МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ"

Транскрипт

1 МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ ИНСТИТУТ Р Я Д Ы РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» Ульяновск

2 ББК Вя Р 9 Ряды : расчетно-графическая работа по дисциплине «Математика» / сост Л И Поленищенко Ульяновск : УВАУ ГАИ, с Содержит теоретические вопросы и расчетные задания по разделу «Ряды» Приведены решения типовых задач с подробным объяснением, указан перечень рекомендуемой литературы Составлена в соответствии с программой курса математики Предназначена для курсантов второго курса специализации Управление качеством в технике и технологии авиатранспортных систем Печатается по решению Редсовета училища ОГЛАВЛЕНИЕ Общие сведения Теоретические вопросы Расчетные задания Решение типового варианта Библиографический список Ульяновское высшее авиационное училище гражданской авиации институт,

3 Поленищенко Л И Ряды по дисциплине «Математика» ОБЩИЕ СВЕДЕНИЯ РГР одна из основных форм самостоятельной работы курсантов при изучении курса математики, способствующая более глубокому изучению основных разделов дисциплины содержит теоретические вопросы и расчетные задания Теоретические вопросы являются общими для всех курсантов, задачи для каждого курсанта учебной группы индивидуальные Всего предлагается различных вариантов расчетных заданий Приведено решение одного варианта заданий с необходимыми методическими рекомендациями В РГР принята следующая нумерация: первое число означает номер задачи, а второе номер варианта Ответы на теоретические вопросы курсанты готовят устно, расчетные задания выполняют письменно по мере изучения учебного материала на лекциях и практических занятиях РГР сдают на проверку преподавателю Завершающим этапом является защита РГР Во время защиты курсант должен уметь правильно отвечать на теоретические вопросы, пояснять решения задач своего варианта, решать задачи аналогичного типа НИЛ НОТ НИО УВАУ ГА и г

4 Поленищенко Л И Ряды по дисциплине «Математика» ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ Числовой ряд Сходимость и сумма ряда Геометрическая прогрессия, ее сходимость Основные свойства числовых рядов Необходимый признак сходимости числового ряда, его следствие Ряды с положительными членами Теоремы сравнения Признак Даламбера Радикальный признак Коши Интегральный признак сходимости знакоположительного ряда 9 Гармонический ряд Обобщенный гармонический ряд и его сходимость Знакочередующийся ряд Теорема Лейбница Понятие остатка ряда Оценка остатка знакочередующегося ряда Знакопеременный ряд Достаточный признак сходимости знакопеременного ряда Абсолютная и условная сходимость знакопеременного ряда Определение функционального ряда, область его сходимости Степенной ряд Теорема Абеля о сходимости степенного ряда Интервал сходимости, радиус сходимости Некоторые свойства степенных рядов, интегрирование и дифференцирование Ряды Тейлора и Маклорена Необходимое и достаточное условия разложимости функции в ряд Тейлора Разложение по степеням функций: l, arcg Разложение по степеням функции: 9 Разложение по степеням функций:, si, cos Применение степенных рядов в приближенных вычислениях Приближенное вычисление значений функций Применение степенных рядов при интегрировании e m НИЛ НОТ НИО УВАУ ГА и г

5 Поленищенко Л И Ряды по дисциплине «Математика» РАСЧЕТНЫЕ ЗАДАНИЯ Задача Исследовать на сходимость следующие ряды а б! в arcg г а cos б в! l г а б в e г l а arcg б в г e а б! в г а arcg б! в l г а! б 9 9 l9 в г a l б cos в! г arcg НИЛ НОТ НИО УВАУ ГА и г

6 Поленищенко Л И Ряды по дисциплине «Математика» e 9 а б! в г arcsi а arcg б e в! г а l! б 9 в e г а б l в г arcg а б в г а l б в! г e π а arcsi б! в cos г l а б arcg в г а б 9 в г НИЛ НОТ НИО УВАУ ГА и г

7 Поленищенко Л И Ряды по дисциплине «Математика» а б! в г e 9 а l б в! г а e б arcsi в г а l б e в! г a arcg e б! в г а 9 б arcg в! г cos l а б в si г! а l e б! arcg в г 9 Задача Исследовать ряды на абсолютную или условную сходимость НИЛ НОТ НИО УВАУ ГА и г

8 Поленищенко Л И Ряды по дисциплине «Математика» l! 9!! 9 arcg l! l! l НИЛ НОТ НИО УВАУ ГА и г

9 Поленищенко Л И Ряды по дисциплине «Математика» Задача Найти интервал сходимости степенного ряда Исследовать сходимость на концах интервала а б а! б а б а б! а! б 9 а 9 б а б а б 9 а! б НИЛ НОТ НИО УВАУ ГА и г 9

10 Поленищенко Л И Ряды по дисциплине «Математика» а б а б а б 9 а! б а! б а 9 б а б а б а б 9 а! б НИЛ НОТ НИО УВАУ ГА и г

11 Поленищенко Л И Ряды по дисциплине «Математика» а а б б 9 а б а! б а а б б Задача Разложить в ряд по степеням х функцию y f f e f l f e f f cos f e f l f e e НИЛ НОТ НИО УВАУ ГА и г

12 Поленищенко Л И Ряды по дисциплине «Математика» 9 f si cos f si f e f l f f cos f e f f si f l 9 f cos si f l f f e f l f e e f e Задача Разложить функцию y f в ряд Тейлора по степеням х а f, a f l, a f, a f e, a НИЛ НОТ НИО УВАУ ГА и г

13 Поленищенко Л И Ряды по дисциплине «Математика» π f cos, a f, a f, a f, a 9 f, a f e, a f, a f, a π f, a f si, a f cos, a π f l, a f, a f e, a 9 f, a f, a f cos, π a f, a f si, a π f l, a f, a НИЛ НОТ НИО УВАУ ГА и г

14 Поленищенко Л И Ряды по дисциплине «Математика» Задача Найти первые четыре члена разложения функции f в ряд по степеням х si f d f d e cos f d f d f e d f si d e f d f cos d 9 f arcg d f e d f si d f l d l f d f e d arcg e f d f d cos l f d f d НИЛ НОТ НИО УВАУ ГА и г

15 9 d e f l d f si d f d e f d f l d f cos d f Задача Найти сумму ряда Поленищенко Л И Ряды по дисциплине «Математика» НИЛ НОТ НИО УВАУ ГА и г

16 9 9 Поленищенко Л И Ряды по дисциплине «Математика» НИЛ НОТ НИО УВАУ ГА и г

17 Поленищенко Л И Ряды по дисциплине «Математика» НИЛ НОТ НИО УВАУ ГА и г

18 Поленищенко Л И Ряды по дисциплине «Математика» РЕШЕНИЕ ТИПОВОГО ВАРИАНТА Задача Исследовать на сходимость следующие ряды а б! в г l Решение а Для данного ряда не выполняется необходимый признак сходимости: lim u В самом деле, lim следовательно, ряд расходится lim, б Для исследования данного ряда на сходимость удобно применить радикальный признак Коши u lim u lim Следовательно, ряд сходится lim < в Составим -й член ряда, для этого в формулу общего члена ряда!! вместо подставим : u По признаку Даламбера получим l lim!! lim lim lim!! u u Так как l >, то ряд расходится г Ряд l исследуем на сходимость с помощью интегрального признака Коши Функция f является непрерывной, положительной и монотонно убывающей при > l НИЛ НОТ НИО УВАУ ГА и г

19 Поленищенко Л И Ряды по дисциплине «Математика» d l b lim l b d l l lim b lim l b b l b l lim b l Несобственный интеграл сходится является конечной величиной, поэтому сходится и данный числовой ряд Задача Исследовать ряд на абсолютную или условную сходимость Решение Составим ряд из модулей членов данного ряда К полученному знакоположительному ряду применим признак сравнения Сравним его с гармоническим рядом Известно, что гармонический ряд расходящийся По теореме сравнения в предельной форме имеем lim, следовательно, ряд из модулей также расходится Исследуем теперь данный знакочередующийся ряд по признаку Лейбница Проверим выполнение двух условий этого признака > > >, 9 lim Оба условия признака Лейбница выполнены члены данного ряда по абсолютной величине монотонно убывают: N u > u, общий член ряда стремится к нулю: lim u, поэтому знакочередующийся ряд сходится Учитывая, что ряд из модулей расходится, делаем вывод, что данный ряд сходится условно b НИЛ НОТ НИО УВАУ ГА и г 9

20 Поленищенко Л И Ряды по дисциплине «Математика» Задача Найти интервал сходимости степенного ряда Исследовать сходимость на концах интервала: а б Решение а Считая фиксированным числом, применим признак Даламбера к ряду, составленному из модулей членов данного ряда: u, u, l lim u u lim lim В область сходимости степенного ряда входят все те значения, для которых l < Поэтому <, < <, < < Исследуем сходимость ряда на концах интервала При получаем ряд Этот знакочередующийся ряд расходится, так как не выполняются условия признака Лейбница При получаем ряд Этот ряд также расходится, так как для него не выполняется необходимый признак сходимости lim u Таким образом, интервал сходимости ряда l б Находим интервал сходимости данного ряда также по признаку Даламбера lim u u lim lim < Следовательно, < <, < <, < < НИЛ НОТ НИО УВАУ ГА и г

21 Поленищенко Л И Ряды по дисциплине «Математика» Исследуем сходимость ряда на концах интервала При получаем ряд Это общегармонический ряд с показателем p < Такой ряд расходится При получаем ряд Этот знакочередующийся ряд сходится, так как для него выполняются условия признака Лейбница: > > > lim Итак, область сходимости данного ряда <, или ] Задача Разложить в ряд по степеням х функцию f e Решение В разложении функции ряд Маклорена для функции e : e! e!!!! e заменим х на х, тем самым получим, < <!!! Известно, что внутри интервала сходимости степенной ряд можно почленно умножать на общий множитель Умножим почленно полученный ряд на х: e! Интервал сходимости ряда!!!! НИЛ НОТ НИО УВАУ ГА и г

22 Поленищенко Л И Ряды по дисциплине «Математика» Задача Разложить функцию f в ряд Тейлора по степеням х Решение Определим значения функции и ее производных при : f, f, f, f, f, f, f, f,!! f, f Подставим найденные значения в общее выражение ряда Тейлора:!!!!! Исследуем полученный степенной ряд на сходимость по признаку Даламбе- u ра: lim lim u При фиксированном ряд будет сходиться, если <, < <, < <, < < то есть НИЛ НОТ НИО УВАУ ГА и г

23 Поленищенко Л И Ряды по дисциплине «Математика» При данная функция не определена При степенной ряд при- мет вид: Этот ряд расходится, так как не выполняются условия признака Лейбница lim u Таким образом, степенной ряд, построенный для функции f, сходится в интервале < < Задача Найти первые четыре члена разложения функции f в ряд по cos степеням х: f d Решение Для разложения подынтегральной функции в ряд воспользуемся рядом Маклорена для функции cos cos!!!! В результате замены х на и сокращения каждого слагаемого на, получим ряд вида: cos!!!!!!!! Применяя почленное интегрирование в области сходимости этого ряда < <, находим cos 9 f d d!!! 9!!! После подстановки верхнего и нижнего пределов интегрирования оконча- 9 тельно получим: f!!! НИЛ НОТ НИО УВАУ ГА и г

24 Задача Найти сумму ряда: Решение Воспользуемся свойством о почленном интегрировании и дифференцировании степенных рядов в их области сходимости Проинтегрируем данный ряд почленно, получили бесконечно убывающую геометрическую прогрессию с первым членом a и со знаменателем, q ее сумма вычисляется по формуле, < q q a S Следовательно,,, < < < < Полученный степенной ряд продифференцируем почленно в его интервале сходимости : Таким образом, сумма данного степенного ряда равна при < < Поленищенко Л И Ряды по дисциплине «Математика» НИЛ НОТ НИО УВАУ ГА и г

25 Поленищенко Л И Ряды по дисциплине «Математика» БИБЛИОГРАФИЧЕСКИЙ СПИСОК Бугров, Я С Дифференциальные уравнения Кратные интегралы Ряды Функции комплексного переменного : учеб для вузов / Я С Бугров, С М Никольский М : Наука, 99 Данко, П Е Высшая математика в упражнениях и задачах : учеб пособие для вузов : в ч Ч / П Е Данко, А Г Попов, Т Я Кожевникова, С П Данко -е изд, испр М : Оникс : Мир и образование, 9 Демидович, Б П Краткий курс высшей математики : учеб пособие для вузов / Б П Демидович, В А Кудрявцев М : Астрель, АСТ, Кузнецов, Л А Сборник заданий по высшей математике типовые расчеты : учеб пособие для втузов / Л А Кузнецов М : Высшая школа, 9 Пискунов, Н С Дифференциальное и интегральное исчисления: учеб для втузов : в т Т / Н С Пискунов М : Интеграл-Пресс, НИЛ НОТ НИО УВАУ ГА и г

26 по дисциплине «Математика» РЯДЫ Составитель ПОЛЕНИЩЕНКО ЛИДИЯ ИВАНОВНА Редактор Т Е Мещерякова Компьютерная верстка И А Ерёмина Подписано в печать Формат 9/ Бумага офсетная Печать трафаретная Усл печ л, Уч-изд л, Тираж Заказ РИО и типография УВАУ ГАИ, г Ульяновск, ул Можайского, /


Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ С ПОМОЩЬЮ ПРОИЗВОДНЫХ

ИССЛЕДОВАНИЕ ФУНКЦИЙ С ПОМОЩЬЮ ПРОИЗВОДНЫХ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ. КАСАТЕЛЬНАЯ ПЛОСКОСТЬ И НОРМАЛЬ К ПОВЕРХНОСТИ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ. КАСАТЕЛЬНАЯ ПЛОСКОСТЬ И НОРМАЛЬ К ПОВЕРХНОСТИ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ ИНСТИТУТ

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК О. В. Исакова Л. А. Сайкова М.Д. Улымжиев УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ

Подробнее

3 РЯДЫ Хабаровск 2004

3 РЯДЫ Хабаровск 2004 РЯДЫ Хабаровск 4 4 ЧИСЛОВЫЕ РЯДЫ Числовым рядом называется выражение, где,,, числа, которые образуют бесконечную числовую последовательность, общий член ряда, где N ( N множество натуральных чисел) Пример

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Министерство образования Российской Федерации МАТИ Российский государственный технологический университет им.к.э.циолковского Кафедра «Высшая математика» ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Варианты курсовых

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени

Подробнее

Министерство образования Российской Федерации. МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. К. Э.

Министерство образования Российской Федерации. МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. К. Э. Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика РЯДЫ Методические указания к курсовой работе Составитель:

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА МАТЕМАТИКА МАТЕМАТИЧЕСКИЙ АНАЛИЗ РЯДЫ Методические рекомендации

Подробнее

Министерство образования республики Беларусь. Учреждение образования «Могилевский государственный университет продовольствия»

Министерство образования республики Беларусь. Учреждение образования «Могилевский государственный университет продовольствия» Министерство образования республики Беларусь Учреждение образования «Могилевский государственный университет продовольствия» Кафедра высшей математики ВЫСШАЯ МАТЕМАТИКА Методические указания для практически

Подробнее

Рецензенты Доктор ф.-м. наук, профессор Т.Г. Сукачёва Канд. ф.-м. наук, доцент А.В. Ласунский

Рецензенты Доктор ф.-м. наук, профессор Т.Г. Сукачёва Канд. ф.-м. наук, доцент А.В. Ласунский Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности Глава Ряды Формальная запись суммы членов некоторой числовой последовательности Числовые ряды называется числовым рядом Суммы S, называются частичными суммами ряда Если существует предел lim S, S то ряд

Подробнее

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности.

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности. Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =,, х =,,,,,,,,

Подробнее

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8 Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Е.В. Небогина, О.С. Афанасьева РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Е.В. Небогина, О.С. Афанасьева РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ ЕВ Небогина, ОС Афанасьева РЯДЫ ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ Самара 9 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости). «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ Учебно-методическое пособие КАЗАНЬ 008 Печатается по решению секции Научно-методического совета Казанского университета

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста)

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный университет путей сообщения»

Подробнее

СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ

СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ Методические указания для подготовки дипломированных специалистов по направлению 6547

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет. Кафедра «Высшая математика 2»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет. Кафедра «Высшая математика 2» МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Высшая математика» С Ю Лошкарева О Б Савченко Л В Бань КРАТНЫЕ ИНТЕГРАЛЫ РЯДЫ РЯДЫ ФУРЬЕ Учебно-методическое

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» НВ Комиссарова МАТЕМАТИКА Часть 6 РЯДЫ Методические указания для студентов -го и -го курсов

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

МАТЕМАТИКА ПОСОБИЕ. по изучению дисциплины и. выполнению контрольных работ по темам. «Дифференциальные уравнения» и «Ряды»

МАТЕМАТИКА ПОСОБИЕ. по изучению дисциплины и. выполнению контрольных работ по темам. «Дифференциальные уравнения» и «Ряды» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ ------------------------------------------------------------------------------------------------- О.Г. Илларионова, В.А. Ухова МАТЕМАТИКА

Подробнее

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА.

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра инженерной математики И В Прусова Н А Кондратьева Н К Прихач ВЫСШАЯ МАТЕМАТИКА РЯДЫ, ТЕОРИЯ ФУНКЦИЙ

Подробнее

Третий семестр. Лектор: Князева Людмила Павловна

Третий семестр. Лектор: Князева Людмила Павловна Третий семестр Лектор: Князева Людмила Павловна Темы: Наименование раздела, темы Всего аудиторных часов Лекции, часы Практически е занятия, часы 1 2 3 4 Тема 1. Аналитическая геометрия и линейная алгебра

Подробнее

ЧИСЛОВЫЕ И СТЕПЕННЫЕ РЯДЫ

ЧИСЛОВЫЕ И СТЕПЕННЫЕ РЯДЫ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уральский государственный университет путей сообщения» Кафедра «Высшая и прикладная математика» И

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ!УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ВН Алексеев, ДА Приказчиков, ВВ Ридель РЯДЫ Утверждено редакционно-издательским советом РОАТ в качестве учебного пособия РОАТ Москва 9 5 УДК 575(75)

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

Сходимость знакопеременных числовых рядов

Сходимость знакопеременных числовых рядов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Сходимость знакопеременных числовых рядов Числовой ряд u, в котором имеется бесконечно много как положительных, так = и отрицательных элементов, называется числовым рядом с произвольными

Подробнее

ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды Числовые и функциональные ряды Основные понятия Знакочередующиеся ряды Функциональные ряды Степенные ряды и разложение функций в степенной ряд Применение степенных рядов Ряды Фурье Основные понятия Пусть

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Типовой расчет по математическому анализу Контрольные задания по теме Ряды Задание. Найти сумму числового ряда ) ) = + + ( )( 5) + ) ( ) = 5 = Решение ) 5 ( ) + + = = = = + + 5 + + 5 + + 5 + + 5

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n Тема 9 Степенные ряды Степенным рядом называется функциональный ряд вида при этом числа... коэффициентами ряда, а точка разложения ряда.,,...,,... R... называются центром Степенные ряды Общий член степенного

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

ТЕМА 1. РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ. 3 0, n. Ряд сходится. В). Применим признак сравнения с гармоническим рядом: 1!!

ТЕМА 1. РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ. 3 0, n. Ряд сходится. В). Применим признак сравнения с гармоническим рядом: 1!! ТЕМА РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ Выяснить, какие из указанных рядов сходятся, а какие нет А) cos - расходится не выполнено необходимое условие cos, Б) arctg Применим признак Даламбера:! arctg! arctg

Подробнее

2. Степенные ряды. 1. Определения, теоремы и формулы для решения задач. Теорема. (теорема Абеля). Если степенной ряд

2. Степенные ряды. 1. Определения, теоремы и формулы для решения задач. Теорема. (теорема Абеля). Если степенной ряд Степенные ряды Определения, теоремы и формулы для решения задач Определение Функциональный ряд ( ) ( ) ( ) ( ) 0 0 0 0 0 0 называется степенным рядом, числа R,,, называются коэффициентами степенного ряда

Подробнее

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра математики УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ по математике для студентов заочного обучения ( III семестр ) Уфа Дан теоретический материал (понятия,

Подробнее

1. Числовые ряды, основные понятия.

1. Числовые ряды, основные понятия. Числовой ряд. Числовые ряды, основные понятия. () называется сходящимся, если его частичная сумма (2) имеет конечный предел Тогда называется суммой ряда, а разность lim. (3) (4) называют остатком ряда.

Подробнее

Дифференциальное и интегральное исчисление функции одного переменного. Числовые и функциональные ряды.

Дифференциальное и интегральное исчисление функции одного переменного. Числовые и функциональные ряды. Теоретические вопросы по курсу математики для студентов заочной формы обучения специальности 76 «Промышленное и гражданское строительство» семестр Дифференциальное и интегральное исчисление функции одного

Подробнее

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными {основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными членами признак Даламбера, признак Коши, интегральный

Подробнее

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2 Содержание Числовые ряды. Основные понятия 2 Необходимый признак сходимости ряда 3 Простейшие свойства числовых рядов 2 4 Знакоположительные ряды 3 5 Знакочередующиеся ряды 9 6 Знакопеременные ряды 0 7

Подробнее

Тригонометрические ряды Фурье

Тригонометрические ряды Фурье Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ЗАОЧНОГО ОТДЕЛЕНИЯ. Содержание Сроки сдачи Критерии оценки 1.Изучение теоретического материала (учебнометодический. за 1,5 месяца до сессии

ЗАОЧНОГО ОТДЕЛЕНИЯ. Содержание Сроки сдачи Критерии оценки 1.Изучение теоретического материала (учебнометодический. за 1,5 месяца до сессии УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ ОБУЧАЮЩИЙ МОДУЛЬ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» РАЗДЕЛ «МАТЕМАТИЧЕСКИЙ АНАЛИЗ» ДЛЯ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ I БЛОК ИНФОРМАЦИОННЫЙ ЗАОЧНОГО

Подробнее

Математический анализ.

Математический анализ. Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов: изучение материала по учебникам, решение задач, самопроверка

Подробнее

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет»

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет» Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО РАЗДЕЛУ «РЯДЫ» ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ

Подробнее

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а прикладной математики

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

РЯДЫ. Методические указания для студентов заочной формы обучения. Составители О.А. Сергеева, О.В. Иванова

РЯДЫ. Методические указания для студентов заочной формы обучения. Составители О.А. Сергеева, О.В. Иванова Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

53 Тел.: (473)

53 Тел.: (473) Данилова ОЮ Синегубов СВ МАТЕМАТИКА РЯДЫ Учебное пособие Издано в авторской редакции по решению методического совета института Воронежский институт МВД России Все права на размножение и распространение

Подробнее

Вопросы и задачи по математическому анализу

Вопросы и задачи по математическому анализу Федеральное государственное образовательное учреждение высшего профессионального образования ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ СР Свирщевский Вопросы и задачи по математическому

Подробнее

Методические указания

Методические указания Московский государственный технический университет имени Н. Э. Баумана Методические указания В.Я. Томашпольский, М.Н. Шевченко, И.О. Янов ЧИСЛОВЫЕ РЯДЫ Издательство МГТУ им. Н. Э. Баумана Московский государственный

Подробнее

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. КАЛЕНДАРНЫЙ ПЛАН Дисциплина «Интегральное исчисление и ряды»

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. КАЛЕНДАРНЫЙ ПЛАН Дисциплина «Интегральное исчисление и ряды» Факультет геологии, геофизики и геохимии РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА КАЛЕНДАРНЫЙ ПЛАН Дисциплина «Интегральное исчисление и ряды» УЧЕБНЫЙ ПЛАН Всего часов 60 Весенний

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

Вопросы по математическому анализу 3 семестр. для студентов заочной формы обучения института экономики направление подготовки «Экономика».

Вопросы по математическому анализу 3 семестр. для студентов заочной формы обучения института экономики направление подготовки «Экономика». - уч. год Министерство образования и науки РФ Северный Арктический федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы по математическому анализу семестр для студентов заочной формы обучения

Подробнее

Контрольные работы по математике для студентов 2-го курса, обучающихся по направлению «Строительство»

Контрольные работы по математике для студентов 2-го курса, обучающихся по направлению «Строительство» МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) Контрольные работы по

Подробнее

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г.

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. Замечание. 1) вопросы, не содержащие доказательства; ) вопросы, с серьезным доказательством; 3) вопросы с небольшим

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Теоретичеcкие вопроcы и задачи

Теоретичеcкие вопроcы и задачи Теоретичеcкие вопроcы и задачи Теоретичеcкие вопроcы и задачи Дифференциальное иcчиcление функции неcкольких переменных. Дайте определение раccтояния (, b ) между точками, b, q докажите cвойcтва функции

Подробнее

ОСНОВЫ ТЕОРИИ РЯДОВ. О.В. Сорокина. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им. Н.Г.

ОСНОВЫ ТЕОРИИ РЯДОВ. О.В. Сорокина. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им. Н.Г. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им НГ Чернышевского» ОСНОВЫ ТЕОРИИ РЯДОВ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ Т А Матвеева, В Б Светличная, Н Н Короткова ЧИСЛОВЫЕ РЯДЫ Волгоград 00 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

РЯДЫ А.А. ЗЛЕНКО, C.А. ИЗОТОВА, Л.А. МАЛЫШЕВА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике

РЯДЫ А.А. ЗЛЕНКО, C.А. ИЗОТОВА, Л.А. МАЛЫШЕВА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) АА ЗЛЕНКО, CА ИЗОТОВА, ЛА МАЛЫШЕВА РЯДЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

Подробнее

ПЛАН ЛЕКЦИИ. Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов

ПЛАН ЛЕКЦИИ. Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов ЧИСЛОВЫЕ РЯДЫ ПЛАН ЛЕКЦИИ Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов ЧИСЛОВОЙ РЯД Бесконечная сумма чисел вида: а а а... а... 3 называется числовым

Подробнее

Теория рядов 1. Теория рядов

Теория рядов 1. Теория рядов Теория рядов 1 Теория рядов ОСНОВНЫЕ ПОНЯТИЯ Решение задачи представленной в математических терминах например в виде комбинации различных функций их производных и интегралов нужно уметь довести до числа

Подробнее

Комплексные числовые ряды

Комплексные числовые ряды Тема Комплексные числовые ряды Рассмотрим числовой ряд k ak с комплексными числами вида Ряд называется сходящимся, если сходится последовательность S его частичных сумм S a k k. При этом предел S последовательности

Подробнее

Числовые ряды. Лекции 6-7

Числовые ряды. Лекции 6-7 Числовые ряды Лекции 6-7 Понятие числового ряда Аналитическое выражение вида, a a2 a a a, a, a, где 2 последовательность чисел членов ряда, выражение a - называется общим членом ряда. Последовательность

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. Учебное пособие

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. Учебное пособие МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ

Подробнее

2. Сформулировать и доказать теоремы о почленном дифференцировании и почленном интегрировании

2. Сформулировать и доказать теоремы о почленном дифференцировании и почленном интегрировании Билет 1 1. Дать определение и вывести свойства двойного интеграла. Геометрический смысл двойного интеграла. Формулировка теорема существование. Билет 2 1. Вычисление двойного интеграла в декартовых координатах.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее