Лекция Неопределенный интеграл

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция Неопределенный интеграл"

Транскрипт

1 Лекция..3. Неопределенный интеграл Аннотация: Неопределенный интеграл определяется как множество первообразных функций подынтегральной функции. Рассматриваются свойства неопределенного интеграла, приводится таблица интегралов.. Понятие первообразной функции и неопределенного интеграла. Различные задачи математики и ее многочисленные приложения в геометрии, механике, физике и технике приводят к необходимости решения следующей задачи: по данной функции f( найти такую функцию F(,производная которой была бы равна функции f(, то есть F ( = f (. Указанная задача является одной из основных задач интегрального исчисления. Определение. Пусть y=f( кусочно-непрерывная функция на отрезке [a,b]. Всякая непрерывная функция F(, определенная на отрезке [a,b] и, в каждой точке непрерывности x [ a, b] функции f( обладающая производной, равной функции f(, называется первообразной для функции f( на [a,b]. 3 Пример. Для функции y = x, x (, + ) первообразной будет, например, функция F ( x ) = x, а также функция F ( = x +. - np x, Пример. Для функции y =, первообразной на 0 - np x > x - np x, всей числовой оси будет функция F ( = и, - np x > x + - np x, например, функция F ( = 3 - np x >.

2 Из примеров видно, что первообразная определяется не единственным образом. Определение. Множество всех первообразных функции f(, определенных на некотором отрезке [a,b], называется неопределенным интегралом от функции f( на этом отрезке и обозначается f ( dx, () где знак неопределенного интеграла, f( подынтегральная функция, dx указывает по какой переменной берется неопределенный интеграл. Теорема. Любые две первообразные функции f( на отрезке [a,b] отличаются на произвольную постоянную. Доказательство. Пусть F( и G( первообразные функции f( на промежутке [a,b]. Тогда F ( = f ( и G ( = f ( во всех точках непрерывности функции f(. Поэтому ( F ( ) = F ( G ( = 0. Покажем, что F ( = C, C=const. Действительно, если x, x принадлежат отрезку непрерывности [ αβ, ] функции f(, то по теореме Лагранжа ( F( x) x)) ( F( x ) x)) = ( F( ξ ) ξ )) ( x x), поэтому F( x) x) = F( x ) x) для всех x и x [ α, β ], то есть функция F( постоянна на каждом отрезке [ α, β ], а так как она непрерывная, то она постоянная и на всем отрезке [ a, b]. Теорема доказана. В силу теоремы две первообразные функции f( связаны соотношением F ( = G(, С- произвольная постоянная. Поэтому неопределенный интеграл часто обозначают так f ( dx = F(, () где F(х) некоторая первообразная функции f(.

3 3. Основные свойства неопределенного интеграла.. Пусть функция F( непрерывна на отрезке [ a, b] и дифференцируема во всех его внутренних точках, тогда df ( = F(. (3) Формулу (3) можно записать так F ( dx = F(. () Соотношения (3), () вытекают из определения неопределенного интеграла.. Пусть функция f( имеет первообразную на отрезке [ a, b], тогда в любой внутренней точке отрезка [ a, b], в которой f( непрерывна, имеет место равенство ( f ( d = f ( x dx d ). (5) Формула (5) следует из определения неопределенного интеграла. 3. Если функции ( x ) f ( имеют первообразные на отрезке [ a, b], то и функция f ( + f( имеет первообразную на a, b, причем отрезке [ ] [ f( ] dx = f( dx + f ( + f( dx. (6) (Без вывода).. Если функция f( имеет первообразную на отрезке [ a, b] и k число, то функция kf( также имеет первообразную на отрезке a, b, причем при k 0 справедливо равенство [ ] (Без вывода). kf dx k f ( dx + 3. Таблица неопределенных интегралов. ( = C. (7)

4 Операция вычисления неопределенного интеграла от данной функции называется интегрированием. Сравнивая формулу первого дифференциала dy = f ( dx с формулами (3), (), (5) обратим внимание на то, что операции дифференцирования и неопределенного интегрирования для непрерывных функций взаимно обратны, поэтому таблица неопределенных интегралов следует из таблицы дифференциалов или таблицы производных элементарных функций. Пусть =( любая дифференцируемая функция, тогда имеет место следующая таблица.. dc = 0, C = const. dc = C α α α α +. d = α d. d =, α α + 3. d d d ln = 3. = ln a. d a = a ln( a) d. a d = ln( a) В частности de = e d, а e d = e 5. d sin( ) = cos( ) d 5. cos( ) d = sin( ). d cos( ) = sin( ) d 6. sin( ) d = cos( ) 7. d sh( ) = ch( ) d 7. ch ( ) d = sh( )

