теория Модуль

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Семинар 8. ВАРИАЦИОННЫЕ ЗАДАЧИ ПОИСКА БЕЗУСЛОВНОГО ЭКСТРЕМУМА. МЕТОД ВАРИАЦИЙ В ЗАДАЧАХ С НЕПОДВИЖНЫМИ ГРАНИЦАМИ ПОСТАНОВКА ЗАДАЧИ

Семинар 8. ВАРИАЦИОННЫЕ ЗАДАЧИ ПОИСКА БЕЗУСЛОВНОГО ЭКСТРЕМУМА. МЕТОД ВАРИАЦИЙ В ЗАДАЧАХ С НЕПОДВИЖНЫМИ ГРАНИЦАМИ ПОСТАНОВКА ЗАДАЧИ Семинар 8 ВАРИАЦИОННЫЕ ЗАДАЧИ ПОИСКА БЕЗУСЛОВНОГО ЭКСТРЕМУМА МЕТОД ВАРИАЦИЙ В ЗАДАЧАХ С НЕПОДВИЖНЫМИ ГРАНИЦАМИ Функционалы ( ) ( ) зависящие от одной функции ПОСТАНОВКА ЗАДАЧИ Рассмотрим множество M допустимых

Подробнее