ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Размер: px
Начинать показ со страницы:

Download "ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ"

Транскрипт

1 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию у f х и производные искомой функции n n : F обыкновенного Если искомая функция у f х является функцией одного аргумента х то дифференциальное уравнение называется обыкновенным порядка Порядком называется порядок наивысшей производной входящей в уравнение решения Решением интегралом называется всякая функция у f х подстановка которой в дифференциальное уравнение обращает дифференциальное уравнение в тождество График функции являющейся решением называется интегральной кривой общего решения Общим решением n F называется такое его решение c c c3 cn которое содержит столько линейно независимых произвольных постоянных c c c3 cn каков порядок этого Если общее решение записано в неявном виде Φ c c c3 cn то оно называется общим интегралом частного решения Всякое решение которое получается из общего решения если присвоить определённые числовые значения произвольным постоянным в него входящим называется частным решением этого

2 Правило проверки Если в результате решения найдена некоторая функция то подставив эту функцию в данное дифференциальное уравнение можно проверить правильность решения: если получится тождество то дифференциальное уравнение решено правильно понятия задачи Коши Задачей Коши называют задачу нахождения частного решения n F удовлетворяющего n заданным начальным условиям: n n Дифференциальные первого порядка Теорема существования и единственности решения задачи Коши Если правая часть f f и её частная производная по у то есть f определены и непрерывны в некоторой области D изменения переменных х и у то какова бы ни была внутренняя точка этой области данное уравнение имеет единственное решение у ух принимающее при х х заданное значение у у Дифференциальные первого порядка с разделёнными Тип дифф Уравнения с разделенными Вид М d d Признак Функция при d зависит только от функция при d зависит только от Проинтегрировать каждое слагаемое в уравнении Общий интеграл d d c Тип дифф Уравнения с разделяющим ися Дифференциальные первого порядка с разделяющимися Вид Признак Функции при d d дифференциалах распадаются на f f d произведения функций d зависящих только от одной из переменных

3 Разделить уравнение на произведение Уравнение с разделенными и общий интеграл: d d c Понятие об особых решениях особого решения огибающей семейства кривых Решение график которого таков что через каждую его точку проходит по крайней мере ещё одна касающаяся его интегральная кривая называется особым решением Огибающей семейства кривых называется такая кривая которая касается каждой кривой семейства и притом вся состоит из этих точек касания Тип дифф Вид Уравнения Клеро ψ Признак ψ - известная функция от у c ψ c Общее решение Однородные дифференциальные первого порядка однородной функции двух переменных степени однородности m Функция двух переменных f называется однородной функцией степени однородности m где m целое число если при любом m k выполняется равенство: f k k k f Тип дифф Однородные Вид d d f Признак Уравнение не изменяет своего вида при замене х и у на λ и λ

4 Сделать замену переменной t t t d td dt Уравнение с разделяющимися t f t t Дифференциальные первого порядка приводящиеся к однородным Тип дифф Уравнения приводящиеся к однородным Уравнения приводящиеся к м с разделяющи мися Вид a b c a b c a b c a b c Признак Производная равна отношению линейных комбинаций переменных a b a b Производная равна отношению линейных комбинаций переменных a b a b v a b c a b c z a b z a b Однородное уравнение dv a bv d a bv Уравнение с разделяющимися z a z c a k b kz c a Линейные дифференциальные первого порядка Тип дифф Вид Линейные p q p q Признак Искомая функция и её производная входят в уравнение в первой степени и между собой не перемножаются

5 Метод Бернулли v v v Метод вариации произвольной постоянной a q c б c q v p v v q Система двух ДУ с разделяющимися ДУ с разделяющимися Дифференциальные Бернулли Тип дифф Уравнения Бернулли Вид p q p q m m Признак Левая часть такая же как у линейного а правая отличается на сомножитель: искомую функцию в степени m Метод Бернулли v v v m z m z m Система двух ДУ с разделяющимися v p v v q m v m Линейное уравнение z m p z m q Дифференциальные первого порядка в полных дифференциалах Теорема о полном Для того чтобы дифференциальное выражение дифференциале d d было полным функции двух дифференциалом некоторой функции в аргументов некоторой области D необходимо и достаточно чтобы для непрерывных частных производных этой функции в области D выполнялось равенство: Тип дифф Уравнения в полных дифференциалах Вид d d Признак Условие полного дифференциала

6 Результат применения метода d с d ϕ ϕ const c d d const c d d Общий интеграл


Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение.

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение. Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные Основные типы ДУ 1. Уравнения с разделенными переменными ДУ (3) всегда можно записать в виде M (, d N(, d 0 (иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Уравнения первого порядка, не разрешенные относительно производной

Уравнения первого порядка, не разрешенные относительно производной Уравнения первого порядка, не разрешенные относительно производной Будем рассматривать уравнения первого порядка, не разрешенные относительно производной: F (x, y, y ) = 0, (1) где F заданная функция своих

Подробнее

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения.

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения. 4 Дифференциальные уравнения высших порядков Понижение порядка уравнения 4 Основные понятия и определения Дифференциальными уравнениями высшего порядка называют уравнения порядка выше первого В общем случае

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения

5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения УРАВНЕНИЯ НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения Уравнениями первого порядка неразрешенными относительно производной называются уравнения вида F ( x ) () Уравнение () можно решать следующими

Подробнее

Дифференциальные уравнения (лекция 4)

Дифференциальные уравнения (лекция 4) Дифференциальные уравнения лекция 4 Уравнения в полных дифференциалах. Интегрирующий множитель Лектор Шерстнёва Анна Игоревна 9. Уравнения в полных дифференциалах Уравнение d + d = 14 называется уравнением

Подробнее

Лекция2. Дифференциальные уравнения первого порядка

Лекция2. Дифференциальные уравнения первого порядка Лекция. Дифференциальные уравнения первого порядка Уравнения с разделяющимися переменными... Однородные уравнения... 3 Линейные уравнения первого порядка.... 7 Линейные однородные дифференциальные уравнения....

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Лекция 1. Дифференциальные уравнения первого порядка

Лекция 1. Дифференциальные уравнения первого порядка Лекция 1 Дифференциальные уравнения первого порядка 1 Понятие дифференциального уравнения и его решения Обыкновенным дифференциальным уравнением 1-го порядка называется выражение вида F( x, y, y ) 0, где

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Понятие об обыкновенном дифференциальном уравнении и его решении Обыкновенным дифференциальным уравнением называется уравнение содержащее независимую

Подробнее

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы.

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы. Памятка для практических занятий по теме «Обыкновенные дифференциальные уравнения» Решение различных задач методом математического моделирования сводится к отысканию неизвестной функции из уравнения, содержащего

Подробнее

Тема: ДУ: основные понятия. Уравнения с разделенными и разделяющимися переменными

Тема: ДУ: основные понятия. Уравнения с разделенными и разделяющимися переменными Математический анализ Раздел: Дифференциальные уравнения Тема: ДУ: основные понятия. Уравнения с разделенными и разделяющимися переменными Лектор Рожкова С.В. 2013 г. Теория дифференциальных уравнений

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФГОУ ВПО «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ В.Д. ГУНЬКО, Л.Ю. СУХОВЕЕВА, В.М. СМОЛЕНЦЕВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПРИМЕРЫ И ТИПОВЫЕ ЗАДАНИЯ Учебное пособие Краснодар

Подробнее

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА Бабичева ТА Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Махачкала УДК 5(75) ББК я 7 Учебное пособие

Подробнее

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8 Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Часть 1. Основные понятия. 1.1. Введение 2 1.2. Начальные условия 4 1.3. Составление дифференциальных уравнений 5 1.4.

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Обыкновенные дифференциальные уравнения. Лекционные наброски.

Обыкновенные дифференциальные уравнения. Лекционные наброски. Обыкновенные дифференциальные уравнения. Лекционные наброски. Содержание Конев В.В. 1. Рабочая программа (выписка) 2 2. Введение 3 3. Основные понятия 3 3.1. Начальные условия 5 3.2. Составление дифференциальных

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Стр. 1 из 17 26.10.2012 11:39 Аттестационное тестирование в сфере профессионального образования Специальность: 010300.62 Математика. Компьютерные науки Дисциплина: Дифференциальные уравнения Время выполнения

Подробнее

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции.

