ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами."

Транскрипт

1 ВЕКТОРЫ Определение вектора Линейные операции над векторами Вектором на плоскости или в пространстве называется направленный отрезок, для которого указаны начало и конец Обозначения: AB, Точка А начало вектора, В конец Длиной вектора называется длина соответствующего В ему отрезка и обозначается Вектор называется А нулевым и обозначается O, если его начало и конец совпадают Ещё пишут AB = O Единичным вектором называется вектор, длина которого равна, = Два или более ненулевых вектора называеюся коллинеарными, если они лежат на одной прямой или на параллельных прямых Если векторы и коллинеарны, то это обозначается Коллинеарные векторы и могут быть сонаправленными обозн и противоположно направленными обозн Три или более ненулевых вектора называются компланарными, если они лежат на на одной плоскости или на параллельных плоскостях Два вектора и называются равными, если: ) ; ) и сонаправлены; 3) = Пример = ; не сонаправл В механике вектором обозчают силу (стрелка указывает направление действия силы, а длина вектора равна величине силы) Рис Силу можно прикладывать к разным точкам равной массы Точки переместятся в одном направлении на равные расстояния Все векторы, полученные таким образом будут равными, они получены один из другого параллельным переносом (на рис ) Пример Задан куб ABCDA B C D B C A D B C A D AB DC D C, AB C D, B D BD AB AB, AD BD, AD B D, AB, AD, DC, DB компланарны AB, AD, AB не компланарны AB = DC = D C = A B, AB = DC, AB = DC, AB = CD Витебск, УО «ВГТУ», Статковский Н С,

2 Линейные операции над векторами Заданы векторы, и число λ Покажем как строятся векторы λ, +, Умножение вектора на число Если λ =, то λ = Если λ >, то λ удовлетворяет условиям: ) λ ; ) λ ; 3) λ = λ Если λ <, то λ удовлетворяет условиям: ) λ ; ) λ ; 3) λ = λ 3 Первым здесь нарисован вектор Вектор сонаправлен с и в два раза длиннее Вектор 3 сонаправлен с и в три раза длиннее Вектор ( ) противоположно направлен с и в два раза длиннее, чем Вектор ( ) противоположно направлен с Вектор ( ) называют вектором, противоположным вектору Сложение векторов + Сложить векторы и можно двумя способами: а) по правилу параллелограмма + Заданные векторы и откладываем из одной точки Достроим до параллелограмма Диагональ этого параллелограмма (с началом в той же точке) задаёт вектор + б) по правилу треугольника + Откладываем вектор Из конца вектора откладываем вектор Соединяем начало вектора и конец вектора Получирм вектор + С точки зрения механики: вектор λ это перемещение в λ раз большее, чем и ) в том же направлении, если λ > ) в противоположном направлении, если λ < ) нулевое, если λ = вектор + это перемещение = результату последовательного применения перемещений и Вычитание векторов Первый способ Заданные векторы и откладываем из одной точки Возьмём вектор c такой, что + c = Этот вектор c и равен c = Те разность это вектор проведённый из конца вектора в конец Витебск, УО «ВГТУ», Статковский Н С,

3 Второй способ Сложим по правилу треугольника = + ( ) Пример 3 Слева нарисованы векторы,, c, d, p, q Справа найдены () +, (), () () (3) c d p q (3) c q+ 3 d, (4) p + q+ 3c d (4) Базис векторов Координаты вектора Базисом векторов называют такую совокупность векторов, через которые единственным образом можно записать любой вектор На плоскости любые два неколлинеарные вектора и образуют базис векторов плоскости = + Зафиксируем на плоскости два ненулевых неколлинеарных вектора и Тогда любой вектор на плоскости единственным образом можно записать в виде = + Числа, называются координатами вектора вбазисе, Пишут = ( ; ) На практике для решения задач выбирают самый простой базис, так называемый ортонормированный базис, =, = орто перпендикулярные, нормированный с фиксированной длиной векторов Пример Найти координаты векторов,, c в ортонормированный базисе, c Слева заданы векторы,, c Для вектора сразу видно, что = 3 +, то есть = (3;) Векторы и c отложим в той же точке, что и векторы, Получим = + = (; ), c= 3 c= (3; ) 3 Витебск, УО «ВГТУ», Статковский Н С,

4 Аналогично в пространстве три ненулевых некомпланарных вектора,, 3 образуют базис и любой вектор в пространстве можно единственным образом записать в виде = Числа,, 3 называются координатами вектора вбазисе,, 3 Это пишут так = (,, ) Ортонормированный базис в пространстве обозначают,, k k, k, k, =, =, k = Пример На векторах ортонормированного базиса построен куб ABCDA B C D так, что B C AD, AB, k AA A D A B D C = = = Найти координаты векторов AC, AC, AB, CD, BB, DB, DB в базисе,, k Решение AC = AD + AB = + = + + k, AC = (;;) AC = AC + C C = AD + AB + C C = + + k, AC = (; ; ) AB = AB + AA = + k = + + k, AB = (;;) [ ] ( ) CD= BA= AB = см ранее = + + k = + ( ) + ( ) k, CD= (; ; ) BB= AA= AA = k = + k, BB= (;; ) [ ] DB = AB AD = см вычитание векторов = = + + k, DB = ( ;; ) ( ) DB = DB + BB = AB AD + AA = + k = + + k, DB = ( ;;) Далее будем рассматривать только ортонормированные базисы и координаты векторов в них Проекция вектора на вектор Заданы векторы и Отложим векторы и из одной точки А Пусть l прямая, на которой лежит вектор, ϕ ϕ А В В А В проекция конца вектора на прямую l, ϕ угол между векторами и, ϕ < π обозначим буквой d расстояние между точками А и В обозначим AB Проекцией вектора на вектор называется число, обозначаемое пр = AB, если угол ϕ острый пр = AB, если угол ϕ тупой В обоих случаях из прямоугольных треугольников получим пр, причём пр = cosϕ 4 Витебск, УО «ВГТУ», Статковский Н С,

5 Геометрический смысл координат вектора На плоскости, в ортонормированном базисе, запишем вектор Пусть = ( ; ) Координаты вектора = ( ; ) это проекции этого вектора на базисные векторы, то есть = пр, = пр Объясним это примерах 3 А А На рисунке OA = (;3) С другой стороны О 3 пр OA = OA =, пр OA = OA = 3 А В OA = ( пр OA, пр OA ) Аналогично OB = (3; ) = ( пр OB, пр OB ) О В пространстве в ортонормированном базисе,, k для вектора = ( ; ; 3) также пр, пр = =, = пр 3 k Линейные операции над векторами в координатах Пусть заданы векторы на плоскости: = ( ; ), = ( ; ) и число λ Тогда координаты векторов λ, +, вычисляются по формулам: ) λ= ( λ ; λ ); ) + = ( + ; + ); 3) = ( ; ) На первом рисунке изображены векторы = ( ; ), = ( ; ) На втором рисунке изображены векторы = ( ; ), = ( ; ), + = ( + ; + ); Для векторов в пространстве = ( ; ; 3), = ( ; ; 3) ) λ= ( λ ; λ ; λ ); ) + = ( + ; + ; + ); 3) = ( ; ; ) Пример 3 Даны векторы = (3; 8;), = ( ; 6; ) Найти координаты векторов, +,, 3 5 Витебск, УО «ВГТУ», Статковский Н С,

6 Три полезные формулы ) Координаты вектора по координатам концов вектора Если на плоскости заданы координаты точек A (, ), B (, ), то координаты вектора AB равны AB = (, ) B A ( ; ) ( ; ) Если в пространстве заданы A ( ; ; z), B ( ; ; z ), то AB = ( ; ; z z) ) Координаты середины отрезка Если на плоскости C (, ) середина отрезка АВ, A (, ), B (, ), то + + =, = Если в пространстве C ( ; ; z ) середина отрезка АВ, A( ; ; z), B( ; ; z ), то B C A( ; ) ( ; ) ( ; ) + + z + z z =, =, = 3) Координаты коллинеарных векторов,, ( ), Пусть на плоскости = ( ; ), = ( ; ) существует число λ такое, что = λ ( ; ) = λ( ; ) ( ; ) = ( λ ; λ ) = λ ; = λ Таким образом, λ ; λ = = (координаты прапорциональны) Если в пространстве = ( ; ; 3), = ( ; ; 3), то = λ ; = λ; 3 = λ3 Примеры 4 Даны A(; ; 3), B (5;6; 7) Найти вектор AB и координаты середины отрезка АВ 5 Даны координаты вершин A( ; ), D(3; ) и центра О(; 3) параллелограмма ABCD Найти координаты вектора AD и вершин B, C 6 На полоскости заданы точки A(3; ), B(6;4) Найти координаты точек C, D, которые делят отрезок AB на три равных части Ответ C(4;), D (5; ) Во многих задачах механики и физики встречается операция умножения вектора на вектор Но при этом результат может быть как числом, так и вектором Рассматрим три вида умножения векторов: скалярное, векторное и смешанное 6 Витебск, УО «ВГТУ», Статковский Н С,

7 3 Скалярное произведение векторов Скалярным произведением векторов и называется число = cosϕ Пример Найти скалярные произведения базисных веторов,, k в R 3 Свойства скалярного произведения Запишем для векторов в пространстве На плоскости аналогично = ( λ) = ( λ) = λ( ) 3 ( ) Пусть c = + c = (,, ), = (,, ) Тогда 4 = = cosϕ = 7 = 8 пр = Доказательство, 4 8 Аналогичные формулы верны для векторов на плоскости Пример Даны векторы = (3;; 4), = (; 6; ) Найти скалярное произведение, длину, угол между и, проекцию пр Пример 3 В ABC заданы A(;;3), B(4;3;), C (5;6;4) Точка D основание высоты ВD Найти стороны ВА, ВС, угол В, длину АD 4 Векторное произведение векторов Будем рассматривать векторы в пространстве Тройка некомпланарных векторов c,, называется правой, если из конца третьего вектора кратчайший поворот от первого ко второму виден против часовой стрелки (см рис 3) Если указанный поворот по часовой стрелке, то тройка c,, называется левой c k Пример Рассмотрим базисные векторы,, k,, k правая тройка,,, k левая тройка,, k, правая тройка, k,, левая тройка, Векторным произведением векторов и называется вектор c, удовлетворяющей условиям: ) c и c ) c,, образуют правую тройку векторов 3) c = snϕ Векторное произведение векторов и обозначается 7 Витебск, УО «ВГТУ», Статковский Н С,

8 4 5 Свойства векторного произведения = ( λ) = ( λ) = λ( ) 3 ( ) + c = + c k = (,, ) Пусть Тогда,, = (,, ) ПАР, = 3 = = S площадь параллелограмма, построенного на векторах и 5а S ПАР ABCD = AB AC площадь параллелограмма ABCD 5б S ABC = AB AC площадь треугольника ABC Дополнение к свойству 4) Координаты вектора находим так Вычисляем определитель разложением по первой строке k = 3 = + k =,, k = 3 =,, Примеры Даны векторы = (3; ; 4), = (; 6; ) Найти Найти вектор, перпендикулярный векторам и Найти площадь параллелограмма, построенного на векторах 3 Найти площадь ABC, если A(;;), B(4;;5), C (6;;) и Возьмём любые векторы c,, 5 Смешанное произведение векторов Вычислим векторное произведение, а затем этот вектор умножим скалярно на вектор c Получим некоторое число ( ) c два числа ( ) c и ( c) Аналогично найдём число ( c) всегда одинаковы, то есть ( ) c ( c) Это число и назвали смешанным произведением векторов c,, Оказывается, что эти = Смешанным произведением векторов c,, называется число, обозначаемое c и равное c = ( ) c 8 Витебск, УО «ВГТУ», Статковский Н С,

9 Свойства смешанного произведениея Пусть = (,, 3), = (,, 3), c = ( c, c, c3) Тогда а) c > c,, правая тройка векторов; б) c < c,, левая тройка 3 а) c c,, векторы некомпланарны; б) c = c,, компланарны 4 а) VПАРАЛЛЕЛЕПИПЕДА c = c c c = c ; б) VПИРАМИДЫ ABCD = Примеры Даны векторы = (,,), = (,, ), c = (3,,) Требуется: а) Найти смешанное произведение c (= 5) б) Найти объём параллелептпеда, построенного на векторах c,, AB AC AD в) Выяснить компланарны ли векторы c,, г) Если некомпланарны, то выяснить образуют ли они правую тройку или левую д) Образуют ли c,, базис в пространстве? Вычислить объём пирамиды с вершинами в точках А(,,), B(,,), C(,, ), D(,,3) и её высоту, опущенную из вершины А 4 на грань А А А 3 3 Выяснить, лежат ли в одной плоскости точки А(,, 5), B(,, ), C(,3,) и D( 4,,) 9 Витебск, УО «ВГТУ», Статковский Н С,

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

Векторная алгебра. Глава Векторы на плоскости и в пространстве

Векторная алгебра. Глава Векторы на плоскости и в пространстве Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа

Подробнее

Банк заданий по теме «Векторы в пространстве. Метод координат в пространстве»

Банк заданий по теме «Векторы в пространстве. Метод координат в пространстве» Банк заданий по теме «Векторы в пространстве Метод координат в пространстве» Учащиеся должны знать/понимать: Понятие вектора, способ его изображения и названия Определение равенства векторов, их коллинеарности,

Подробнее

-1-2. Вычислить площадь треугольника, построенного на векторах.. Найти высоту грани ОВС тетраэдра ОАВС, опущенную из конца вектора OB.

-1-2. Вычислить площадь треугольника, построенного на векторах.. Найти высоту грани ОВС тетраэдра ОАВС, опущенную из конца вектора OB. --. Показать, что векторы a { ;2;0 }, b { 2; ; }, c { ;; } компланарны и найти разложение вектора 2 a + b по векторам a и b. 2. Вычислить площадь треугольника, построенного на векторах a m n, b 2 m + 3n

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

ЗАДАЧИ по теме «ВЕКТОРЫ»

ЗАДАЧИ по теме «ВЕКТОРЫ» УТВЕРЖДАЮ: ДЕ Капуткин, Председатель Учебно-методической комиссии по реализации Соглашения с Департаментом образования г Москвы "30" августа 013г ЗАДАЧИ по теме «ВЕКТОРЫ» МИСиС-013 1 Какие векторы равны

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

Лекция 2. Векторы. Определения.

Лекция 2. Векторы. Определения. Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

a b =S пар. = a b sin( a,b );

a b =S пар. = a b sin( a,b ); Практическое занятие 4 Тема: Векторное произведение векторов План Определение и свойства векторного произведения Векторное произведение в координатах Приложение векторного произведения к вычислению площадей

Подробнее

ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ»

ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» ВАРИАНТ Даны вершины треугольника: А(-); В(5-) и С(-) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма построенного

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Векторная алгебра Направленные отрезки и векторы.

Векторная алгебра Направленные отрезки и векторы. ГЛАВА 1. Векторная алгебра. 1.1. Направленные отрезки и векторы. Рассмотрим евклидово пространство. Пусть прямые (AB) и (CD) параллельны. Тогда лучи [AB) и [CD) называются одинаково направленными (соответственно

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

Тема 1-12: Линейные операции над векторами

Тема 1-12: Линейные операции над векторами Тема 1-12: Линейные операции над векторами А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА»

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ВАРИАНТ Даны вершины треугольника А ( ) В ( ) С ( ) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ

Подробнее

Лекция 3 Скалярное, векторное и смешанное произведение векторов

Лекция 3 Скалярное, векторное и смешанное произведение векторов Лекция 3 Скалярное, векторное и смешанное произведение векторов 1. ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1,

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 2 Векторная алгебра 1. Даны три вектора a = {0; 1; 3}, b = {3; 2; 1}, c = {4; 0; 4}. Требуется найти: a) вектор d = 2 a b

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число

Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число Далее - несколько нелинейных операций над векторами Для пары векторов, число вектор скалярное произведение

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность

Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность Практическое занятие 3. Практикум (рекомендации к практической части) МОДУЛЬ. ВЕКТОРНАЯ АЛГЕБРА Тема: Линейные операции над векторами План. Понятие вектора. Основные отношения векторов.. Сложение векторов.

Подробнее

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b.

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b. ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» А.Н. Канатников, А.П. Крищенко

Подробнее

Лекция 2: Линейные операции над векторами

Лекция 2: Линейные операции над векторами Лекция 2: Линейные операции над векторами Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы приступаем к изучению

Подробнее

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c);

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c); Лекция 4 1. ВЕКТОРЫ Вектор направленный отрезок. Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны) Противоположные векторы: имеют одинаковые длины

Подробнее

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость

Подробнее

Тест 371. Сонаправленные векторы. Равенство векторов

Тест 371. Сонаправленные векторы. Равенство векторов Тест 371. Сонаправленные векторы. Равенство векторов Пусть ABCD параллелограмм, O точка пересечения его диагоналей, точка K середина его стороны АВ, точка L середина его стороны ВС. Тогда: 1. векторы АВ

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

ВАРИАНТ Даны точки А(1,1,1) и В(4,5,-3). Найти проекцию AB на ось, составляющую с координатными осями равные острые углы.

ВАРИАНТ Даны точки А(1,1,1) и В(4,5,-3). Найти проекцию AB на ось, составляющую с координатными осями равные острые углы. ВАРИАНТ 1 1. ABCDEF вершины правильного шестиугольника. Равны ли векторы a) 4 BC и 2 AD b) 2 DC и 2 AF 2. Найти скалярное произведение векторов a = 2 p + 3q 3r и b = 3 p + 4q где p, q, r - единичные векторы,

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

4. Векторная алгебра

4. Векторная алгебра 15 4 Векторная алгебра Вариант 1 11 Даны две точки М( 5; 7; 6) и N (7; 9; 9) Найти проекцию вектора a ( 1; 3; 1) на направление вектора MN 12 Вычислить работу силы F ( 3; 2; 5) приложенной к точке А(2;

Подробнее

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «ВЕКТОРНАЯ АЛГЕБРА В ПРИМЕРАХ И ЗАДАЧАХ»

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «ВЕКТОРНАЯ АЛГЕБРА В ПРИМЕРАХ И ЗАДАЧАХ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет геосистем и технологий»

Подробнее

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только ~ ~ ВЕКТОРНАЯ АЛГЕБРА калярные и векторные величины, виды векторов. Определение: калярной называется величина, которая характеризуется только o своим значением m, T C. Определение: Векторной называется

Подробнее

Лекция 4. Векторное и смешанное произведения векторов

Лекция 4. Векторное и смешанное произведения векторов Лекция 4. Векторное и смешанное произведения векторов Упорядоченная тройка, некомпланарных векторов называется правой (левой), если, приведя их к общему началу, кратчайший поворот от первого вектора ко

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации

МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации ОДЕССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СВЯЗИ им АС ПОПОВА Кафедра высшей математики ВЕКТОРНАЯ АЛГЕБРА Учебное

Подробнее

9. СИСТЕМЫ КООРДИНАТ

9. СИСТЕМЫ КООРДИНАТ 9 СИСТЕМЫ КООРДИНАТ 9 ПРЯМОУГОЛЬНЫЕ СИСТЕМЫ КООРДИНАТ 9 ПРЯМОУГОЛЬНЫЕ КООРДИНАТЫ ВЕКТОРОВ И ТОЧЕК Пусть в пространстве фиксирована точка O Совокупность точки O и базиса называется аффинной (декартовой)

Подробнее

3.4 Векторы. Метод координат

3.4 Векторы. Метод координат 3.4. ВЕКТОРЫ. МЕТОД КООРДИНАТ 167 3.4 Векторы. Метод координат 3.4.1 Понятие вектора. Свойства Будем называть направленным отрезком AB упорядоченную пару (см. определение 16) точек A; B трехмерного пространства

Подробнее

б) Координаты точек K и L середин ребер A 1 B 1 и CC 1 соответственно. Найдем координаты точек K, L из разложения векторов AK,

б) Координаты точек K и L середин ребер A 1 B 1 и CC 1 соответственно. Найдем координаты точек K, L из разложения векторов AK, . Дан параллелепипед ABCDA B C D. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA, найти координаты: а) вершин C, B, C ; б) точек K и L середин ребер A B и CC соответственно. Решение:

Подробнее

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Модуль 3 для класса. Учебно-методическая часть./

Подробнее

на множестве векторов Понятие линейного пространства

на множестве векторов Понятие линейного пространства Линейная алгебра и аналитическая геометрия Тема: Векторы. Линейные операции на множестве векторов Понятие линейного пространства Лектор Рожкова С.В. 2012 г. Глава II. Векторная алгебра. Элементы теории

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 3 ВЕКТОРЫ 1. Определение вектора. Свободные и скользящие векторы Дадим определение направленного отрезка. Определение 1. Отрезок, концы которого упорядочены, называется

Подробнее

Лекция 4: Векторное произведение векторов

Лекция 4: Векторное произведение векторов Лекция 4: Векторное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой и следующей

Подробнее

Лекция 6 Тема: Векторное произведение векторов

Лекция 6 Тема: Векторное произведение векторов Лекция 6 Тема: Векторное произведение векторов План лекции Ориентация векторного базиса в пространстве Определение векторного произведения двух векторов Свойства векторного произведения 4 Вычисление векторного

Подробнее

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения.

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между

Подробнее

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия»

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия» ТИПОВОЙ РАСЧЕТ «Векторная алгебра Аналитическая геометрия» Задание 1: а) показать, что векторы p, q, r образуют базис Найти координаты вектора x в этом базисе; б) проверить коллинеарность векторов и c

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

-1-4. Дан треугольник с вершинами в точках А(1;-1;2), В(2;1;-1), С(-1;1;3). Найти его площадь и высоту, опущенную из вершины В.

-1-4. Дан треугольник с вершинами в точках А(1;-1;2), В(2;1;-1), С(-1;1;3). Найти его площадь и высоту, опущенную из вершины В. -- Доказать, что векторы e = { ;2;, e 2 = { 2;; }, e 3 = { ;2;3 } образуют базис Найти разложение в этом базисе вектора a = { ;3;2 } 2 Найти длину вектора a = 3e 2e2, где e =, e2 = 2, векторы угол в 30

Подробнее

Лекция 6. f 1 = c 1 1e 1 + c 2 1e 2, f 2 = c 1 2e 1 + c 2 2e 2. c 1 1 c 2 1 E = (e 1,e 2 ), F = (f 1,f 2 ), C =. c 1 2 c 2 2 F = EC.

Лекция 6. f 1 = c 1 1e 1 + c 2 1e 2, f 2 = c 1 2e 1 + c 2 2e 2. c 1 1 c 2 1 E = (e 1,e 2 ), F = (f 1,f 2 ), C =. c 1 2 c 2 2 F = EC. Лекция 6 1 ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1, f Векторы нового базиса можно выразить через векторы старого

Подробнее

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 4 ВЕКТОРЫ. БАЗИС 1. Базис векторов Определение 1. Векторы a 1,a 2,...,a n называются упорядоченными, если указано какой вектор из этой системы является первым, какой

Подробнее

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое пособие МОСКВА Кафедра математики ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое

Подробнее

Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет. Кафедра «Высшая математика»

Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет. Кафедра «Высшая математика» Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет Кафедра «Высшая математика» ЛГ Лелевкина, АК Курманбаева ВЕКТОРНАЯ АЛГЕБРА Учебно-методическое

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА Часть ВЕКТОРНАЯ АЛГЕБРА Методические указания для студентов -го

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1 Скалярное произведение векторов. Заметив, что есть проекция вектора на направление вектора, мы можем записать

ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1 Скалярное произведение векторов. Заметив, что есть проекция вектора на направление вектора, мы можем записать ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ 1 Скалярное произведение векторов Скалярным произведением двух векторов называется число, равное произведению их длин (модулей), умноженному на косинус угла между ними. Скалярное

Подробнее

СБОРНИК ЗАДАЧ ПО ВЕКТОРНОЙ АЛГЕБРЕ

СБОРНИК ЗАДАЧ ПО ВЕКТОРНОЙ АЛГЕБРЕ ФГБОУ ВПО "Саратовский государственный университет имени Н.Г.Чернышевского" СБОРНИК ЗАДАЧ ПО ВЕКТОРНОЙ АЛГЕБРЕ Учебное пособие А.В. Букушева, А.В. Гохман, М.В. Лосик Саратов 2013 ВВЕДЕНИЕ Традиционно курс

Подробнее

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

Лекция 2 Векторы Определители второго и третьего порядка

Лекция 2 Векторы Определители второго и третьего порядка Лекция 2 Векторы Определители второго и третьего порядка 1 ВЕКТОРЫ Вектор направленный отрезок Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны)

Подробнее

ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ

ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ Быкова Л.М., Добрынина Н.Н., Свердлова О.Л. ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ Рекомендовано учебно-методическим советом факультета технической кибернетики Ангарской государственной технической

Подробнее

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2.

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2. Тема 04 Скалярное произведение векторов Координатное представление скалярного произведения Векторное произведение векторов Координатное представление векторного произведения Смешанное произведение тройки

Подробнее

Векторная алгебра 1.1. СКАЛЯРНЫЕ И ВЕКТОРНЫЕ ВЕЛИЧИНЫ. М.Л. Каган, Т.С. Кузина, Т.А. Мацеевич.

Векторная алгебра 1.1. СКАЛЯРНЫЕ И ВЕКТОРНЫЕ ВЕЛИЧИНЫ. М.Л. Каган, Т.С. Кузина, Т.А. Мацеевич. МЛ Каган ТС Кузина ТА Мацеевич Векторная алгебра Предлагаемый электронный вариант учебного пособия подготовлен на основе книги МЛ Кагана и МВ Самохина «Математика в инженерном вузе Алгебра и геометрия»

Подробнее

Аналитическая геометрия. Задачи для самостоятельного решения.

Аналитическая геометрия. Задачи для самостоятельного решения. Аналитическая геометрия Задачи для самостоятельного решения 1 Векторы 11 Даны вершины треугольника: A( 1; 2; 4), B ( 4; 2;0) и C(3; 2; 1) Найти угол между медианой AM и стороной AB 12 Выяснить при каком

Подробнее

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ . ВЕКТОРНАЯ АЛГЕБРА и АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 1. Векторная алгебра 1. Понятие вектора Вектором будем называть направленный отрезок, т. е. отрезок с заданным на нём направлением. На рисунке направление

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ

Подробнее

5. Применение векторов для решения задач элементарной геометрии.

5. Применение векторов для решения задач элементарной геометрии. Практическое занятие 5 Тема: Смешанное произведение векторов. Применение векторов для решения задач элементарной геометрии План. Определение и свойства смешанного произведения.. Смешанное произведение

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Векторное и смешанное произведение векторов

Векторное и смешанное произведение векторов Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих

Подробнее

ВЕКТОРНАЯ АЛГЕБРА. Часть 1. Методические указания для самостоятельной работы студентов. Составители, О.В. Иванова

ВЕКТОРНАЯ АЛГЕБРА. Часть 1. Методические указания для самостоятельной работы студентов. Составители, О.В. Иванова Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный архитектурно-строительный университет»

Подробнее

Контрольная 2 Геометрия-1. Матфак ВШЭ, осень Если в условии не оговорено обратное, то система координат предполагается прямоугольной декартовой.

Контрольная 2 Геометрия-1. Матфак ВШЭ, осень Если в условии не оговорено обратное, то система координат предполагается прямоугольной декартовой. Вариант 1 Задача 1. Является ли векторным пространством множество многочленов P (x) степени не выше 2, удовлетворяющих условию P (1) = 0? Если да, постройте какой-нибудь базис и найдите размерность этого

Подробнее

Вопросы по АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ К устному экзамену 22 января 2016 г.

Вопросы по АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ К устному экзамену 22 января 2016 г. Вопросы по АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ К устному экзамену 22 января 2016 г. kiv@icm.krasn.ru 1. Вектор. Равенство векторов. Коллинеарные и компланарные векторы. 2. Линейные операции над векторами и их свойства.

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций)

ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций) МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ

Подробнее

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА Система упражнений по векторной алгебре для студентов

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения Кафедра МиММЭ Направление подготовки 5 Педагогическое образование, профиль «Математика

Подробнее

Векторная алгебра и аналитическая геометрия

Векторная алгебра и аналитическая геометрия Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая математика» А И Недвецкая Г А Тимофеева Е Г Чеснокова Векторная алгебра и аналитическая

Подробнее

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами. ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического

Подробнее

Решение типового варианта заданий по теме. "Аналитическая геометрия и векторная алгебра"

Решение типового варианта заданий по теме. Аналитическая геометрия и векторная алгебра Решение типового варианта заданий по теме "Аналитическая геометрия и векторная алгебра" Автор: ассистент кафедры высшей математики БГУИР Василюк Людмила Ивановна Содержание Задание Задание 0 Задание Задание

Подробнее

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Е. И. Галахов, О. А. Салиева ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Учебное пособие Москва 2009 1 Галахов Е. И., Салиева О. А. Векторная алгебра и аналитическая

Подробнее

Методические указания к контрольным работам

Методические указания к контрольным работам Методические указания к контрольным работам Контрольная работа «Переаттестация» Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости Расстояние между двумя точками M ( ) и ( ) плоскости

Подробнее

Гольдман М.Л. Сивкова Е.О.

Гольдман М.Л. Сивкова Е.О. Аналитическая геометрия М. Л. Гольдман Е. О. Сивкова Москва 014 ББК М УДК Рецензенты: Научный редактор: Гольдман М. Л., Сивкова Е. О. Аналитическая геометрия. Учебное пособие/ Федеральное государственное

Подробнее

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число Лекция 4 Скалярное произведение φ Определение. Углом φ между ненулевыми векторами и называется тот из углов, образованных этими векторами, отложенными от единого начала, который лежит в пределах от до

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

Министерство образования Республики Беларусь. Учреждение образования «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ»

Министерство образования Республики Беларусь. Учреждение образования «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ» Министерство образования Республики Беларусь Учреждение образования «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ» К. А. Решко, Л. И. Рыдевская ВЕКТОРЫ И НЕКОТОРЫЕ ИХ ПРИМЕНЕНИЯ Учебно-методические

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Глава 6. Векторная алгебра. 6.1 Линейные операции

Глава 6. Векторная алгебра. 6.1 Линейные операции Глава 6 Векторная алгебра 61 Линейные операции 1 Доказать, что векторы (1,2) и (2, 3) образуют базис на плоскости Найти в этом базисе координаты векторов (5,3) и ( 4,6) 2 Доказать, что векторы (1, 2, 3),

Подробнее

Математика 9 класс ВЕКТОРЫ

Математика 9 класс ВЕКТОРЫ МИНИСТЕРСТО ОБРАЗОАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НООСИБИРСКИЙ ГОСУДАРСТЕННЫЙ УНИЕРСИТЕТ СПЕЦИАЛИЗИРОАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 9 класс ЕКТОРЫ Новосибирск ведение Многие явления в окружающей

Подробнее

Фонд оценочных средств по аналитической геометрии и линейной алгебре Вопросы к экзамену

Фонд оценочных средств по аналитической геометрии и линейной алгебре Вопросы к экзамену Вопросы к экзамену Вопросы для проверки уровня обучаемости «ЗНАТЬ» Раздел 1 Элементы линейной алгебры 1 Операции над матрицами и их свойства Определители -го и 3-го порядков 3 Определение минора и алгебраического

Подробнее