4.5 Решение задачи линейной алгебры в электронных таблицах. Пример 4.9. Решим методом обратной матрицы следующую систему уравнений:

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "4.5 Решение задачи линейной алгебры в электронных таблицах. Пример 4.9. Решим методом обратной матрицы следующую систему уравнений:"

Транскрипт

1 . Решение задачи линейной алгебры в электронных таблицах Пример.9. Решим методом обратной матрицы следующую систему уравнений: - -. В этом случае матрица коэффициентов А и вектор свободных коэффициентов В имеют вид: A, B, Введём матрицу A и вектор В на рабочий лист MS cel (рис..). Рисунок.. Лист cel с матрицей А и вектором В Для решения системы методом обратной матрицы вначале необходимо вычислить матрицу, обратную к матрице A. Для этого нужно выделить диапазон ячеек, в которых будет вычислена обратная матрица, пусть в нашем случае это будут ячейки B:9. Теперь вызовем мастер функций, в категории Математические выберем функцию МОБР, на втором шаге мастера функций необходимо заполнить поле Массив (рис..) в него вводим ссылку на диапазон с исходной матрицей А, в нашем случае это диапазон B:. После нажатия кнопки OK в первой ячейке выделенного диапазона появится результат. Для того чтобы получить всю обратную матрицу, необходимо нажать клавишу F для перехода в режим редактирования, а затем одновременно клавиши Ctrl+Shift+nter. Лист MS cel примет вид, изображенный на рис... Функция МОБР(диапазон) возвращает обратную матрицу к заданной, которая хранится в диапазоне

2 Рисунок.. Задание аргумента функции МОБР Рисунок.. Лист cel с расчетом обратной матрицы Следующий этап расчета нужно умножить обратную матрицу на вектор В. Выделим ячейки для хранения результирующего вектора, например H:H9. Обратимся к мастеру функций, в категории Математические выберем функцию МУМНОЖ 7. На втором шаге мастера функций (рис..) заполняем два поля ввода Массив и Массив. В поле Массив необходимо ввести диапазон ячеек, в котором содержится первая из перемножаемых матриц, в нашем случае B:9 (обратная матрица), а в поле Массив ячейки, содержащие вторую матрицу, в нашем случае Н:Н (вектор В). 7 Функция МУМНОЖ(массив; массив) возвращает матричное произведение двух массивов (матриц). Результирующий массив будет размерности - строк, сколько в Массиве и столбцов, сколько в Массиве. При этом по правилам матричного умножения количество столбцов Массива должно равняться количеству строк Массива. Кроме того, при умножении матриц важен порядок сомножителей, т.е. АВ ВА 7

3 Рисунок.. Задание аргумента функции МУМНОЖ После нажатия кнопки OK в первой ячейке диапазона появится соответствующее результат, нажимаем клавишу F, а затем одновременно клавиши Ctrl+Shift+nter. Для того чтобы проверить правильность решения системы уравнений, необходимо умножить матрицу A на вектор Х и получить в результате вектор В. Умножение матрицы A на вектор Х осуществляется при помощи функции МУМНОЖ(В:Е;Н:Н9), так как было описанной выше. В результате проведенных вычислений рабочий лист примет вид изображенный на рис... Рисунок.. Лист cel с результатами расчета методом обратной матрицы Пример.. Решим систему из примера.9 методом Крамера. Введём матрицу А и вектор В на рабочий лист. Затем сформируем четыре вспомогательные матрицы, заменяя последовательно столбцы матрицы A на столбец вектора В (рис..). Затем вычислим определители главной матрицы A и вспомогательных матриц А, А, А и А. Для расчета главного определителя установим курсор в ячейку Н и вызовем мастер функций. В категории Математические выберем

4 функцию МОПРЕД. На втором шаге мастера функций в поле ввода Массив укажем диапазон матрицы, определитель которой надо вычислить, в нашем случае это ячейки B:. Для вычисления вспомогательных определителей введем формулы в соответствующие ячейки: Н7 =МОПРЕД(B:9), Н =МОПРЕД(B:), Н9 =МОПРЕД(B:9), Н =МОПРЕД(B:). Затем по формулам Крамера разделим последовательно вспомогательные определители на главный. В ячейку Н введём формулу =Н7/$Н$. Затем продублируем автозаполнением её содержимое в ячейки Н, Н и Н. Лист MS cel с решением и проверкой показан на рисунке.. Рисунок.. Лист cel с результатами расчета методом Крамера Пример.. Методом уравнений по законам Кирхгофа рассчитать токи,,,, в ветвях цепи постоянного тока (рис..7). Сопротивления резисторов: = Ом; = Ом; = Ом; = Ом; = Ом; = Ом; 7 = Ом; = Ом; 9 =7 Ом. Величины ЭДС: = В; = В; = В. Внутренними сопротивлениями источников питания пренебречь. Функция МОПРЕД служит для вычисления определителя матрицы 9

5 Рисунок.7. Электрическая схема к примеру. В схеме три узла и пять ветвей, следовательно, необходимо определить пять неизвестных токов. В соответствии с этим составляют два уравнения по первому закону Кирхгофа и три по второму закону Кирхгофа (.) Таким образом, искомые токи и их направления определяют, решая систему из пяти уравнений (.), составленных по законам Кирхгофа. Положительные значения найденных токов свидетельствуют о том, что действительные направления токов в соответствующих ветвях совпадают с условными направлениями. В системе линейных уравнений (.) неизвестными являются токи. Запишем эту систему в матричном виде A=B, где матрица А и вектор В имеют вид: 9 7 A B Для решения задачи введем исходные данные значения сопротивлений и ЭДС на лист cel (рис..). Затем сформируем матрицу А и вектор В, для расчета элементов матрицы и вектора используем ссылки на ячейки, в которых хранятся исходные данные (рис..9). Задачу нахождения токов решим методом обратной матрицы (рис.. и рис..9).

6 Рисунок.. Лист cel с решением примера. Рисунок.9. Лист cel с формулами для примера.

Эту систему можно представить в матричном виде: AX=b, где

Эту систему можно представить в матричном виде: AX=b, где Тема: Решение систем линейных уравнений, работа с матрицами Цель работы: Изучение возможностей пакета Ms Ecel при решении задач линейной алгебры. Приобретение навыков решения систем линейных алгебраических

Подробнее

ВАРИАНТЫ З А Д А Н И Й

ВАРИАНТЫ З А Д А Н И Й ЛАБОРАТОРНАЯ РАБОТА Тема: Решение систем линейных уравнений работа с матрицами Цель работы: Изучение возможностей пакета Ms Ecel при решении задач линейной алгебры. Приобретение навыков решения систем

Подробнее

OpenOffice.org Calc. x 1. x 2. a 12

OpenOffice.org Calc. x 1. x 2. a 12 Глава 3 Решение систем линейных уравнений. Работа с матрицами OpenOffice.org Calc В этой главе мы изучим возможности пакета OpenOffice.org Calc при решении систем линейных алгебраических уравнений и выполнении

Подробнее

Рис Ввод матриц на рабочий лист

Рис Ввод матриц на рабочий лист МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ 11 Умножение матриц 12 Транспонирование матриц 13 Обратная матрица 14 Сложение матриц 15 Вычисление определителей Обратите внимание на особенность

Подробнее

соотношение баланса, называемого моделью Леонтьева:

соотношение баланса, называемого моделью Леонтьева: Практическая работа 5.. Использование функций работы с массивами Microsoft Ecel в моделировании (на примере модели межотраслевого баланса) Цель работы. Выполнив эту работу Вы научитесь: использовать функции

Подробнее

Глава 18. Функция массива МУМНОЖ

Глава 18. Функция массива МУМНОЖ Глава 18. Функция массива МУМНОЖ Это глава из книги: Майкл Гирвин. Ctrl+Shift+Enter. Освоение формул массива в Excel. Предыдущая глава Оглавление Следующая глава Функция МУМНОЖ используется в Excel для

Подробнее

Бюджетное образовательное учреждение Омской области «Омский колледж транспортного строительства»

Бюджетное образовательное учреждение Омской области «Омский колледж транспортного строительства» Бюджетное образовательное учреждение Омской области «Омский колледж транспортного строительства» Учебно-научно исследовательских проектов обучающихся и талантливой молодежи Омского Прииртышья «Поколение

Подробнее

Тема: Цель: Время: Задание: Литература:

Тема: Цель: Время: Задание: Литература: Тема: Цель: Время: Задание: Литература: Практическая работа 0. Использование абсолютных и относительных адресов ячеек в формулах, решение уравнений и систем линейных алгебраических уравнений с помощью

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

Балансовые задачи - средствами Excel

Балансовые задачи - средствами Excel Балансовые задачи - средствами Excel В статье приведена методика решения балансовых задач в экономике с помощью реализованных в Excel методов линейной алгебры (см. также статью [1]), которая может использоваться

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

Уравнения составляются путем применения законов Кирхгофа и Ома (в комплексной форме).

Уравнения составляются путем применения законов Кирхгофа и Ома (в комплексной форме). Методы расчета сложных линейных электрических цепей Основа : возможность составления и решения систем линейных алгебраических уравнений - составляемых либо для цепи постоянного тока, либо после символизации

Подробнее

Формулы массива в Excel

Формулы массива в Excel 1 Формулы массива в Excel Массив набор элементов, который обрабатывается как единое целое. Разновидности массивов: 1. Одномерные вектор, значения которого хранятся в одной строке (столбце). Вектор-строка

Подробнее

Балансовые экономико-математические модели и их моделирование на Excel и MathCad

Балансовые экономико-математические модели и их моделирование на Excel и MathCad Лабораторная работа 4 Балансовые экономико-математические модели и их моделирование на Excel и MathCad Цель работы приобретение навыков построения балансовых экономико-математических моделей и решения

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

1. Основные законы электрических цепей. Эквивалентные преобразования электрических схем. 1.1 Основные законы электрических цепей

1. Основные законы электрических цепей. Эквивалентные преобразования электрических схем. 1.1 Основные законы электрических цепей Лекция профессора Полевского ВИ () Основные законы электрических цепей Эквивалентные преобразования электрических схем Цель лекции: ознакомиться с основными законами и эквивалентными преобразованиями в

Подробнее

В. Н. Непопалов. Расчет линейных электрических цепей постоянного тока

В. Н. Непопалов. Расчет линейных электрических цепей постоянного тока МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Южно-Уральский государственный университет Кафедра Теоретические основы электротехники. () В. Н. Непопалов Расчет линейных электрических цепей постоянного

Подробнее

Лекция 2. АНАЛИЗ РЕЗИСТИВНЫХ ЦЕПЕЙ

Лекция 2. АНАЛИЗ РЕЗИСТИВНЫХ ЦЕПЕЙ 4 Лекция АНАЛИЗ РЕЗИСТИВНЫХ ЦЕПЕЙ План Задача анализа электрических цепей Законы Кирхгофа Примеры анализа резистивных цепей 3 Эквивалентные преобразования участка цепи 4 Выводы Задача анализа электрических

Подробнее

Задача 1 Вычислить определитель матрицы

Задача 1 Вычислить определитель матрицы Задача Вычислить определитель матрицы 4 4 A 4 4 Решение Для вычисления определителя приведем матрицу к треугольному виду. После этого определитель будет равен произведению элементов главной диагонали.

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

Применение правил Кирхгофа при расчете электрических цепей

Применение правил Кирхгофа при расчете электрических цепей Применение правил Кирхгофа при расчете электрических цепей При расчете разветвленных электрических цепей применяют правила Кирхгофа Таких правил два Первое правило Кирхгофа гласит, что алгебраическая сумма

Подробнее

Практикум по теме 2 «Множественная линейная регрессия»

Практикум по теме 2 «Множественная линейная регрессия» Практикум по теме «Множественная линейная регрессия» Методические указания по выполнению практикума Целью практикума является более глубокое усвоение темы, а также развитие следующих навыков: Обоснование

Подробнее

Лекция 3 Решение систем алгебраических уравнений в средах. MS Excel и Mathcad. Лектор. Ст. преподаватель Купо А.Н.

Лекция 3 Решение систем алгебраических уравнений в средах. MS Excel и Mathcad. Лектор. Ст. преподаватель Купо А.Н. Лекция Решение систем алгебраических уравнений в средах Лектор MS Ecel и Mthcd Ст. преподаватель Купо А.Н. .Понятие системы линейных алгебраических уравнений (СЛАУ). Постановка задачи..методы решения СЛАУ.(Метод

Подробнее

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ КРАМЕРА

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ КРАМЕРА Ревчук И.Н. Пчельник В.К. УО «Гродненский государственный университет имени Янки Купалы» г. Гродно Республика Беларусь ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

1.1. Законы Кирхгофа. Теоретические сведения. Топология цепи ее строение. Разобраться со строением цепи можно, зная определения ее элементов.

1.1. Законы Кирхгофа. Теоретические сведения. Топология цепи ее строение. Разобраться со строением цепи можно, зная определения ее элементов. 1.1. Законы Кирхгофа. Теоретические сведения. Топология цепи ее строение. Разобраться со строением цепи можно, зная определения ее элементов. Ветвь - участок цепи, содержащий один или несколько последовательно

Подробнее

Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера

Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера Габриель Крамер (1704 1752) швейцарский математик. Данный метод применим только в случае систем линейных уравнений, где число переменных

Подробнее

Матричная форма записи

Матричная форма записи Матричная форма записи b x x x b x x x b x x x 2 2 1 1 2 2 2 22 1 21 1 1 2 12 1 11 Ax b A 2 1 2 22 21 1 12 11 b b b b 2 1 x x x x 2 1 Пусть имеется система уравнений для которой существуют точные значения

Подробнее

Расчет электрических цепей постоянного тока методом эквивалентных преобразований Основными законами, определяющими электрическое состояние любой

Расчет электрических цепей постоянного тока методом эквивалентных преобразований Основными законами, определяющими электрическое состояние любой Расчет электрических цепей постоянного тока методом эквивалентных преобразований Основными законами, определяющими электрическое состояние любой электрической цепи, являются законы Кирхгофа. На основе

Подробнее

I 3 b I 11 E 1 I 5 I 6 I 33

I 3 b I 11 E 1 I 5 I 6 I 33 Задача 1 Для заданной схемы необходимо: 1) составить на основании законов Кирхгофа систему уравнений для расчета токов во всех ветвях схемы; 2) определить токи во всех ветвях методом контурных токов; 3)

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

«MICROSOFT OFFICE EXCEL»

«MICROSOFT OFFICE EXCEL» «MICROSOFT OFFICE EXCEL» Дисциплина «Программные средства профессиональной деятельности» Лектор: Ст. преподаватель кафедры «Электропривода и электрооборудования» Воронина Наталья Алексеевна Назначение

Подробнее

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1. Найдите произведение матриц ABC: Решение типового варианта: Так как произведение матриц не перестановочно, то найти данное произведение можно двумя способами: Для определенности воспользуемся вторым

Подробнее

Расчетное задание 1. Анализ резистивных цепей постоянного тока. Для схемы, соответствующей номеру варианта, выполнить:

Расчетное задание 1. Анализ резистивных цепей постоянного тока. Для схемы, соответствующей номеру варианта, выполнить: Расчетное задание Анализ резистивных цепей постоянного тока Для схемы, соответствующей номеру варианта, выполнить:. Записать уравнения по законам Кирхгофа. Решив полученную систему уравнений, определить

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Лекция профессора Полевского В.И. (4) Расчет разветвленных линейных электрических цепей постоянного тока с несколькими источниками энергии.

Лекция профессора Полевского В.И. (4) Расчет разветвленных линейных электрических цепей постоянного тока с несколькими источниками энергии. Лекция профессора Полевского В.И. () Расчет разветвленных линейных электрических цепей постоянного тока с несколькими источниками энергии. Цель лекции: ознакомиться с основными методами расчета разветвленных

Подробнее

Лекция 1.5. Действия над матрицами. Обратная матрица. Ранг матрицы

Лекция 1.5. Действия над матрицами. Обратная матрица. Ранг матрицы Лекция 5 Действия над матрицами Обратная матрица Ранг матрицы Аннотация: Вводятся операции алгебры матриц Доказывается что всякая невырожденная матрица имеет обратную Выводится формула решения СЛАУ с помощью

Подробнее

4. МЕТОДЫ РАСЧЁТА РЕЗИСТИВНЫХ СХЕМ

4. МЕТОДЫ РАСЧЁТА РЕЗИСТИВНЫХ СХЕМ 28 4. МЕТОДЫ РАСЧЁТА РЕЗИСТИВНЫХ СХЕМ В данной главе рассматриваются методы расчёта, применяемые при анализе линейных схем в статическом режиме, т. е. при постоянных сигналах. В соответствии с компонентными

Подробнее

Тема 1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ. МАТРИЦЕЙ размера m x n называется прямоугольная таблица чисел, содержащая m строк и n столбцов.

Тема 1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ. МАТРИЦЕЙ размера m x n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Тема. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ МАТРИЦЕЙ размера m x n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Обозначается:. m n Числа, составляющие матрицу, называются элементами матрицы.

Подробнее

КОНСПЕКТ УРОКА ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» «ДЕЙСТВИЯ С МАТРИЦАМИ»

КОНСПЕКТ УРОКА ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» «ДЕЙСТВИЯ С МАТРИЦАМИ» Тюрикова Татьяна Леонидовна Краевое государственное автономное образовательное учреждение среднего профессионального образования «Кунгурский сельскохозяйственный колледж» Пермский край, г. Кунгур КОНСПЕКТ

Подробнее

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений ЗАНЯТИЕ Метод Крамера и матричный метод решения систем линейных уравнений Сведения из теории Уравнение называется линейным, если оно содержит неизвестные только в первой степени и не содержит произведений

Подробнее

Образец решения. получаем элемент матрицы AB, стоящий в 1-ой строке и 2-ом столбце (элемент C 12

Образец решения. получаем элемент матрицы AB, стоящий в 1-ой строке и 2-ом столбце (элемент C 12 1. Даны матрицы: Образец решения 1 2 1 1 0 2 3 0 2 1 1 0 A, B 1 1 0 2 1 1 2 1 1 0 1 1 Найти матрицу и выяснить, имеет ли она обратную матрицу. Решение. Найдѐм матрицу Найдѐм транспонированную матрицу Найдѐм

Подробнее

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ДК Агишева СА Зотова ВБ Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Волгоград Тема Матрицы Основные действия над ними Обратная матрица Матричный способ решения систем линейных

Подробнее

Лекция 3 АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ

Лекция 3 АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ Лекция АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ План Введение Решение систем линейных уравнений методом исключения Гаусса Метод LU- разложения 4 Анализ линейных цепей в установившемся синусоидальном

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ В ЭЛЕКТРОТЕХНИЧЕСКИХ РАСЧЕТАХ

ЧИСЛЕННЫЕ МЕТОДЫ В ЭЛЕКТРОТЕХНИЧЕСКИХ РАСЧЕТАХ УДК 378:004 ЧИСЛЕННЫЕ МЕТОДЫ В ЭЛЕКТРОТЕХНИЧЕСКИХ РАСЧЕТАХ М.И. Потапочкина, Е.Б. Винокуров, Н.П. Моторина, Р.В. Воронков, В.М. Иванов ФГБОУ ВПО «Тамбовский государственный технический университет», г.

Подробнее

Расчетное задание 1 Анализ резистивных цепей постоянного тока

Расчетное задание 1 Анализ резистивных цепей постоянного тока Расчетное задание Анализ резистивных цепей постоянного тока Для схемы, соответствующей номеру варианта, выполнить:. Записать уравнения по законам Кирхгофа. Решив полученную систему уравнений, определить

Подробнее

1. При каких значениях ранг матрицы. Решение:

1. При каких значениях ранг матрицы. Решение: . При каких значениях ранг матрицы равен двум? Решение: Ранг матрицы равен порядку базисного минора. Поскольку требуется, чтобы ранг матрицы был равен двум, то базисным должен быть какой-либо минор второго

Подробнее

Е.В. Шульга Омский государственный педагогический университет

Е.В. Шульга Омский государственный педагогический университет Е.В. Шульга Омский государственный педагогический университет Электронный научный журнал «Вестник Омского государственного педагогического университета» Выпуск 2006 www.omsk.edu Обучение математическому

Подробнее

Тема 3. Численные методы решения задачи аппроксимации

Тема 3. Численные методы решения задачи аппроксимации Тема. Численные методы решения задачи аппроксимации Будем считать, что является функцией аргумента. Это означает, что любому значению из области определения поставлено в соответствие значение. На практике

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия.

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия. Министерство образования и науки Российской Федерации Казанский государственный архитектурно-строительный университет Кафедра высшей математики Элементы векторной и линейной алгебры. Аналитическая геометрия.

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1 Кафедра Математики, физики и информационных технологий 2 Направление подготовки 010302

Подробнее

Практичні заняття з дисципліни. «Електротехніка, електроніка та мікропроцесорна техніка»

Практичні заняття з дисципліни. «Електротехніка, електроніка та мікропроцесорна техніка» Практичні заняття з дисципліни «Електротехніка, електроніка та мікропроцесорна техніка» Практическое занятие 1 Расчет сложных электрических цепей постоянного тока с одним источником энергии Цель занятия

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

Министерство образования Российской Федерации Московский государственный горный университет Кафедра электротехники

Министерство образования Российской Федерации Московский государственный горный университет Кафедра электротехники Министерство образования Российской Федерации Московский государственный горный университет Кафедра электротехники РАСЧЕТ ЦЕПЕЙ ПОСТОЯННОГО ТОКА Методические указания к самостоятельной работе по ТОЭ для

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 3. Элементы линейной алгебры (матрицы, определители, системы линейных уравнений и формулы Крамера) 1 Тема 1: Матрицы 1.1. Понятие

Подробнее

Тема: Математическое моделирование в решении электротехнических задач программными средствами Mathcad и MS Excel

Тема: Математическое моделирование в решении электротехнических задач программными средствами Mathcad и MS Excel Краевое государственное бюджетное профессиональное образовательное учреждение «Назаровский энергостроительный техникум» Тема: Математическое моделирование в решении электротехнических задач программными

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

Кафедра «САПР транспортных конструкций и сооружений»

Кафедра «САПР транспортных конструкций и сооружений» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «САПР транспортных конструкций и сооружений» В. Ю. СМИРНОВ О. В. СМИРНОВА Утверждено редакционно-издательским советом университета

Подробнее

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( )

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( ) Лекция 1 Работа с матрицами. 1. Основные понятия. Определение. Матрицей размерности чисел, содержащая строк и столбцов. называется таблица пронумерованных Исходя из такого определения матрицы, можно сделать

Подробнее

Лекция 2 АНАЛИЗ ЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ. План

Лекция 2 АНАЛИЗ ЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ. План Лекция АНАЛИЗ ЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ План. Введение. Метод узловых напряжений. Узловые уравнения для цепей с управляемыми источниками. Алгоритм формирования узловых уравнений 5. Модифицированный метод

Подробнее

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА ООО «Резольвента», wwwresolventru, resolvent@listru, (95) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

Матрицы и определители. Линейная алгебра

Матрицы и определители. Линейная алгебра Матрицы и определители Линейная алгебра Определение матрицы Числовой матрицей размера mxn называется совокупность чисел, расположенных в виде таблицы, содержащей m строк и n столбцов 11 21... m1 12......

Подробнее

Аналитически они записываются следующим образом:

Аналитически они записываются следующим образом: Синусоидальный ток «на ладони» Большая часть электрической энергии вырабатывается в виде ЭДС, изменяющейся во времени по закону гармонической (синусоидальной) функции. Источниками гармонической ЭДС служат

Подробнее

Лекция 2. АНАЛИЗ РЕЗИСТИВНЫХ ЦЕПЕЙ

Лекция 2. АНАЛИЗ РЕЗИСТИВНЫХ ЦЕПЕЙ 4 Лекция. АНАЛИЗ РЕЗИСТИВНЫХ ЦЕПЕЙ План. Задача анализа электрических цепей. Законы Кирхгофа.. Примеры анализа резистивных цепей. 3. Эквивалентные преобразования участка цепи. 4. Заключение. Задача анализа

Подробнее

x i Определение. Задача нахождения значения интерполяционной функции F x в точке не совпадающей ни с одной абсциссой интерполяционных узлов x,

x i Определение. Задача нахождения значения интерполяционной функции F x в точке не совпадающей ни с одной абсциссой интерполяционных узлов x, ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ Дано: точки наблюдения y (их количество + ) a b ; ; y y y y y Найти функцию : F F : y Определение Точки y называются узлами интерполяции Графическая интерпретация

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 1 Линейная алгебра Решить матричное уравнение ( ( 3 1 2 1 X + 2 4 2 3 3 ( 1 0 = 3 2 3 Выполним вначале умножение матриц на

Подробнее

Лекция 3. МЕТОД УЗЛОВЫХ НАПРЯЖЕНИЙ

Лекция 3. МЕТОД УЗЛОВЫХ НАПРЯЖЕНИЙ 6 Лекция. МЕТОД УЗЛОВЫХ НАПРЯЖЕНИЙ План. Метод узловых напряжений.. Алгоритм формирования узловых уравнений.. Формирование узловых уравнений для схем с ИТУН.. Модифицированный метод узловых напряжений.

Подробнее

В.Г. ЗАХАРОВ, А.В. МАЛЫШЕВ СИМВОЛЬНЫЙ РАСЧЕТ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ С ИСТОЧНИКАМИ ТОКА В СРЕДЕ «MATLAB»

В.Г. ЗАХАРОВ, А.В. МАЛЫШЕВ СИМВОЛЬНЫЙ РАСЧЕТ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ С ИСТОЧНИКАМИ ТОКА В СРЕДЕ «MATLAB» УДК 621.3(075.8) В.Г. ЗАХАРОВ, А.В. МАЛЫШЕВ СИМВОЛЬНЫЙ РАСЧЕТ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ С ИСТОЧНИКАМИ ТОКА В СРЕДЕ «MATLAB» Расчет электрической схемы в символьной форме позволяет построить ее частотные

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

Решить в Excel нелинейное алгебраическое уравнение (по номеру варианта из таблицы).

Решить в Excel нелинейное алгебраическое уравнение (по номеру варианта из таблицы). . Требования к оформлению контрольной работы ) Задания - выполняются на компьютере с использованием электронных таблиц (MS Ecel, LibreOffice Calc). Каждое задание оформляется на отдельном листе. Результат

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Лабораторная работа 5. Обработка экспериментальных данных в электронных таблицах ВАРИАНТЫ ЗАДАНИЙ

Лабораторная работа 5. Обработка экспериментальных данных в электронных таблицах ВАРИАНТЫ ЗАДАНИЙ Лабораторная работа 5. Обработка экспериментальных данных в электронных таблицах Задание 1. На первом рабочем листе документа ввести исходные данные, соответствующие варианту задания. Построить график

Подробнее

7. От чего зависит знак ЭДС в уравнении, соответствующем

7. От чего зависит знак ЭДС в уравнении, соответствующем Лабораторная работа 2.11 ИЗУЧЕНИЕ ЦЕПЕЙ ПОСТОЯННОГО ТОКА Цель работы: изучение цепей постоянного тока. Задание: по измеренным значениям напряжения убедиться в справедливости правил Кирхгофа для электрических

Подробнее

Линейная алгебра в примерах и задачах

Линейная алгебра в примерах и задачах Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая математика» И Н Пирогова О В Куликова Линейная алгебра в примерах и задачах Сборник

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА Задание 1. Для электрической схемы, соответствующей номеру варианта и изображенной на рис. 1.1 1.20, выполнить следующее: 1. Упростить схему, заменив последовательно

Подробнее

Практическая работа 5.4.

Практическая работа 5.4. Практическая работа 5.4. Решение задачи об оптимальном распределении ресурсов при выпуске продукции с использованием процедуры «Поиск решения» Microsoft Excel Цель работы. Выполнив эту работу, Вы научитесь:

Подробнее

Глава 1. Основные законы электрической цепи

Глава 1. Основные законы электрической цепи Глава 1. Основные законы электрической цепи 1.1 Параметры электрической цепи Электрической цепью называют совокупность тел и сред, образующих замкнутые пути для протекания электрического тока. Обычно физические

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

ЛАБОРАТОРНАЯ РАБОТА N 5 ИЗУЧЕНИЕ ЗАКОНОВ ПОСТОЯННОГО ТОКА

ЛАБОРАТОРНАЯ РАБОТА N 5 ИЗУЧЕНИЕ ЗАКОНОВ ПОСТОЯННОГО ТОКА ЛАБОРАТОРНАЯ РАБОТА N 5 ИЗУЧЕНИЕ ЗАКОНОВ ПОСТОЯННОГО ТОКА ЦЕЛЬ РАБОТЫ 1. Получение практических навыков при работе с простейшими электроизмерительными приборами. 2. Изучение законов протекания электрического

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

Контрольная работа T=3. Задание 1. [1, стр. 2]

Контрольная работа T=3. Задание 1. [1, стр. 2] Дана матрица Контрольная работа A 0 T= Задание [, стр ] Определите ее размерность Выпишите характеристики этой матрицы: прямоугольная, квадратная, симметричная, единичная, нулевая, треугольная, диагональная,

Подробнее

Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и

Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и аудит курс, 3 г.о., ДОТ Семестр: 2 Количество кредитов:

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

Тема 6.8. Вычисление определенного интеграла

Тема 6.8. Вычисление определенного интеграла Тема 6.8. Вычисление определенного интеграла Дидактическая цель. Познакомить учащихся с методами приближѐнного вычисления определѐнного интеграла. Воспитательная цель. Тема данного занятия имеет большое

Подробнее

значения. Другое название действующих значений эффективные, а также среднеквадратичные.

значения. Другое название действующих значений эффективные, а также среднеквадратичные. Глава 3 Переменный ток Теоретические сведения Большая часть электрической энергии вырабатывается в виде ЭДС, изменяющейся во времени по закону гармонической (синусоидальной) функции Источниками гармонической

Подробнее

Решение задач по линейной алгебре. Шульц Денис Сергеевич

Решение задач по линейной алгебре. Шульц Денис Сергеевич Решение задач по линейной алгебре. Шульц Денис Сергеевич План занятия. Содержание раздела ВМ «Линейная алгебра» Практические советы по решению задач Типовые задачи Линейная алгебра (содержание). Матрицы

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

КОРОЛЕВА (НАУЧНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ)» ЧИСЛЕННЫЕ МЕТОДЫ С А М А Р А

КОРОЛЕВА (НАУЧНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ)» ЧИСЛЕННЫЕ МЕТОДЫ С А М А Р А ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА (НАУЧНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

Подробнее