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции. Решение типового варианта ИДЗ «Дифференциальные уравнения» Задание Убедиться, что функция = (ln + C) удовлетворяет уравнению = Найдём производную данной функции = ln + C + = ln + C + Подставим данное выражение

Подробнее

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ИВ Ребро, СЮ Кузьмин, НН Короткова, ДА Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ Уфимский государственный нефтяной технический университет. Вариант 500. Дифференциальное уравнение P (, ) d Q(, ) d 0 порядка, если: будет однородным уравнением первого Ответы: ). P и Q однородные функции

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

Кафедра «Физика и математика» ВОПРОСЫ по дисциплине «Дифференцтальные уравнения»

Кафедра «Физика и математика» ВОПРОСЫ по дисциплине «Дифференцтальные уравнения» Министерство образования и науки Республики Казахстан Каспийский государственный университет технологий и инжиниринга имени ШЕсенова Кафедра «Физика и математика» Государственный экзамен по профилирующей

Подробнее

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли Математический анализ Раздел: Дифференциальные уравнения Тема: Однородные уравнения Линейные уравнения Уравнения Бернулли Лектор Рожкова СВ 07 год 8 Однородные уравнения Функция M, называется однородной

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ ДУ допускающие понижение ДУ линейные однородные (ДУЛО) ДУ линейные неоднородные (ДУЛН) ДУ линейные однородные

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Работа посвящена моделированию динамических систем с использованием

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ В.В.Поддубный ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ 1. Введение и основные определения Многие задачи естествознания и техники связаны с решением уравнений, содержащих неизвестные функции некоторых независимых

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 43 Аннотация Нормальные системы ДУ Задача и теорема Коши Частные и общее решения Системы линейных ДУ первого

Подробнее

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского -

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - { общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - вронскиан однородного линейного дифференциального уравнения

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Дифференциальные уравнения первого порядка

Дифференциальные уравнения первого порядка ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ Т Н Черняева, И П Медведева Дифференциальные уравнения первого порядка Методическое пособие для самостоятельной

Подробнее

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений»

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» Задание Выясните, являются ли функции ( ) e и e решениями дифференциального уравнения d ( ) d 0 на промежутке ( ; )..

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

Уравнения в полных дифференциалах

Уравнения в полных дифференциалах [Ф] Филиппов АВ Сборник задач по дифференциальным уравнениям Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика» 00 URL: http://elibrarbsaz/kitablar/846pf [М] Матвеев НМ Сборник задач и упражнений по

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

Глава 2. Дифференциальные уравнения 1-го порядка

Глава 2. Дифференциальные уравнения 1-го порядка Глава Дифференциальные уравнения -го порядка Основные понятия Определение Дифференциальное уравнение вида ( n) F, ( ),,, 0 () называют обыкновенным дифференциальным уравнением Оно содержит известную функцию

Подробнее

I. Дифференциальные уравнения 1-го порядка

I. Дифференциальные уравнения 1-го порядка Пособие предназначено для студентов - курсов МАТИ-РГТУ, изучающих в рамках курса высшей математики тему «Дифференциальные уравнения». В нем рассматриваются основные приемы решения обыкновенных дифференциальных

Подробнее

ЛЕКЦИЯ 1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной

ЛЕКЦИЯ 1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной ЛЕКЦИЯ. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной. Введение. Задача решения (интегрирования) дифференциальных уравнений это задача, обратная дифференцированию.

Подробнее

Тематика и расписание 3-х тестов по дифференциальным уравнениям. (ориентировочные сроки 05 марта, 10 апреля, 15 мая)

Тематика и расписание 3-х тестов по дифференциальным уравнениям. (ориентировочные сроки 05 марта, 10 апреля, 15 мая) Тематика и расписание 3-х тестов по дифференциальным м (ориентировочные сроки 05 марта, 10 апреля, 15 мая) Тест по интегральным м и вариационному исчислению предполагается один - в конце семестра (ориентировочно,

Подробнее

dz dx получим линейное уравнение, решая которое найдем z и подставив вместо z выражение y -n+1 получим общий интеграл уравнения Бернулли.

dz dx получим линейное уравнение, решая которое найдем z и подставив вместо z выражение y -n+1 получим общий интеграл уравнения Бернулли. Уравнение Бернулли Уравнение вида: n + P( x) y Q( x) y, (3126) называется уравнением Бернулли Решение этого уравнения при n 0 и n 1 (в противном случае получается линейное уравнение) находится следующим

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» КАФЕДРА «МАТЕМАТИКА» ЛГ ХАЛИЛОВА

Подробнее

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши)

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Лекция 7 Дифференциальные уравнения Дифференциальные уравнения -го порядка f (, ). Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Дифференциальным

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия теории дифференциальных уравнений

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия теории дифференциальных уравнений ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия теории дифференциальных уравнений n Опр Дифференциальным уравнением F,,,, называется уравненние, содержащее независимую переменную х, функцию ух

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г.

Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г. Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г. По дифференциальным м предполагается 3 теста. Ориентировочные сроки 01-10 марта, 10-20 апреля, 15-20 мая). По интегральным

Подробнее

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме ОГЛАВЛЕНИЕ Предисловие............................................. 5 Глава 1 Введение в теорию обыкновенных дифференциальных уравнений первого порядка................................. 8 1. Основные понятия

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Образцы решения уравнений из «Сборника типовых заданий по курсу высшей математики» Кузнецова Л.А. Авторы: Смирнов А.Н., Беловодский В.Н., кафедра компьютерных систем мониторинга,

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

3. ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши

3. ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши Обыкновенным дифференциальным уравнением n-го порядка называется уравнение ( n ) ( n) F (, y,,, y, y ) = 0, () где

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ТРЕТИЙ СЕМЕСТР ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ТРЕТИЙ СЕМЕСТР ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра математического

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

Занятие 3. Уравнения в частных производных 1-го порядка. Построение общего решения методом характеристик.

Занятие 3. Уравнения в частных производных 1-го порядка. Построение общего решения методом характеристик. Уравнения математической физики: Сборник примеров и упражнений / Сост АА Рогов ЕЕ Семенова ВИ Чернецкий ЛВ Щеголева Петрозаводск: Изд-во ПетрГУ 00 00908 Занятие Уравнения в частных производных -го порядка

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Л. Н. Феофанова ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ Учебное пособие

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ИВ Ребро, СЮ Кузьмин, НН Короткова, ДА Мустафина ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ ФИЛИАЛ ИВ Ребро, СЮ Кузьмин,

Подробнее

Министерство общего и профессионального образования РФ

Министерство общего и профессионального образования РФ Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет Министерство общего и профессионального образования РФ Назарова Л.И. Дифференциальные

Подробнее

0, 2. Уравнения 1-порядка (повторение) Заметим, что x y. Преобразуем заданное уравнение следующим

0, 2. Уравнения 1-порядка (повторение) Заметим, что x y. Преобразуем заданное уравнение следующим [Ф] Филиппов А.В. Сборник задач по дифференциальным уравнениям. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика». URL: htt://elibrar.bsu.az/kitablar/846.df [М] Матвеев Н.М. Сборник задач и упражнений

Подробнее

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка 6 УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА 6 Решения линейного однородного уравнения в частных производных первого порядка Линейным однородным уравнением первого порядка в частных производных называется

Подробнее

Однородные дифференциальные уравнения 1-го порядка

Однородные дифференциальные уравнения 1-го порядка Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Московский государственный технический университет им Н Э Баумана Соболев СК Дифференциальные уравнения Методические указания к решению задач Москва МГТУ им Баумана 008 СК Соболев Дифференциальные уравнения

Подробнее

Цель работы: научиться решать дифференциальные уравнения первого порядка. Содержание работы. Основные понятия.

Цель работы: научиться решать дифференциальные уравнения первого порядка. Содержание работы. Основные понятия. Практическая работа 8 Решение дифференциальных уравнений первого порядка. Цель работы: научиться решать дифференциальные уравнения первого порядка. Содержание работы. Основные понятия. 1 Дифференциальные

Подробнее

Дифференциальные уравнения первого порядка (продолжение)

Дифференциальные уравнения первого порядка (продолжение) Занятие 12 Дифференциальные уравнения первого порядка (продолжение) 12.1 Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли. Линейным дифференциальным уравнением первого порядка называется

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Работа посвящена моделированию динамических систем с использованием элементов

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Теоретические вопросы

V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

Дифференциальные уравнения Контрольная работа Вариант 19 Часть 1

Дифференциальные уравнения Контрольная работа Вариант 19 Часть 1 Дифференциальные уравнения Решение контрольных на wwwmatburoru Дифференциальные уравнения Контрольная работа Вариант Часть Задание Построить интегральные кривые при помощи изоклин ( d ( d 0 Решение d d

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им.

Подробнее

9 Если q(x) = 0, то уравнение называется однородным, если q(x) 0, то уравнение неоднородное

9 Если q(x) = 0, то уравнение называется однородным, если q(x) 0, то уравнение неоднородное Практическая работа 19 Решение дифференциальных уравнений первого порядка. Цель работы: закрепить навыки решения дифференциальных уравнений первого порядка. Содержание работы. Основные понятия. 1 Дифференциальные

Подробнее