ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы."

Транскрипт

1 ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. Основные результаты Лекции 4. 1) Любое подпространство V k F n 2 размерности k задается некоторой системой из n k линейных однородных уравнений. 2) Пространство решений m линейных однородных уравнений с n неизвестными есть подпространство в F n 2 размерности n k, где k размерность подпространства в F n 2, порожденного векторами коэффициентов уравнений системы. 3) Ранг любой m n-матрицы по m векторам-строчкам равен рангу этой матрицы по n векторам-столбцам. 4) Задача к Лемме 1 этой Лекции (в реале не была сформулирована). Биекция между подпространствами размерности k и n k. В этой лекции мы покажем, как можно использовать существование двойственного базиса для исследования систем линейных уравнений. В Лекции 3 мы доказали следующий результат. Теорема 5. (О существовании двойственного базиса.) Пусть (u 1,..., u n ) произвольный базис n-мерного пространства F n 2. Тогда существует другой базис (u 1,..., u n) пространства F n 2 такой, что { 1 i, j n : (u i, u 1 i = j, j) = 0 i j. Базис (u 1,..., u n) называется двойственным к базису (u 1,..., u n ). Двойственный базис позволяет находить координаты вектора v в базисе (u 1,..., u n ), используя билинейную форму (u, v). Если v = x 1 u 1 + x 2 u x n u n, тогда x i = (v, u i ) 1 i n. Аналогично, можно найти координаты того же самого вектора v в двойственном базисе. Если v = y 1 u 1 + y 2 u y n u n, тогда y i = (v, u i ) 1 i n. Теорема 6. (O возможности задания подпространства линейными уравнениями.) Любое подпространство V k F n 2 размерности k задается системой из n k линейных однородных уравнений. Доказательство. Пусть (u 1,..., u k ) какой-нибудь базис подпространства V k. Дополним его до базиса (u 1,..., u k ; u k+1,..., u n ) пространства F n 2 (см. Следствие 2 Теоремы 1, Лекция 1). Рассмотрим двойственный к 14

2 нему базис (u 1,..., u k, u k+1,..., u n). Получаем V k = {v = x 1 u x k u k + 0 u k u n x i F 2 для 1 i k} = {v F n 2 (v, u k+1 ) = = (v, u n) = 0} = H u k+1... H u n. Следовательно, V k совпадает со множеством решений системы из n k однородных линейных уравнений или, другими словами, с пересечением n k попарно различных гиперплоскостей. ПРИЛОЖЕНИЕ. Описание пространства решений системы однородных линейных уравнений от n переменных. Рассмотрим систему из m 1 уравнений с n 1 неизвестными над полем F 2 из двух элементов 0 и 1 a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0 (A) =... a m1 x 1 + a m2 x a mn x n = 0, где a ij F 2 для 1 i m, 1 j n. Обозначим через V A F n 2 множество решений этой системы, т.е. множество векторов x = (x 1,..., x n ) F n 2, координаты x 1,..., x n которых удовлетворяют указанной выше системы линейных уравнений (A). Отметим, что V A содержит нулевой вектор для любой системы (A). 1. Множество решений V A является линейным подпространством в F n 2. Каждое уравнение системы может быть переписано в форме (ā i, x) = 0, где вектор ā i = (a i1, a i2,..., a in ) F n 2 образован коэффициентами уравнения с номером i, a x = (x 1, x 2,..., x n ). Уравнение (ā i, x) = 0 с ненулевые вектором ā i определяет гиперплоскость Hāi размерности n 1, а нулевое уравнение 0 x x x n = 0 определяет все пространство F n 2. Получаем, что V A есть пересечение m подпространств. Следовательно, V A является подпространством по Теореме 2 (Лекция 2). 2. Как найти размерность пространства решений V A и его базис? ПЕРВЫЙ МЕТОД, использующий вектора коэффициентов уравнений, т.е. строки системы (A). Рассмотрим подпространство L A = ā 1,..., ā m F n 2, порожденное m векторами, построенными по коэффициентам уравнений. Размерность 15

3 k = dim L A этого подпространства называется рангом системы векторов (ā 1,..., ā m ). Mы дадим новое описание пространства решений V A, используя подпространство L A. Лемма 1. Определим подпространство Тогда V A = (L A ). (L A ) = { x F n 2 : l L A : (l, x) = 0}. Доказательство. По определению, V A = { x F n 2 : 1 i n : (ā i, x) = 0}. Все a i лежат в L A, поэтому в определении подпространства (L A ) имеется больше линейных уравнений. Следовательно, V A (L A ). Докажем обратное. Любой вектор l L A есть линейная комбинация образующих l = y 1 ā y m ā m. Следовательно, для любого решения x V A исходной системы (A) имеем (l, x) = (y 1 a y m a m, x) = y 1 (ā 1, x) y m (ā m, x) = 0. (Напомним, что спаривание (, ) линейно по каждому аргументу.) Mы доказали включение V A (L A ). Положим, что пространство, порожденное векторами уравнений, имеет размерность k = dim L A. Ясно, что k m. Рассмотрим какой-нибудь базис (b 1,..., b k ) подпространства L A, который можно построить, используя алгоритм из доказательства Теоремы 1. (Другой алгоритм, алгоритм Гаусса, мы рассмотрим в Лекции 5.) Применим Лемму 1 к этим новым образующим подпространства L A = b 1..., b k. Получаем третье описание пространства решений исходной системы уравнений (A), использующее только k уравнений V A = (L A ) = { x F n 2 ( b i, x) = 0 для 1 i k}. Вектора базиса ( b 1..., b k ) являются линейно независимыми, а между векторами (ā 1,..., ā m ) коэффициентов исходных уравнений могли быть линейные соотношения. Теперь мы можем описание подпространства решений, используя метод доказательства Теоремы 6. Достроим выбранный базис до базиса ( b 1,..., b k ; b k+1,..., b n ) пространства F n 2 и возьмем двойственный к нему базис ( b 1,..., b n). Тогда, как и в Теореме 6, получаем явное описание пространства решений. Возьмем произвольный вектор x F n 2 и запишем его в базисе ( b 1,..., b n) пространства F n 2 x = x 1 b x k b n 16

4 Этот вектор будет решением системы уравнений (A) тогда и только тогда, когда ( x, b i ) = 0 для любого 1 i k. Это эквивалентно тому, что все координаты x i в представлении решения x в двойственном базисе равны 0. Следовательно, мы получаем следующее описание пространства решений V A = {v = x k+1 b k x n b n x k+1,..., x n F n 2 }. Вектора ( b k+1,..., b n) линейно независимы как вектора двойственного базиса. Они дают базис пространства решений V A исходной системы линейных уравнений (A). Размерность V A равна n k. Тем самым мы доказали следующую теорему. Теорема 7. (Размерность пространства решений системы линейных уравнений.) Пространство решений системы линейных однородных уравнений (A) является подпространством размерности n k в F n 2, где k ранг системы векторов (ā 1,..., ā m ), образованных коэффициентами всех m уравнений системы (или размерность подпространства L A = ā 1,..., ā m F n 2, порожденного этими векторами). ВТОРОЙ МЕТОД, описания решений системы (A), использующий одно векторное уравнение, построенное по столбцам системы уравнений (A). Перепишем исходную систему уравнений a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0 (A) =... a m1 x 1 + a m2 x a mn x n = 0, в форме векторного уравнения в пространстве F m 2 размерности m: a 11 a 12 a 1n 0 a 21. x a x a 2n x 0 n =., 0 a m1 a m2 где мы ввели n векторов-столбцов высоты m A j = a 1j a 2j. a mj a mn Fm 2 для j = 1,..., n. Рассмотрим подпространство, порожденное векторами A j в F m 2 C A = A 1,... A n F m 2. 17

5 Пусть l = dim C A. Выберем базис (A i1,..., A il ) (1 i s n для 1 s l) подпространства C A из столбцов-векторов A 1,..., A n. Такой базис можно найти, используя алгоритм из доказательства Теоремы 1 Лекции 1. (Проверьте!) Теперь мы можем описать множество решений, используя этот базис. По свойству базиса для любых x j F 2 (1 j n и j i s с 1 s l) всегда существует единственный набор (x i1,... x il ) коэффициентов из F 2 такой, что 1 j m и j i 1,...,i l A j x j = A i1 x i1 + + A il x il. Каждая из n l переменных x j в левой части последнего уравнения принимает два значения 0 и 1 независимо от остальных переменных в левой части. Следовательно, векторное уравнение в F m 2 (а значит и исходная система уравнений (A)!) имеет 2 n l решений. Иными словами, пространство решений системы (A) имеет размерность n l, где l = dim A 1, A 2,..., A n. Выше, используя первый метод, мы доказали, что пространство решений системы однородных линейных уравнений (A) имеет размерность n k, где k = dim L A = dim ā 1, ā 2,..., ā n размерность подпространства, порожденного векторами, составленными из коэффициентов уравнений, т.е. из строк системы (A). Следовательно, k = l и мы доказали следующую важную теорему. Теорема 8. Пусть дана матрица A размера m на n с элементами в поле F 2 a 11 a a 1n a 21 a a 2n M m n(f 2 ). a m1 a m2... a mn (m число строк, а n число столбцов.) Тогда размерность подпространства L A = ā 1, ā 2,..., ā m F n 2, порожденного m строками матрицы A ā i = (a i1, a i2,... a in ) F n 2, 1 i m, совпадает с размерностью подпространства C A = A 1, A 2,..., A n F m 2, порожденного n столбцами матрицы A A j = a 1j a 2j. a mj Fm 2, 1 j n. 18

6 Эта размерность называется рангом матрицы A. k = dim L A = dim C A Какие вопросы мы должны прояснить? 1) Как "быстро" найти базис подпространства ā 1,..., ā m F n 2 или подпространства A 1,... Ān F m 2? 2) Как найти все линейные соотношения между векторами (ā 1,..., ā m ) в пространстве F n 2? 3) Как "быстро" расширить базис подпространства до базиса всего линейного пространства F n 2? 4) Можно ли найти базис пространства решений в Теореме 7 без расширения базиса подпространства L A до базиса всего пространства и нахождения двойственного базиса пространства F n 2? 5) Как найти n k уравнения, задающие подпространство V k в Теореме 6, без расширения базиса и нахождения двойственного базиса всего пространства F n 2? 6) Дать алгоритм построения двойственного базиса по данному базису в n-мерном пространстве F n 2. Правильная и полная реализация Метода Гаусса дает нам единый эффективный алгоритм и новый теоретических метод для одновременного решения всех поставленных выше вопросов. Мы сделаем это в следующей лекции, Задача к Лемме 1. Пo любому подпространству U F n 2 мы можем определить "дуальное" к нему подпространство, используя результат Леммы 1: U = {v F n 2 u U (u, v) = 0}. Например, { 0} = F n 2 и (Fn 2 ) = { 0}. (Проверьте!) 1. Показать, что U подпространство. 2. Найти размерность подпространствa U. 3. Найти подпространство (U ). 4. Доказать, что отображение U U является биективным отображением множества всех подпространств F n 2 на себя. 5. Число подпространств в F n 2 размерности k равно числу подпространств в F n 2 размерности n k. 6. Найти примеры подпространств в F n 2 (с n > 0) таких, что U = U. 7. Дать какое-нибудь разумное описание всех таких подпространств в пространствах размерности 4 и 8 над полем F 2. 19

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0 ЛЕКЦИЯ 6. Метод ГАУССА и ДВОЙСТВЕННЫЙ БАЗИС. В этой лекции мы опишем алгоритм решения систем линейных уравнений, позволяющий найти и двойственный базис для любого базиса пространства F n 2. В Лекциях 7

Подробнее

Лекция 9: Подпространства

Лекция 9: Подпространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение подпространства. Примеры подпространств (1) Определение Непустое подмножество

Подробнее

МАТРИЦЫ И ОТОБРАЖЕНИЯ

МАТРИЦЫ И ОТОБРАЖЕНИЯ ЛЕКЦИЯ 7 РАНГ МАТРИЦЫ КРИТЕРИЙ СОВМЕСТНОСТИ МАТРИЦЫ И ОТОБРАЖЕНИЯ 1 РАНГ МАТРИЦЫ В векторном пространстве R m столбцов высоты m рассмотрим n векторов A (j) = [a 1j, a 2j,..., a mj ], j = 1, 2,..., n, и

Подробнее

Лекция 16: Образ и ядро линейного оператора

Лекция 16: Образ и ядро линейного оператора Лекция 16: Образ и ядро линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

28. Фундаментальная система решений однородной системы линейных уравнений

28. Фундаментальная система решений однородной системы линейных уравнений 28. Фундаментальная система решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Размерность

Подробнее

ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА

ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА ЛЕКЦИЯ 6 ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА РАНГ СИСТЕМЫ ВЕКТОРОВ 1 ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИНЕЙНАЯ ЗАВИСИМОСТЬ

Подробнее

Тема 2-4: Подпространства

Тема 2-4: Подпространства Тема 2-4: Подпространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

23. Базис векторного пространства

23. Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение базиса Определение Базисом векторного пространства называется упорядоченная

Подробнее

Теория систем линейных уравнений

Теория систем линейных уравнений Глава Теория систем линейных уравнений Ранг матрицы Пусть A F m n Рассмотрим столбцы a,,a n матрицы A = (a,,a n ) как векторы пространства F m, а строки ã,,ã m как векторы пространства F n Базу (соответственно

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны.

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны. Лекция 3 Тема: Уравнение прямой на проективной плоскости Принцип двойственности Теорема Дезарга Проективные отображения и проективные преобразования План лекции 1 Уравнение прямой на проективной плоскости

Подробнее

Тема 2-8: Образ и ядро линейного отображения

Тема 2-8: Образ и ядро линейного отображения Тема 2-8: Образ и ядро линейного отображения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Лекция 15: Собственные значения и собственные векторы. оператора

Лекция 15: Собственные значения и собственные векторы. оператора Лекция 15: Собственные значения и собственные векторы линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение

Подробнее

всевозможные решения заданной системы линейных однородных уравнений:

всевозможные решения заданной системы линейных однородных уравнений: . ЯДРО ЛИНЕЙНОГО ПРЕОБРАЗОВАНИЯ Ранее мы охарактеризовали подпространство конечномерного пространства как линейную оболочку. Но возможны и другие истолкования подпространства. Пусть, e, e2, K, en какой-либо

Подробнее

Лекция 12: Ранг матрицы

Лекция 12: Ранг матрицы Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции изучается важная числовая характеристика матрицы

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

Тема 2-3: Базис и размерность линейного пространства

Тема 2-3: Базис и размерность линейного пространства Тема 2-3: Базис и размерность линейного пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

Тема 2-5: Ранг матрицы

Тема 2-5: Ранг матрицы Тема 2-5: Ранг матрицы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр) В

Подробнее

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем Г л а в а 2 ВЕКТОРНЫЕ ПРОСТРАНСТВА 9 Векторное пространство над полем 91 Аксиоматика Пусть задано поле P, элементы которого будем называть скалярами и некоторое множество V, элементы которого будем называть

Подробнее

5. Линейные коды (продолжение)

5. Линейные коды (продолжение) 17 5. Линейные коды (продолжение) Проверочная матрица кода. Другой способ задания линейного подпространства C F n размерности k состоит в указании n k линейных уравнений, которым удовлетворяют координаты

Подробнее

Тема : Общая теория систем линейных уравнений

Тема : Общая теория систем линейных уравнений Тема : Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ,

Подробнее

Тема 2-20: Аффинные пространства

Тема 2-20: Аффинные пространства Тема 2-20: Аффинные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

Тема: Линейные операторы

Тема: Линейные операторы Линейная алгебра и аналитическая геометрия Тема: Линейные операторы Лектор Пахомова Е.Г. 2012 г. 11. ЛИНЕЙНЫЕ ОПЕРАТОРЫ 1. Определение линейного оператора Пусть L и V линейные пространства над F (где F

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Лекции по линейной алгебре и геометрии. 1 семестр

Лекции по линейной алгебре и геометрии. 1 семестр Лекции по линейной алгебре и геометрии. 1 семестр М.Ф. Насрутдинов 19 ноября 2010 г. Оглавление 1 Линейные векторные пространства 5 1.1 Векторные пространства. Определение и примеры........... 5 1.1.1

Подробнее

2. Тензорная алгебра векторного пространства. называется n-той тензорной степенью пространства V. Мы также полагаем, по определению,

2. Тензорная алгебра векторного пространства. называется n-той тензорной степенью пространства V. Мы также полагаем, по определению, 2. Тензорная алгебра векторного пространства 2.1. Свободная ассоциативная алгебра T(V ). Всюду в этом параграфе мы обозначаем через V векторное пространство над произвольным полем k. Тензорное произведение

Подробнее

ХАРАКТЕРЫ ПРЕДСТАВЛЕНИЙ ОРТОГОНАЛЬНОСТЬ ХАРАКТЕРОВ РЕГУЛЯРНОЕ ПРЕДСТАВЛЕНИЕ

ХАРАКТЕРЫ ПРЕДСТАВЛЕНИЙ ОРТОГОНАЛЬНОСТЬ ХАРАКТЕРОВ РЕГУЛЯРНОЕ ПРЕДСТАВЛЕНИЕ ЛЕКЦИЯ 19 СЛЕДСТВИЯ ЛЕММЫ ШУРА ХАРАКТЕРЫ ПРЕДСТАВЛЕНИЙ ОРТОГОНАЛЬНОСТЬ ХАРАКТЕРОВ РЕГУЛЯРНОЕ ПРЕДСТАВЛЕНИЕ 1 СЛЕДСТВИЯ ЛЕММЫ ШУРА Предложение 1. Пусть φ : G GL (V ) и ψ : G GL (W ) два неприводимых комплексных

Подробнее

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство.

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство. 79 Линейные функции Определение и примеры линейных функций Определение Будем говорить, что на линейном пространстве L задана функция от одного вектора, если каждому вектору x L сопоставлено число ( x)

Подробнее

Построение базисов в ядре и образе линейного оператора.

Построение базисов в ядре и образе линейного оператора. Построение базисов в ядре и образе линейного оператора 1 Речь пойдёт о построении базисов в ядре и образе линейного оператора Будут рассмотрены два примера: первый пример с пояснениями; второй как образец

Подробнее

Лекция V. V.1. Системы линейных уравнений. x

Лекция V. V.1. Системы линейных уравнений. x Лекция V V Системы линейных уравнений a x +a ++a n b a x +a ++a n b a m x +a m ++a mn b m () Запишем систему m линейных уравнений с n неизвестными в несколько необычном виде: a a a m x + a a a m ++ a n

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n.

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n. Лекция IV IV Линейная зависимость векторов Линейной комбинацией векторов a, a 2,, a n называется сумма произведений этих векторов на произвольные числа: α a +α 2 a 2 ++α n a n Линейная комбинация называется

Подробнее

АЛГЕБРА модуль 3: Квадратичные и билинейные формы

АЛГЕБРА модуль 3: Квадратичные и билинейные формы АЛГЕБРА модуль 3: Квадратичные и билинейные формы 1 Квадратичные формы Мы рассматриваем конечномерные векторные пространства над полем k, где 0. Определение 1.1 Функция f : V k на векторном пространстве

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

и AC компланарны, а векторы AB, AD и AA не компланарны.

и AC компланарны, а векторы AB, AD и AA не компланарны. Лекция 3 Тема: Линейная зависимость векторов Базис векторного пространства План лекции Компланарные векторы Линейная зависимость/независимость системы векторов: определение свойства геометрический смысл

Подробнее

Министерство высшего и среднего специального образования РСФСР Челябинский государственный университет

Министерство высшего и среднего специального образования РСФСР Челябинский государственный университет Министерство высшего и среднего специального образования РСФСР Челябинский государственный университет ЛИНЕЙНАЯ ЗАВИСИМОСТЬ Методические указания для практических занятий по курсу "Алгебра и теория чисел"

Подробнее

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ЛЕКЦИЯ 9 ОБРАТНЫЕ МАТРИЦЫ КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ПРОСТРАНСТВО РЕШЕНИЙ 1 ОБРАТНЫЕ МАТРИЦЫ Для данной матрицы A M n (R) можно попробовать найти такую матрицу A M n

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Основные определения Рассмотрим следующую систему m уравнений относительно n неизвестных в поле K: a x + a 2 + + a nx n b, a 2 x + a 2 2 + + a2 nx

Подробнее

ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Глава ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Системы линейных уравнений и их решение методом Гаусса Система, состоящая из m линейных уравнений с n неизвестными или, как будем дальше говорить,

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

С.Н. Зиненко. Линейная алгебра. Матрицы и определители. (теория к задачам)

С.Н. Зиненко. Линейная алгебра. Матрицы и определители. (теория к задачам) С.Н. Зиненко Линейная алгебра Матрицы и определители (теория к задачам) 215 1. ЛИНЕЙНОЕ ПРОСТРАНСТВО, ПОДПРОСТРАНСТВО. БАЗИС И РАЗМЕРНОСТЬ 1º Линейным пространством называется множество элементов a, b,

Подробнее

1. Векторные пространства и линейные операторы

1. Векторные пространства и линейные операторы ЛИНЕЙНАЯ АЛГЕБРА 1 Векторные пространства и линейные операторы Определение 1 Множество V называется векторным пространством (над полем действительных чисел R), если его элементы можно складывать между

Подробнее

1 Билинейная и квадратичная формы.

1 Билинейная и квадратичная формы. 1 Билинейная и квадратичная формы. Пусть ϕ(x, y) числовая функция, заданная на линейном пространстве, то есть ϕ : L L R. Если ϕ(x, y) линейна по каждому из своих аргументов, то её называют билинейной формой.

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Кафедра высшей математики (ВМ) Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ Практическое

Подробнее

Смысл. 1-й способ исследования системы (через определители)

Смысл. 1-й способ исследования системы (через определители) ) Является ли система векторов линейно зависимой? a ; ; 0 ; a 0 ; ; ; a 3 30 ; ; ; a 4 000 ; ; ; Смысл Векторы линейно независимы, если векторное равенство a a a 3 3 4a 4 0 имеет единственное (нулевое,

Подробнее

Ax = b, (1) x 0. a s1 x s 1. 0 ) = b и A( x + x s j

Ax = b, (1) x 0. a s1 x s 1. 0 ) = b и A( x + x s j Симплекс метод Рассмотрим следующую задачу линейного программирования: Задача 1. max(c, x), Ax = b, (1) x Здесь линейный оператор A действует из R n в R m, c R n, b R m. Считаем что m < n, и ранг матрицы

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Некоторые свойства линий с аффинно эквивалентными дугами

Некоторые свойства линий с аффинно эквивалентными дугами УДК 513.83 Некоторые свойства линий с аффинно эквивалентными дугами Поликанова И.В. Алтайский государственный педагогический университет anirix1@yandex.ru Аннотация В статье продолжается изучение линий

Подробнее

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51 Системы линейных уравнений Системы линейных уравнений. Методы решения систем линейных уравнений Линейная алгебра (лекция 5) 06.10.2012 2 / 51 Система m линейных уравнений с n неизвестными имеет вид: Линейная

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения. Кафедра Информатики, вычислительной техники и информационной безопасности. Направление

Подробнее

a 1, a 2,..., a m, m 1, x 1 a 1 + x 2 a x m a m

a 1, a 2,..., a m, m 1, x 1 a 1 + x 2 a x m a m ГЛАВА 8. ПОДПРОСТРАНСТВА 1 1. СУММА И ПЕРЕСЕЧЕНИЕ ПОДПРОСТРАНСТВ Множество L векторов линейного пространства X называется подпространством, если из того, что x, y L вытекает, что αx + βy L при любых комплексных

Подробнее

МНОГОМЕРНАЯ ГЕОМЕТРИЯ

МНОГОМЕРНАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ПГУ) О.В. Якунина МНОГОМЕРНАЯ

Подробнее

ЛЕКЦИЯ 7. Лектор: Плясунов Александр Владимирович Линейное программирование (ЛП)

ЛЕКЦИЯ 7. Лектор: Плясунов Александр Владимирович  Линейное программирование (ЛП) ЛЕКЦИЯ 7 Лектор: Плясунов Александр Владимирович http://www.math.nsc.ru/lbrt/k5/mo.html Линейное программирование (ЛП) 1. Базисные допустимые решения 2. Симплекс-таблица 3. Симплекс-метод -1- Линейное

Подробнее

Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ План лекции Лекция Системы линейных уравнений Матричная запись Основная и расширенная матрицы системы; 2 Совместные и не совместные системы 2 Однородные системы

Подробнее

Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ. 0. План лекции Лекция Теорема о базисном миноре. 1. Две вспомогательные теоремы из теории определителей.

Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ. 0. План лекции Лекция Теорема о базисном миноре. 1. Две вспомогательные теоремы из теории определителей. Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ План лекции Лекция Теорема о базисном миноре Две вспомогательные теоремы из теории определителей НИДУ равенства нулю определителя: det A = ; 2 Явное выражение

Подробнее

«Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке, ) является линейным оператором.

«Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке, ) является линейным оператором. «Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке ( x 1, x2, x, x ) строку ( x1 2x2 x x, x1 x2 x, x1 2x2 x 2x,, x x 2x ) является линейным оператором.

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

λ λ λ 2

λ λ λ 2 Вариант 7. Найти ранг матрицы при различных значениях параметра λ λ 4 λ 4 λ. Решить систему линейных уравнений, написать фундаментальную систему решений для соответствующей x x + 6x + 4x 4 = x + x x 7x

Подробнее

7. Двойственность. на базисных векторах e суть

7. Двойственность. на базисных векторах e суть 7. Двойственность 7.1. Двойственное пространство. Линейное отображение ξ V k из векторного пространства над полем k в само это поле¹ называется ковектором² на пространстве V. Ковекторы образуют векторное

Подробнее

7. Понятие линейного пространства

7. Понятие линейного пространства 7 Понятие линейного пространства 1 Определение и примеры Пусть L некоторое множество, элементы которого можно складывать и умножать на действительные числа (например, множество матриц одинакового размера,

Подробнее

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Алгебра, первый курс, четвертый модуль 15

Алгебра, первый курс, четвертый модуль 15 14 Е. Ю. Смирнов 3. Третья лекция, 16апреля 2014 г. 3.1. Аннулятор модуля. Циклические модули. Определение 3.1. Модуль, порождённый одним элементом, называется циклическим. Пример 3.2. Всякий циклический

Подробнее

Лекция 8. f(x) = 0 W = 0 y = 0 f(z) = f(0 z) = f(0 V ). Таким образом, в силу взаимной однозначности отображения f, получаем x = 0 V ; противоречие.

Лекция 8. f(x) = 0 W = 0 y = 0 f(z) = f(0 z) = f(0 V ). Таким образом, в силу взаимной однозначности отображения f, получаем x = 0 V ; противоречие. Лекция 8 1. ГОМОМОРФИЗМ И ИЗОМОРФИЗМ ЛП Пусть (V, K) (операции +, ) и (W, K) (операции, ) два ЛП над одним и тем же ЧП K. Отображение f : V W называется гомоморфизмом, если f(x + y) = f(x) f(y) x,y V,

Подробнее

Лекция 14: Линейный оператор

Лекция 14: Линейный оператор Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к рассмотрению функций из векторного

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Симметричные и ортогональные матрицы и операторы 1.1 Определения. Основные свойства Действительная матрица A M n n называется симметричной (симметрической),

Подробнее

Пусть на проективной плоскости задан какой - либо проективный репер. Кривой второго порядка на проективной плоскости называется

Пусть на проективной плоскости задан какой - либо проективный репер. Кривой второго порядка на проективной плоскости называется Лекция 6 Тема: Общее уравнение кривой второго порядка на проективной плоскости Взаимное расположение кривой и прямой Касательная кривой Полюс поляра поляритет План лекции 1 Общее уравнение кривой второго

Подробнее

РАСШИРЕНИЕ ПОЛЕЙ СУЩЕСТВОВАНИЕ ПОЛЯ РАЗ- ЛОЖЕНИЯ МНОГОЧЛЕНА

РАСШИРЕНИЕ ПОЛЕЙ СУЩЕСТВОВАНИЕ ПОЛЯ РАЗ- ЛОЖЕНИЯ МНОГОЧЛЕНА ЛЕКЦИЯ 17 ПОЛЯ РАСШИРЕНИЕ ПОЛЕЙ СУЩЕСТВОВАНИЕ ПОЛЯ РАЗ- ЛОЖЕНИЯ МНОГОЧЛЕНА 1 ПРИМЕРЫ ПОЛЕЙ Пример 1. Числовые поля Q, R, C являются основными примерами полей для нас. Пример 2. Для каждого простого числа

Подробнее

Лекция 10: Умножение матриц

Лекция 10: Умножение матриц Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции вводится операция умножения матриц, изучаются

Подробнее

Тема 2-15: Ортогональность

Тема 2-15: Ортогональность Тема 2-15: Ортогональность А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение.

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение. Т е м а : «Л и н е й н а я з а в и с и м о с т ь с и с т е м ы в е к т о р о в» ( т и п о в ы е п р и м е р ы с р е ш е н и я м и ) Пример. Путем приведения элементарными преобразованиями исходной матрицы

Подробнее

13. Билинейные и квадратичные функции

13. Билинейные и квадратичные функции 95 Билинейные и квадратичные функции Билинейная функция Определение Билинейной функцией (билинейной формой) на линейном пространстве L называется функция от двух векторов из L линейная по каждому из своих

Подробнее

Тема 2-19: Билинейные и квадратичные формы

Тема 2-19: Билинейные и квадратичные формы Тема 2-19: Билинейные и квадратичные формы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

a a b b 1) Даны линейные подпространства U и W, порождённые системами векторов: Найти базисы подпространств U а) Базис подпространства U W.

a a b b 1) Даны линейные подпространства U и W, порождённые системами векторов: Найти базисы подпространств U а) Базис подпространства U W. и ) Даны линейные подпространства U и W, порождённые системами векторов: a ; ; 3; a a b b 3 ; ; ; ; ; ; ; ; ; 3; 3; ; Найти базисы подпространств U а) Базис подпространства U W. W и U W. Множество всех

Подробнее

41. Симметрические операторы

41. Симметрические операторы 41 Симметрические операторы Линейные операторы, действующие в евклидовых пространствах, обладают дополнительными свойствами по сравнению с линейными операторами в векторных пространствах без скалярного

Подробнее

Алгебра. Содержание. Дмитрий Абрамов. 18 февраля 2017 г. 1. Лекция Линейная алгебра... 1

Алгебра. Содержание. Дмитрий Абрамов. 18 февраля 2017 г. 1. Лекция Линейная алгебра... 1 Алгебра Дмитрий Абрамов 18 февраля 2017 г Содержание 1 Лекция 1 1 11 Линейная алгебра 1 1 Лекция 1 11 Линейная алгебра Замечание K - поле Определение 11 Линейное уравнение: a 1 x 1 + a 2 x 2 + + a n x

Подробнее

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( )

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( ) ЗАДАЧИ для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса x bx + c f x = +, если известны ее значения в трех указанных x точках: Найдите функцию ( ) а) f ( ) f ( ) f (

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Ранг матрицы Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр. и доп. e-mail:

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее

9. Линейные пространства

9. Линейные пространства 9 Линейные пространства 3 Нам часто приходится рассматривать некоторые множества объектов, для которых установлены так называемые линейные операции: сложение элементов множества и умножение элемента множества

Подробнее

Рецензенты: М.В. Зайцев, д.ф.-м.н., проф. (МГУ им. М.В. Ломоносова) В.В. Коннов, к.ф.-м.н., доц. (Финакадемия)

Рецензенты: М.В. Зайцев, д.ф.-м.н., проф. (МГУ им. М.В. Ломоносова) В.В. Коннов, к.ф.-м.н., доц. (Финакадемия) УДК 5 (075) ББК К 7 Рецензенты: МВ Зайцев дф-мн проф (МГУ им МВ Ломоносова) ВВ Коннов кф-мн доц (Финакадемия) К7 Калачев НВ Линейная алгебра Ч : Линейные и евклидовы пространства: Учебное пособие для подготовки

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 4 ВЕКТОРЫ. БАЗИС 1. Базис векторов Определение 1. Векторы a 1,a 2,...,a n называются упорядоченными, если указано какой вектор из этой системы является первым, какой

Подробнее

ВНЕШНИЕ ФОРМЫ. О. В. Якунина. Учебное пособие

ВНЕШНИЕ ФОРМЫ. О. В. Якунина. Учебное пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ПГУ) О. В. Якунина ВНЕШНИЕ

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр лектор Панов АН 1 Наиболее часто задаваемые вопросы Вопрос 11 Что такое перестановка и что такое знак перестановки? Ответ Перестановка это множество

Подробнее

ЖОРДАНОВА ФОРМА МАТРИЦЫ ОПЕРАТОРА. В. В. Колыбасова, Н. Ч. Крутицкая, А. В. Овчинников

ЖОРДАНОВА ФОРМА МАТРИЦЫ ОПЕРАТОРА. В. В. Колыбасова, Н. Ч. Крутицкая, А. В. Овчинников ЖОРДАНОВА ФОРМА МАТРИЦЫ ОПЕРАТОРА В. В. Колыбасова, Н. Ч. Крутицкая, А. В. Овчинников 2. Основные понятия и теоремы.. Алгебраическая и геометрическая кратность собственного значения. Пусть линейный оператор

Подробнее

ЛЕКЦИЯ 2. Линейное программирование. 1. Базисно допустимые решения (продолжение)

ЛЕКЦИЯ 2. Линейное программирование. 1. Базисно допустимые решения (продолжение) ЛЕКЦИЯ 2 Линейное программирование 1. Базисно допустимые решения (продолжение) 2. Критерий разрешимости 3. Идея симплекс-метода 4. Элементарное преобразование б.д.р. 5. Симплекс-таблицы -1- ЛП: понятие

Подробнее

ЛЕКЦИЯ 2. Линейное программирование. 1. Базисные допустимые решения. Симплекс-метод (С.-м.)

ЛЕКЦИЯ 2. Линейное программирование. 1. Базисные допустимые решения. Симплекс-метод (С.-м.) ЛЕКЦИЯ 2 Линейное программирование 1. Базисные допустимые решения 2. Критерий разрешимости Симплекс-метод (С.-м.) 1. Идея метода -1- Линейное программирование (ЛП) Задача линейного программирования (ЛП)

Подробнее

2 Экспонента и фазовый поток

2 Экспонента и фазовый поток 140 2. ЭКСПОНЕНТА И ФАЗОВЫЙ ПОТОК 2 Экспонента и фазовый поток 2.1 Абстрактный фазовый поток. В разделе 8 главы 1, «Фазовые потоки», мы определили фазовый поток векторного поля. Здесь мы дадим определение

Подробнее