5 8. ( ) sh( )d dch = 8. sh ( ) d = ch( ) 5 ad d 9. d arctg( ) = 9. arctg C a + a = ( ) + + a a a ad d 0. d arcctg( ) = 0. arcctg C a + a = ( ) + + a a a d d. d arcsin( ) =. a = arcsin( ) a a a d d. d arccos( ) =. C a = arccos( ) + a a a 3. d ln + ± a = d ± a d 3. = ln + ± a, > a ± a a ad. d ln = + a a d a. = ln. a a + a

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е.

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е. Приложение. Определение первообразной функции Определение. Дифференцируемая функция F() называется первообразной для функции f() на заданном промежутке, если для всех из этого промежутка. справедливо равенство

Подробнее

Производная функции. 1. Производные некоторых функций: C Свойства производных: 4. Общий смысл производной.

Производная функции. 1. Производные некоторых функций: C Свойства производных: 4. Общий смысл производной. Производная функции. 1. Производные некоторых функций: C 0 2. 3. Свойства производных: 4. Общий смысл производной. Геометрический смысл производной есть тангенс угла наклона касательной, проведенной к

Подробнее

9. Первообразная и неопределенный интеграл

9. Первообразная и неопределенный интеграл 9. Первообразная и неопределенный интеграл 9.. Пусть на промежутке I R задана функция f(). Функцию F () называют первообразной функции f() на промежутке I, если F () = f() для любого I, и первообразной

Подробнее

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения.

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения. Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения Цель: сформировать умение находить производные функций, заданных в явном, логарифмическом и параметрическом

Подробнее

ЛЕКЦИЯ 7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. 1. Понятие производной функции

ЛЕКЦИЯ 7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. 1. Понятие производной функции ЛЕКЦИЯ 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 1 Понятие производной функции Рассмотрим функцию у=f(), определенную на интервале (а;в) Возьмем любое значение х (а;в) и зададим аргументу

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ Понятие производных и дифференциалов высших порядков Производная f ( называется производной первого порядка (или

Подробнее

Лекция 2.5. Производные основных элементарных функций

Лекция 2.5. Производные основных элементарных функций Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

Подробнее

Лекция 3. Неопределенные интегралы Замена переменной

Лекция 3. Неопределенные интегралы Замена переменной СА Лавренченко wwwlwrencenkor Лекция Неопределенные интегралы Замена переменной Как мы знаем с прошлой лекции, интегрирование оказалось операцией, обратной к дифференцированию С другой стороны, взятие

Подробнее

9. Неопределенный интеграл.

9. Неопределенный интеграл. 9. Неопределенный интеграл. Функция F() называется первообразной для функции f() на промежутке (b), если для всех (b) выполняется равенство F() = f(). Например, для функции первообразной будет функция

Подробнее

Лекция 2.4. Непрерывность функции. Классификация точек разрыва

Лекция 2.4. Непрерывность функции. Классификация точек разрыва Лекция 4 Непрерывность функции Классификация точек разрыва Аннотация: Рассматриваются свойства функции, непрерывной на отрезке Приводится пример использования этих свойств при решении нелинейных уравнений

Подробнее

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ]

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ] 8 Барроу Исаак (Brrow Is) -77 английский математик, филолог, богослов. Профессор Кембриджского университета. Автор труда лекции по оптике и геометрии (9-7). Из теоремы следует, что определенный интеграл

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

МЕТОДИЧЕСКАЯ РАЗРАБОТКА ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Кемеровская государственная медицинская академия» Министерства здравоохранения Российской Федерации КАФЕДРА медицинской

Подробнее

Производная функции. Правила дифференцирования

Производная функции. Правила дифференцирования Производная функции. Правила дифференцирования Задачи и упражнения для самостоятельной работы 1. Запишите выражение для Δy = f(х 0 + Δх) f(х) и найдите область определения функции Δу, если: a) f(x) = arcsin

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

Подробнее

Федеральное государственное образовательное учреждение высшего профессионального образования

Федеральное государственное образовательное учреждение высшего профессионального образования Федеральное государственное образовательное учреждение высшего профессионального образования Финансовая академия при правительстве Российской Федерации (ФИНАКАДЕМИЯ) Кафедра «Математика» ОБСУЖДЕНО Протокол

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 Дифференциальное исчисление функций одной

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1)

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1) 1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения (2006-2007, сем.1 1. Сформулируйте определение ограниченного множества вещественных чисел. 2. Сформулируйте определение

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера.

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера. Билет.. Определение матрицы (с примерами квадратной и прямоугольной матриц).. Геометрический смысл многочлена Тейлора первого порядка (формулировка, пример, рисунок). ( x) ctg(x). 4. Метод хорд графического

Подробнее

Программа экзамена по математике. Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ

Программа экзамена по математике. Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ Программа экзамена по математике для студентов специальности «Финансы и кредит» (заочная форма обучения) 1 Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ Понятие функции Определение функции,

Подробнее

Комплект. контрольно-оценочных средств учебной дисциплины ЕН.01. Элементы высшей математики

Комплект. контрольно-оценочных средств учебной дисциплины ЕН.01. Элементы высшей математики ГБОУ СПО Прокопьевский политехнический техникум Комплект контрольно-оценочных средств учебной дисциплины ЕН Элементы высшей математики основной образовательной программы (ОПОП) по направлению подготовки

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

Числовые функции одной действительной переменной

Числовые функции одной действительной переменной Множества. Числовые множества. Логические символы 1. Какие разделы математики входят в предмет «математический анализ»? Что входит в основы математического анализа? Что изучает математический анализ?.

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Лекция 7. Несобственные интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла -го рода. Критерий Коши. Признаки

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

Эпиграф. Какой знак имеет производная от настроения по расстоянию до кресла зубного врача? П.В.Грес. Иванов О.В., Кудряшова Л.В.

Эпиграф. Какой знак имеет производная от настроения по расстоянию до кресла зубного врача? П.В.Грес. Иванов О.В., Кудряшова Л.В. Лекция 6. Производная и дифференциал 6-1 Определение производной 6-2 Нахождение производных 6-3 Производные элементарных функций 6-4 Дифференциал функции 23 сентября 2007 г. Эпиграф Какой знак имеет производная

Подробнее

Программа дисциплины «Математика» Автор: доцент Рыбников А.К., ст. преподаватель Шарапова М.Л.

Программа дисциплины «Математика» Автор: доцент Рыбников А.К., ст. преподаватель Шарапова М.Л. Программа дисциплины «Математика» Автор: доцент Рыбников А.К., ст. преподаватель Шарапова М.Л. Цели освоения дисциплины. Целями освоения дисциплины "Математика" являются: формирование математической культуры

Подробнее

Математическое моделирование в задачах нефтегазовой отрасли. Методы математической физики

Математическое моделирование в задачах нефтегазовой отрасли. Методы математической физики Математическое моделирование в задачах нефтегазовой отрасли. Методы математической физики Дифференцирование и интегрирование функций нескольких переменных Николай Андрианов n_andrianov@hotmail.com Кафедра

Подробнее

Глава 4 Элементарные функции и их графики.

Глава 4 Элементарные функции и их графики. Глава Элементарные функции и их графики Построение графиков функции с помощью геометрических преобразований Построить график функции y f () по известному графику y f () При одном и том же значении ординаты

Подробнее

Интегралы. Часть 1. Основные приёмы интегрирования.

Интегралы. Часть 1. Основные приёмы интегрирования. ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» А. И. ЕФИМОВ В. А. ЗНАМЕНСКИЙ Интегралы. Часть. Основные приёмы интегрирования. Учебное

Подробнее

Тема: Производная. Краткие теоретические сведения. Таблица производных. ( c) 0

Тема: Производная. Краткие теоретические сведения. Таблица производных. ( c) 0 Тема: Производная. Краткие теоретические сведения. Таблица производных. ( c) 0 (arcsin ) ( ) (arccos ) (sin ) cos (cos ) sin ( arctg ) ( tg) cos ( arcctg ) ( ctg ) sin v vln u vln u v v ( u ) ( e ) e (

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА. Контрольная работа для студентов заочной формы обучения

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА. Контрольная работа для студентов заочной формы обучения Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный архитектурно-строительный университет»

Подробнее

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ. Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ. Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ Кафедра: «Высшая и прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ на проведение практических занятий по теме «Интегральное исчисление» Кривулин Н.П., Мойко Н.В. г. Пенза

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ Уфимский государственный нефтяной технический университет. Вариант 500. Дифференциальное уравнение P (, ) d Q(, ) d 0 порядка, если: будет однородным уравнением первого Ответы: ). P и Q однородные функции

Подробнее

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2-1 Дисциплина: Математический анализ

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2-1 Дисциплина: Математический анализ ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ -1 1. Определение неопределённого интеграла и первообразной. Свойства неопределённого интеграла.. Решить дифференциальное уравнение y y +y = x, y(0) = 1, y (0) = 1. 3. Вычислить интеграл

Подробнее

Простейшие неопределенные интегралы

Простейшие неопределенные интегралы Простейшие неопределенные интегралы Примеры решения задач Следующие интегралы сводятся к табличным путем тождественного преобразования подынтегрального выражения. 1. dx = dx = 2x 2/3 /3 + 2x 1/2 + C. >2.

Подробнее

3. Производная производной дифференцированием дифференцируемой на промежутке ( a , b

3. Производная производной дифференцированием дифференцируемой на промежутке ( a , b 41 3. Производная Рассмотрим функцию y=f(, непрерывную в некоторой окрестности точки. Пусть, приращение аргумента в точке. Обозначим через,y или,f Y y=f( f(+, f( M N = +, Рис. 1 приращение функции, равное

Подробнее

Лекция 4. ТЕМА Первообразные функции. Задачи с первообразными функции.

Лекция 4. ТЕМА Первообразные функции. Задачи с первообразными функции. Лекция 4 ТЕМА Первообразные функции. Задачи с первообразными функции. Автор: Максим Игоревич Писаревский, Преподаватель центра довузовской подготовки НИЯУ МИФИ. Москва, 017 Домашнее задание 1. Найти наименьшее

Подробнее

МОДУЛЬ 6 «Первообразная и интеграл»

МОДУЛЬ 6 «Первообразная и интеграл» МОДУЛЬ 6 «Первообразная и интеграл». Первообразная. Определение первообразной.. Правила нахождения первообразной.. Интеграл. Неопределенный и определенный интегралы. Площадь криволинейной трапеции.. Интеграл.

Подробнее

Московский Государственный Университет имени М.В. Ломоносова Биологический факультет

Московский Государственный Университет имени М.В. Ломоносова Биологический факультет Московский Государственный Университет имени МВ Ломоносова Биологический факультет УТВЕРЖДАЮ " " 00 г Рабочая программа дисциплины Высшая математика Направление подготовки Биология Профили подготовки Форма

Подробнее

Дифференциальные уравнения высших порядков. Лекции 2-3

Дифференциальные уравнения высших порядков. Лекции 2-3 Дифференциальные уравнения высших порядков Лекции 2-3 Дифференциальным уравнением порядка n называется уравнение вида F( x, y, y,..., y() n ) 0, () в котором обязательно наличие n-ой производной. Будем

Подробнее

Неопределённый интеграл: таблица интегралов, линейная замена

Неопределённый интеграл: таблица интегралов, линейная замена Неопределённый интеграл: таблица интегралов, линейная замена Учебная презентация Е. А. Максименко Южный федеральный университет 3 февраля 2008 г. Е. А. Максименко (ЮФУ) Неопределённый интеграл 3 февраля

Подробнее

Лекция 2.1.6. Определенный интеграл Римана

Лекция 2.1.6. Определенный интеграл Римана Лекция 6 Определенный интеграл Римана Аннотация: Отмечается что кроме интеграла Римана существуют и другие интегралы Рассматриваются свойства определенного интеграла Понятие определенного интеграла настолько

Подробнее

Дифференциальное и интегральное исчисление функции одного переменного. Числовые и функциональные ряды.

Дифференциальное и интегральное исчисление функции одного переменного. Числовые и функциональные ряды. Теоретические вопросы по курсу математики для студентов заочной формы обучения специальности 76 «Промышленное и гражданское строительство» семестр Дифференциальное и интегральное исчисление функции одного

Подробнее

Т е м а 4 Неопределенный интеграл

Т е м а 4 Неопределенный интеграл 17 Т е м а 4 Неопределенный интеграл Интегральное исчисление является составной частью математического анализа, и применяется при решении множества задач из области физики, химии, биологии, а именно в

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Глава 1. Неопределенный интеграл.

Глава 1. Неопределенный интеграл. Глава Неопределенный интеграл Первообразная и неопределенный интеграл Изучая дифференциальное исчисление, мы, в частности, рассматривали следующую задачу: на интервале числовой оси задана функция, надо

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

РАЗДЕЛ 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 1.1. Требования к студентам Дисциплина «Основы математического анализа» ориентирована на уровень знаний, полученных

РАЗДЕЛ 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 1.1. Требования к студентам Дисциплина «Основы математического анализа» ориентирована на уровень знаний, полученных РАЗДЕЛ. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.. Требования к студентам Дисциплина «Основы математического анализа» ориентирована на уровень знаний, полученных студентами при изучении школьного курса математики. Студент

Подробнее

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания Решение типовых вариантов контрольной работы по теме Интегралы функции одной переменной Методические указания УДК 517.91 Методические указания содержат подробные решения типовых вариантов контрольной работы

Подробнее

ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ

ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ ОВ Сорокина Учебное пособие для студентов нематематических

Подробнее

ПРОГРАММА И ЗАДАНИЯ. МАТЕМАТИЧЕСКИЙ АНАЛИЗ «Прикладные математика и физика» для всех факультетов высшей математики I

ПРОГРАММА И ЗАДАНИЯ. МАТЕМАТИЧЕСКИЙ АНАЛИЗ «Прикладные математика и физика» для всех факультетов высшей математики I УТВЕРЖДАЮ Проректор по учебной работе Ю.А. Самарский 10 июня 2010 г. ПРОГРАММА И ЗАДАНИЯ по дисциплине: по направлению подготовки: факультеты: кафедра: курс: Трудоёмкость: семестры: лекции: МАТЕМАТИЧЕСКИЙ

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Комплект контрольно-оценочных средств учебной дисциплины ЕН.01. Математика

Комплект контрольно-оценочных средств учебной дисциплины ЕН.01. Математика Бюджетное образовательное учреждение Чувашской Республики среднего профессионального образования «Чебоксарский электромеханический колледж» Министерства образования и молодежной политики Чувашской Республики

Подробнее

2011 год. Высшая математика для чайников. Производные и дифференциалы. Виосагмир И.А. Предел функции.

2011 год. Высшая математика для чайников. Производные и дифференциалы. Виосагмир И.А. Предел функции. 2011 год Высшая математика для чайников. Производные и дифференциалы. Виосагмир И.А. Предел функции viosagmir@gmail.com Глава 1. Производная функции. Содержание: 1. Самое главное о производной 1) Самое

Подробнее

ИНТЕГРАЛЫ И ИХ ПРИМЕНЕНИЕ В ГЕОМЕТРИИ И ЭКОНОМИКЕ Для студентов экономических специальностей Составил В. С. Мастяница

ИНТЕГРАЛЫ И ИХ ПРИМЕНЕНИЕ В ГЕОМЕТРИИ И ЭКОНОМИКЕ Для студентов экономических специальностей Составил В. С. Мастяница ИНТЕГРАЛЫ И ИХ ПРИМЕНЕНИЕ В ГЕОМЕТРИИ И ЭКОНОМИКЕ Для студентов экономических специальностей Составил В С Мастяница ГЛАВА Первообразная и неопределенный интеграл Первообразная Неопределѐнный интеграл Методы

Подробнее

Интегралы Определенные и Неопределенные

Интегралы Определенные и Неопределенные 1 Интегралы Определенные и Неопределенные Опр. Интеграл функции это естественный аналог суммы последовательности. Опр. Интегрирование процесс нахождения интеграла. Зам. Интегрирование это операция обратная

Подробнее

Лекция 3. Представление функций степенными рядами

Лекция 3. Представление функций степенными рядами С А Лавренченко wwwlawrecekoru Лекция Представление функций степенными рядами Введение Представление функций степенными рядами оказывается полезным при решении следующих задач: - интегрирование функций

Подробнее

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

ГБПОУ МО «Геологоразведочный техникум» Комплект

ГБПОУ МО «Геологоразведочный техникум» Комплект ГБПОУ МО «Геологоразведочный техникум» Комплект контрольно-оценочных средств учебной дисциплины ЕН Математика основной образовательной программы (ОПОП) по направлению подготовки (специальности) Геологическая

Подробнее

Костанайский филиал. Кафедра социально-гуманитарных и естественнонаучных дисциплин ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ. Математический анализ

Костанайский филиал. Кафедра социально-гуманитарных и естественнонаучных дисциплин ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ. Математический анализ МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Челябинский государственный университет» (ФГБОУ ВПО «ЧелГУ») Костанайский филиал

Подробнее

1. Производная ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. 1. Основные определения

1. Производная ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. 1. Основные определения ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. Производная. Основные определения Определение. Производной функции y = f (x) в точке x 0 называется предел отношения приращения этой функции y в точке

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Производная функции. Правила дифференцирования

Производная функции. Правила дифференцирования Производная функции. Правила дифференцирования Примеры решения задач 1. Пользуясь определением производной, найти производную функции y = х 3 в точке х = 1. Решение. Находим приращение функции y = х 3

Подробнее

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование СА Лавренченко wwwlawrencenkoru Лекция 4 Дифференцирование сложных функций Неявное дифференцирование Вспомним правило дифференцирования для функций одной переменной также называемое цепным правилом (см

Подробнее

Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции.

Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции. Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции. Способы задания функций. Область определения. Четные и нечетные,

Подробнее

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования.

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования. Производная функции Ее геометрический и физический смысл Техника дифференцирования Основные определения Пусть f ( ) определена на (, ) a, b некоторая фиксированная точка, приращение аргумента в точке,

Подробнее

Математический анализ

Математический анализ Математический анализ Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики Томского политехнического университета. http://www.tpu.ru/ Национальный исследовательский

Подробнее

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ МОДУЛЬ 2 «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ»

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ МОДУЛЬ 2 «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ» АВ Гласко ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ МОДУЛЬ «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ» Москва, МГТУ им НЭ Баумана 3 Лекция 8 Понятие производной Рассмотрим функцию y=f(), определенную

Подробнее

Составитель: доц. Никонова Т.В. 2012/2013 учебный год

Составитель: доц. Никонова Т.В. 2012/2013 учебный год Практические занятия по курсу высшей математики (II семестр) на основе учебного пособия «Сборник индивидуальных заданий по высшей математике», том, под ред Рябушко АП для студентов дневной формы обучения

Подробнее

Определенный интеграл

Определенный интеграл Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Т.В. Тарбокова Высшая математика IV САМОУЧИТЕЛЬ

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

Элементы математического анализа Лекция 1. Дифференцирова

Элементы математического анализа Лекция 1. Дифференцирова Элементы математического анализа Лекция 1. Дифференцирование Содержание 1. Понятие производной 2. Правила дифференцирования 3. Промежутки монотонности функции 4. Точки локального экстремума 5. Наибольшее

Подробнее

БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени В.Г.ШУХОВА ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2

БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени В.Г.ШУХОВА ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2 Поток: ТВГТ -I ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 1 1Определители -го и -го порядка Правила вычисления Общий алгоритм исследования графика функций с помощью производных Нахождение наибольшего и наименьшего значений

Подробнее

Контрольная работа 1 ...

Контрольная работа 1 ... Контрольная работа Тема Матрицы, операции над матрицами Решение систем линейных уравнений Матрицей называется прямоугольная таблица чисел, имеющая m срок n столбцов Для обозначения матриц применяются круглые

Подробнее

ЛЕКЦИЯ 18. Дифференциал функции в точке. Производная сложной и обратной функции.

ЛЕКЦИЯ 18. Дифференциал функции в точке. Производная сложной и обратной функции. ЛЕКЦИЯ 8 Дифференциал функции в точке Производная сложной и обратной функции Дифференциал функции в точке Пусть функция f () определена в некоторой окрестности точки Если приращение функции f () можно

Подробнее

Государственный университет связи, информатизации и телекоммуникационных технологий Республики Узбекистан

Государственный университет связи, информатизации и телекоммуникационных технологий Республики Узбекистан Государственный университет связи, информатизации и телекоммуникационных технологий Республики Узбекистан Нукусский филиал ташкентского университета информационных технологий САМОМОСТОЯТЕЛЬНАЯ РАБОТА ПО

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1)

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1) 8. Степенные ряды 8.. Функциональный ряд вида c n (z ) n, (8.) n= где c n числовая последовательность, R фиксированное число, а z R, называют степенным рядом с коэффициентами c n. Выполнив замену переменных

Подробнее

l : y y 0 = f (x 0 )(x x 0 ). n : y y 0 = 1 f (x 0 ) (x x 0). y (n) = y (n 1)) dx n.

l : y y 0 = f (x 0 )(x x 0 ). n : y y 0 = 1 f (x 0 ) (x x 0). y (n) = y (n 1)) dx n. Занятие 4 Вычисление производных-1 4.1 Определение производной Производной функции y = f(x) в точке x 0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента

Подробнее

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени

Подробнее

ВЫСШАЯ МАТЕМАТИКА ЧАСТЬ ІІ ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

ВЫСШАЯ МАТЕМАТИКА ЧАСТЬ ІІ ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ПРИАЗОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ А. М. Холькин ВЫСШАЯ МАТЕМАТИКА ЧАСТЬ ІІ ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ Мариуполь 2009 УДК 517.2

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее