Уравнения динамики и статики. Линеаризация

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Уравнения динамики и статики. Линеаризация"

Транскрипт

1 Уравнения динамики и статики. Линеаризация На определенном этапе разработки и исследования системы автоматического управления получают ее математическое описание описание процессов проистекающих в системе на языке математики. Математическое описание может быть аналитическим (с помощью уравнений) графическим (с помощью графиков структурных схем и графов) и табличным (с помощью таблиц). Для получения математического описания системы обычно составляют описание ее отдельных элементов. В частности для получения уравнений системы составляют уравнения для каждого входящего в нее элемента. Совокупность всех уравнений элементов и дает уравнения системы. Уравнения (а также структурные схемы) автоматической системы управления называют ее математической моделью. Такое название обусловлено тем что при математическом описании (составлении уравнений) физических процессов всегда делают какие-либо допущения и приближения. Математическая модель одной и той же системы в зависимости от цели исследования может быть разной. Более того иногда полезно при решении одной и той же задачи на разных этапах принимать разную математическую модель: начать исследование с простейшей модели а затем ее постепенно усложнять с тем чтобы учесть дополнительные явления и связи которые на начальном этапе были отброшены как несущественные. Сказанное обусловливается тем что к математической модели предъявляются противоречивые требования: она должна с одной стороны как можно полнее отражать свойства оригинала а с другой стороны быть по возможности простой чтобы не усложнять исследование. Рассмотрим математическое описание непрерывных систем управления с помощью дифференциальных уравнений. В большинстве случаев звенья и системы описываются нелинейными дифференциальными уравнениями произвольного порядка. Здесь под звеном понимается математическая модель

2 f элемента. Для примера рассмотрим звено (рис..) которое можно описать А дифференциальным уравнением второго порядка Рис... Упрощенное f (.) изображение звена системы автоматического где у выходная величина; и f управления: А оператор входные величины; и первые звена производные по времени; вторая производная по времени. Уравнение (.) описывающее процессы в звене при произвольных входных воздействиях называют уравнением динамики. Пусть при постоянных входных величинах = и f = f процесс в звене с течением времени установится: выходная величина примет постоянное значение у = у. Тогда уравнение (.) примет вид f. (.) Это уравнение описывает статический или установившийся режим и его называют уравнением статики. Статический режим можно описать графически с помощью статических характеристик. Статической характеристикой звена или элемента (а также системы) называют зависимость выходной величины от входной в статическом режиме. Статическую характеристику можно построить экспериментально подавая на вход элемента постоянное воздействие и измеряя выходную величину после окончания переходного процесса или расчетным путем используя уравнение статики. Если звено имеет несколько входов то оно описывается с помощью семейства или семейств статических характеристик. Например звено характеризующееся в статическом режиме уравнением (.) можно описать графически с помощью семейства статических характеристик представляющих собой кривые зависимости выходной величины у от одной входной величины (или f ) при различных фиксированных значениях другой f (или ).

3 Линеаризация. Обычно автоматические системы описывают нелинейными дифференциальными уравнениями. Но во многих случаях можно их линеаризовать т. е. заменить исходные нелинейные уравнения линейными приближенно описывающими процессы в системе. Процесс преобразования нелинейных уравнении в линейные называют линеаризацией. В автоматических системах должен поддерживаться некоторый заданный режим. При этом режиме входные и выходные величины звеньев системы изменяются по определенному закону. В частности в системах стабилизации они принимают определенные постоянные значения. Но из-за различных возмущающих факторов фактический режим отличается от требуемого (заданного) поэтому текущие значения входных и выходных величин не равны значениям соответствующим заданному режиму. В нормально функционирующей автоматической системе фактический режим немного отличается от требуемого режима и отклонения входных и выходных величин входящих в нее звеньев от требуемых значений малы. Это позволяет произвести линеаризацию разлагая нелинейные функции входящие в уравнения в ряд Тейлора. Линеаризацию можно производить по звеньям. В качестве примера выполним линеаризацию звена описываемого уравнением (.). Допустим что установившиеся значения переменных f является постоянными f и представим переменные f в виде = + (t) f = f + f(t) (.3) = + (t) где (t) f(t) (t) отклонения переменных f от значений f в процессе регулирования. Разложив функцию в уравнении (.) в ряд Тейлора получим f f... (.4)

4 где величины с верхним индексом обозначают значения получающиеся при подстановке ( ) т. е. и т. д. Вычитая из уравнения (.4) уравнение (.) и отбрасывая в (.4) все последующие члены разложения как малые высшего порядка придем к линейному уравнению динамики звена f c dt d dt d dt d (.5) где. c Звенья и системы которые описываются линейными уравнениями называют соответственно линейными звеньями и линейными системами. Уравнение (.5) было получено при следующих предположениях: ) отклонения выходной у и входной величин достаточно малы; ) функция обладает непрерывными частными производными по всем своим аргументам в окрестности точек соответствующих заданному режиму. Если хотя бы одно из этих условий не выполняется то линеаризацию производить нельзя. По поводу первого условия необходимо отметить следующее: нельзя раз и навсегда установить какие отклонения считать малыми. Это зависит от вида нелинейности.

5 Часто нелинейную зависимость между отдельными переменными входящими в уравнение звена задают в виде кривой. В этих случаях линеаризацию можно произвести графически. Геометрически линеаризация нелинейной зависимости между двумя переменными (рис..) означает замену исходной кривой АВ отрезком ее касательной А'В' в точке О' соответствующей заданному режиму и параллельный перенос начала координат в эту точку. Δ B В зависимости от того B входит или нет время явно в уравнение системы разделяют на стационарные и нестационарные. A Δ Автоматические системы управления (звенья) называют A стационарными если они при Рис... Графическая постоянных внешних линеаризация нелинейного воздействиях описываются звена уравнениями не зависящими явно от времени. Это означает что свойства системы со временем не изменяются. В противном случае система называется нестационарной. Для линейных систем можно дать также следующее определение: стационарными линейными системами (звеньями) называют системы (звенья) которые описываются линейными уравнениями с постоянными коэффициентами; нестационарными линейными системами (звеньями) или системами с переменными параметрами системы (звенья) которые описываются линейными уравнениями с переменными коэффициентами.

6 Неминимально-фазовые звенья. Звено называют минимальнофазовым если все нули и полюсы его передаточной функции имеют отрицательные или равные нулю вещественные части. Звено называют неминимально-фазовым если хотя бы один нуль или полюс его передаточной функции имеет положительную вещественную часть. Напомним что нулями передаточной функции KN s W s Ls где N(s) и L(s) полиномы имеющие свободные члены равные называются корни уравнения N(s) = а полюсами корни уравнения L(s) =. Все рассмотренные выше элементарные звенья относятся к минимальнофазовым. Примерами неминимально-фазовых элементарных звеньев являются звенья с передаточными функциями: K W s ; W s K T s ; T s K W s ; W s K T s T s T s T s и др. Для неминимально-фазового звена характерно что у него сдвиг фазы по модулю больше чем у минимально-фазового звена имеющего одинаковую с неминимально-фазовым звеном АЧХ. На рис..36 приведены ЛЧХ неминимально-фазовых звеньев с передаточными функциями W(s) = K /(T s ) (рис..36 а) и W(s) = K (T s ) (рис..36 б). ЛАЧХ этих звеньев совпадают с ЛАЧХ апериодического и форсирующего звеньев. Сдвиг фазы у последних меньше: фазовые частотные характеристики апериодического и форсирующего звеньев по модулю не превышают значения π/ а фазовые частотные характеристики соответствующих неминимально-фазовых звеньев достигают по модулю значения π. Для звена с передаточной функцией K /(T s ) ЛАЧХ описывается равенством (.48) как и для апериодического звена первого порядка а ФЧХ rctg T rctgt поскольку при ω частотная передаточная функция lim W j K lim W j lim j. Переходная характеристика рассматриваемого jt звена изображена на рис..37. Для звена с передаточной функцией W(s) = K (T s ) ЛАЧХ имеет такой же вид как t и у форсирующего звена первого порядка. h( t) e T Поскольку частотная передаточная функция t звена W(jω) = K (T jω ) при ω = W(j) = K то ; lim lim W j K T j Рис..37 а

7 следовательно L(ω) φ(ω) π/ 3π/ π lgk lim /. ω а дб/дек L(ω) φ(ω) π π/ lgk б Рис..36. Асимптотические ЛАЧХ и ЛФЧХ неминимально-фазовых звеньев ω + дб/дек Звено чистого запаздывания. К неминимально-фазовым звеньям относят также звенья чистого запаздывания. Выходной сигнал этого звена точно повторяет входной но с некоторым запаздыванием во времени. Уравнение связи выходного и входного сигналов имеет вид ()() t K t при t. p На основании теоремы запаздывания X ()() p KX p e. Поэтому передаточная функция звена W(s) = K e τs. Частотная передаточная функция у таких звеньев j W j K e K cos j sin. АФЧХ звена чистого запаздывания (рис..38 а) представляет собой окружность с центром в начале координат и радиусом K. Каждой точке этой характеристики соответствует бесконечное jv а K U lgk τ б L(ω) множество значений частот. ЛАЧХ (рис..38 б) совпадает с ЛАЧХ пропорционального звена с передаточной функцией K ФЧХ описывается равенством φ(ω) = τ ω. Переходная характеристика приведена на рис..38 в. φ(ω) h(t) t в Рис..38. Характеристики звена чистого запаздывания: АФЧХ (а) ЛАЧХ и ЛФЧХ (б) переходная (в) K τ

Лекция 11,12 Раздел 2: МАТЕМАТИЧЕСКИЕ МОДЕЛИ ЛИНЕЙНЫХ СИСТЕМ УПРАВЛЕНИЯ Тема 2.4: ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ СИСТЕМ. План лекции: Литература:

Лекция 11,12 Раздел 2: МАТЕМАТИЧЕСКИЕ МОДЕЛИ ЛИНЕЙНЫХ СИСТЕМ УПРАВЛЕНИЯ Тема 2.4: ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ СИСТЕМ. План лекции: Литература: Лекция 11,12 Раздел 2: МАТЕМАТИЧЕСКИЕ МОДЕЛИ ЛИНЕЙНЫХ СИСТЕМ УПРАВЛЕНИЯ Тема 2.4: ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ СИСТЕМ 1. Типовые звенья систем: характеристики и уравнения; физические модели. План лекции:

Подробнее

Лекция 4. Типовые динамические звенья

Лекция 4. Типовые динамические звенья Лекция 4 Типовые динамические звенья Системы автоматического регулирования удобно представлять в виде соединения элементов, каждый из которых описывается алгебраическим или дифференциальным уравнением

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПЕРВОГО ПОРЯДКА

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПЕРВОГО ПОРЯДКА Семинар Дифференциальное уравнение первого порядка. Фазовое пространство. Фазовые переменные. Стационарное состояние. Устойчивость стационарного состояния по Ляпунову. Линеаризация системы в окрестности

Подробнее

Практическое занятие 1 ПЕРЕДАТОЧНАЯ ФУНКЦИЯ. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ. 1. Цели и задачи работы

Практическое занятие 1 ПЕРЕДАТОЧНАЯ ФУНКЦИЯ. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ. 1. Цели и задачи работы Практическое занятие ПЕРЕДАТОЧНАЯ ФУНКЦИЯ ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ Цели и задачи работы В результате освоения темы студент должен уметь по заданному дифференциальному уравнению получить операторное уравнение;

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к домашнему заданию по курсу УТС Исследование нелинейной системы автоматического регулирования ОПРЕДЕЛЕНИЕ ИСХОДНЫХ ДАННЫХ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к домашнему заданию по курсу УТС Исследование нелинейной системы автоматического регулирования ОПРЕДЕЛЕНИЕ ИСХОДНЫХ ДАННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к домашнему заданию по курсу УТС Исследование нелинейной системы автоматического регулирования ОПРЕДЕЛЕНИЕ ИСХОДНЫХ ДАННЫХ Исходные данные для выполнения домашнего задания приведены

Подробнее

Частотный критерий устойчивости Найквиста Данный критерий применяется при анализе устойчивости систем, структурная схема которых показана на рис. 2.1.

Частотный критерий устойчивости Найквиста Данный критерий применяется при анализе устойчивости систем, структурная схема которых показана на рис. 2.1. ЛАБОРАТОРНАЯ РАБОТА ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ И ТОЧНОСТИ ЛИНЕЙНЫХ САУ. ЦЕЛЬ РАБОТЫ Изучение особенностей практического использования алгебраических и частотных критериев устойчивости для анализа динамики

Подробнее

Тема 5. ЛИНЕЙНЫЕ СТАЦИОНАРНЫЕ СИСТЕМЫ

Тема 5. ЛИНЕЙНЫЕ СТАЦИОНАРНЫЕ СИСТЕМЫ Тема 5 ЛИНЕЙНЫЕ СТАЦИОНАРНЫЕ СИСТЕМЫ Свойства линейных стационарных систем: линейность, стационарность, физическая реализуемость Дифференциальное уравнение Передаточная функция Частотная передаточная функция

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

Лабораторная работа 1 ТИПОВЫЕ ЗВЕНЬЯ САУ

Лабораторная работа 1 ТИПОВЫЕ ЗВЕНЬЯ САУ Лабораторная работа 1 1 ТИПОВЫЕ ЗВЕНЬЯ САУ 1. Цель работы Исследовать динамические характеристики типовых звеньев систем автоматического управления (САУ), а также познакомиться с основными правилами структурного

Подробнее

РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ФГБОУ ВПО «Омский государственный технический университет» РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ Лекция 4. ДИНАМИЧЕКИЕ ЗВЕНЬЯ. ОБЩИЕ ПОНЯТИЯ, ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ И ЧАСТОТНАЯ

Подробнее

Примеры решения задач

Примеры решения задач . Динамические характеристики линейных систем Примеры решения задач Пример. Алгоритм нахождения обратной матрицы. C T транспонированная матрица алгебраических дополнений; Полученная матрица A и будет обратной.

Подробнее

СЕМИНАР 1 переменные параметры

СЕМИНАР 1 переменные параметры СЕМИНАР Основные понятия. Составление (вывод) дифференциального уравнения. Понятие решения дифференциального уравнения. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения

Подробнее

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости ГЛАВА УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ В этой главе исследуется устойчивость самого простого класса дифференциальных систем линейных систем В частности, устанавливается, что для линейных систем с постоянными

Подробнее

Курсовая работа. «Исследование релейной следящей системы» по курсу: «Теория автоматического управления» Российский Университет Дружбы Народов

Курсовая работа. «Исследование релейной следящей системы» по курсу: «Теория автоматического управления» Российский Университет Дружбы Народов Российский Университет Дружбы Народов Курсовая работа по курсу: «Теория автоматического управления» «Исследование релейной следящей системы» Выполнил: Группа: Преподаватель: ИУБ Москва 200 г Оглавление

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

6М Автоматизаци и управление

6М Автоматизаци и управление 6М07000 -Автоматизаци и управление «Элементы и устройства автоматики».устройство и принцип действия двигателей постоянного тока.. Основные характеристики трехфазного асинхронного двигателя с фазным ротором.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Учреждение образования «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Учреждение образования «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра автоматизации технологических процессов и производств Теория автоматического

Подробнее

Рассмотрим систему двух автономных обыкновенных ди ф- ференциальных уравнений общего вида: dx dt dy dt

Рассмотрим систему двух автономных обыкновенных ди ф- ференциальных уравнений общего вида: dx dt dy dt Семинар 4 Система двух обыкновенных дифференциальных уравнений (ОДУ). Фазовая плоскость. Фазовый портрет. Кинетические кривые. Особые точки. Устойчивость стационарного состояния. Линеаризация системы в

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ Министерство образования Российской Федерации Ульяновский государственный технический университет СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ Методические указания по курсовому проектированию Ульяновск Министерство

Подробнее

ЧАСТЬ II УСТОЙЧИВОСТЬ СИНХРОННОГО ГЕНЕРАТОРА. Глава 4 Оценка устойчивости критерии устойчивости

ЧАСТЬ II УСТОЙЧИВОСТЬ СИНХРОННОГО ГЕНЕРАТОРА. Глава 4 Оценка устойчивости критерии устойчивости Мелешкин Г.А., Меркурьев Г.В.Устойчивость энергосистем. Книга. Глава 4. Оценка устойчивости критерии устойчивости 8 ЧАСТЬ II УСТОЙЧИВОСТЬ СИНХРОННОГО ГЕНЕРАТОРА Глава 4 Оценка устойчивости критерии устойчивости

Подробнее

Баширова Э.М., Свободина Н.Н.

Баширова Э.М., Свободина Н.Н. 1 УДК 62.179.14 Баширова Э.М., Свободина.. ОЦЕКА ТЕКУЩЕГО СОСТОЯИЯ МЕТАЛЛА ЕФТЕГАЗОВОГО ОБОРУДОВАИЯ С ПОМОЩЬЮ ПАРАМЕТРОВ ПЕРЕДАТОЧОЙ ФУКЦИИ Оборудование, используемое для переработки нефти, работающее

Подробнее

ПРОГРАММА вступительного экзамена в аспирантуру по кафедре «Автоматизации»

ПРОГРАММА вступительного экзамена в аспирантуру по кафедре «Автоматизации» Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский технологический университет «МИСиС» ПРОГРАММА вступительного экзамена

Подробнее

Утверждено. Одобрено. и рекомендовано к печати.

Утверждено. Одобрено. и рекомендовано к печати. Государственная служба специальной связи и защиты информации Украины Администрация государственной службы специальной связи и защиты информации Украины ОДЕССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СВЯЗИ им. А.С. ПОПОВА

Подробнее

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ 54 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье Некоторые свойства преобразования Фурье 3 Спектральный метод

Подробнее

МГТУ им. Н. Э. Баумана. Кафедра Прикладная механика

МГТУ им. Н. Э. Баумана. Кафедра Прикладная механика МГТУ им Н Э Баумана Кафедра Прикладная механика Лабораторная работа 2 по курсу Управление в технических системах «Устойчивость системы автоматического регулирования угловой скорости паровой турбины» Студент:

Подробнее

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ. Неверова Дарья Андреевна Кафедра прикладной математики

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ. Неверова Дарья Андреевна Кафедра прикладной математики ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ Неверова Дарья Андреевна Кафедра прикладной математики Подготовка к контрольной работе 1. Анализ многомерных систем. Формула Коши. 2. ИПФ и ЕПФ одномерных систем. 3. Передаточные

Подробнее

Глава IV Идентификация динамических характеристик по экспериментальным данным

Глава IV Идентификация динамических характеристик по экспериментальным данным Глава IV Идентификация динамических характеристик по экспериментальным данным Построение модели системы управления и ее элементов не всегда удается осуществлять аналитически, т.е. на основе использования

Подробнее

Лекция 13 ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Лекция 13 ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 4 Лекция 3 ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ Комплексные передаточные функции Логарифмические частотные характеристики 3 Заключение Комплексные передаточные функции (комплексные частотные характеристики)

Подробнее

ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ

ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ 1. Устойчивость линейной системы Рассмотрим систему двух уравнений. Уравнения возмущенного движения имеют вид: dx 1 dt = x + ax 3 1, dx dt = x 1 + ax 3,

Подробнее

Исследование динамики типовых звеньев автоматики

Исследование динамики типовых звеньев автоматики I Исследование динамики типовых звеньев автоматики 1 Идеальный усилитель (апериодическое звено нулевого порядка - АП-0) и реальный усилитель (апериодическое звено первого порядка - АП-1) Цель работы: исследовать

Подробнее

ГЛАВА 6. Анализ динамических характеристик импульсного стабилизатора напряжения с принципом управления по отклонению

ГЛАВА 6. Анализ динамических характеристик импульсного стабилизатора напряжения с принципом управления по отклонению ГЛАВА 6 Анализ динамических характеристик импульсного стабилизатора напряжения с принципом управления по отклонению В предыдущей главе на основании анализа математической модели показано, что импульсный

Подробнее

РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ. Лекция 4.2 ДИНАМИЧЕКИЕ ЗВЕНЬЯ И ИХ ХАРАКТЕРИСТИКИ. (4 ч)

РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ. Лекция 4.2 ДИНАМИЧЕКИЕ ЗВЕНЬЯ И ИХ ХАРАКТЕРИСТИКИ. (4 ч) 1 ФГБОУ ВПО «Омский государственный технический университет» РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ Лекция 4.2 ДИНАМИЧЕКИЕ ЗВЕНЬЯ И ИХ ХАРАКТЕРИСТИКИ. (4 ч) 2 ФГБОУ ВПО «Омский

Подробнее

4. Решение и исследование квадратных уравнений

4. Решение и исследование квадратных уравнений КВАДРАТНЫЕ УРАВНЕНИЯ Оглавление КВАДРАТНЫЕ УРАВНЕНИЯ... 4. и исследование квадратных уравнений... 4.. Квадратное уравнение с числовыми коэффициентами... 4.. Решить и исследовать квадратные уравнения относительно

Подробнее

РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ 1 ФГБОУ ВПО «Омский государственный технический университет» РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ Лекция 6.2 КРИТЕРИЙ УСТОЙЧИВОСТИ НАЙКВИСТА. ОПРЕДЕЛЕНИЕ УСТОЙЧИВОСТИ ПО ЛОГАРИФМИЧЕСКИМ

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

Лабораторная работа 1. Анализ САУ с помощью ЭВМ и программного обеспечения MATLAB/Simulink

Лабораторная работа 1. Анализ САУ с помощью ЭВМ и программного обеспечения MATLAB/Simulink СОДЕРЖАНИЕ Лабораторная работа. Анализ САУ с помощью ЭВМ и программного обеспечения MALAB/Simulin... 3 Цель работы... 3 Программа работы... 3 Ход работы... 3. Построение временных характеристик САУ с помощью

Подробнее

Тема: Анализ устойчивости моделируемой системы управления

Тема: Анализ устойчивости моделируемой системы управления УГС (код, наименование) 220000 Автоматика и управление Направление 220100 Системный анализ и управление Квалификация Магистр Факультет Информационных технологий и управления Дисциплина Современные компьютерные

Подробнее

Численное решение нелинейных уравнений

Численное решение нелинейных уравнений Постановка задачи Метод половинного деления Метод хорд (метод пропорциональных частей 4 Метод Ньютона (метод касательных 5 Метод итераций (метод последовательных приближений Постановка задачи Пусть дано

Подробнее

1) Искажающая (передающая) система - например, e( t) Реальные системы - казуальны - подчиняются принципу причинности, т.е.

1) Искажающая (передающая) система - например, e( t) Реальные системы - казуальны - подчиняются принципу причинности, т.е. Переходные процессы - операторный подход. Метод Фурье Искажающая передающая система - например B Q{ A } - пусть один вход один выход Реальные системы - казуальны - подчиняются принципу причинности т.е.

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Теория устойчивости Ляпунова.

Теория устойчивости Ляпунова. Теория устойчивости Ляпунова. Во многих задачах механики и техники бывает важно знать не конкретные значения решения при данном конкретном значении аргумента, а характер поведения решения при изменении

Подробнее

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова.

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова. 8 Устойчивость решений систем обыкновенных дифференциальных уравнений Прямой метод Ляпунова ВДНогин 1 о Введение Для того чтобы можно было поставить задачу об устойчивости, необходимо располагать объектом,

Подробнее

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Тема. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Элементы теории множеств. Основные понятия Одним из основных понятий современной математики является понятие множества.

Подробнее

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий.

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий. Лекция 4 3 Непрерывная зависимость решения задачи Коши от параметров и начальных условий Постановка задачи Простейшим примером параметра, от которого зависит решение задачи Коши = f ( xy, ), yx ( ) = y

Подробнее

Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP,

Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP, 5 Глава ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Пространство R n Понятие функции нескольких переменных Определение Множество всех упорядоченных наборов (,,, n ), где,,, n - действительные числа называется n-мерным

Подробнее

Комплексные числа. Операции над комплексными числами. Комплексная плоскость.

Комплексные числа. Операции над комплексными числами. Комплексная плоскость. Методическая разработка Решение задач по ТФКП Комплексные числа Операции над комплексными числами Комплексная плоскость Комплексное число можно представить в алгебраической и тригонометрической экспоненциальной

Подробнее

Основы функционального анализа и теории функций

Основы функционального анализа и теории функций Основы функционального анализа и теории функций Лектор Сергей Андреевич Тресков 3 семестр. Ряды Фурье. Постановка задачи о разложении периодической функции по простейшим гармоникам. Коэффициенты Фурье

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

АЛГЕБРА И НАЧАЛА АНАЛИЗА

АЛГЕБРА И НАЧАЛА АНАЛИЗА СОДЕРЖАНИЕ АЛГЕБРА И НАЧАЛА АНАЛИЗА ФУНКЦИИ...10 Основные свойства функций...11 Четность и нечетность...11 Периодичность...12 Нули функции...12 Монотонность (возрастание, убывание)...13 Экстремумы (максимумы

Подробнее

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ И РЕГУЛИРОВАНИЯ

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ И РЕГУЛИРОВАНИЯ ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ И РЕГУЛИРОВАНИЯ Автоматизация является одним из главных направлений научнотехнического прогресса и важным средством повышения эффективности

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Теоретические вопросы

Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши)

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Лекция 7 Дифференциальные уравнения Дифференциальные уравнения -го порядка f (, ). Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Дифференциальным

Подробнее

нелинейные цепи - коэффициенты уравнений зависят от величин сигналов, их интегралов или производных;

нелинейные цепи - коэффициенты уравнений зависят от величин сигналов, их интегралов или производных; Нелинейные цепи Ранее - линейные инвариантные по времени цепи (ЛИВ-цепи) системы дифференциальных уравнений с коэффициентами, не зависящими ни от времени, ни от величин сигналов (токов и напряжений). Но

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Рабочая программа Заочной математической школы. 10 класс (набор 2009 года) Базовый уровень. Занятие 1.

Рабочая программа Заочной математической школы. 10 класс (набор 2009 года) Базовый уровень. Занятие 1. Рабочая программа Заочной математической школы 10 класс (набор 2009 года) Базовый уровень Занятие 1. Алгебраические преобразования. Рациональные дроби 1. Формулы сокращенного умножения. 2. Разложение многочленов

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

3. Производная производной дифференцированием дифференцируемой на промежутке ( a , b

3. Производная производной дифференцированием дифференцируемой на промежутке ( a , b 41 3. Производная Рассмотрим функцию y=f(, непрерывную в некоторой окрестности точки. Пусть, приращение аргумента в точке. Обозначим через,y или,f Y y=f( f(+, f( M N = +, Рис. 1 приращение функции, равное

Подробнее

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

Подробнее

ВВОД СИГНАЛА ПО ПРОИЗВОДНОЙ ОТ ВХОДНОГО ДАВЛЕНИЯ В ПРЕДОХРАНИТЕЛЬНОМ КЛАПАНЕ С СЕРВОДЕЙСТВИЕМ

ВВОД СИГНАЛА ПО ПРОИЗВОДНОЙ ОТ ВХОДНОГО ДАВЛЕНИЯ В ПРЕДОХРАНИТЕЛЬНОМ КЛАПАНЕ С СЕРВОДЕЙСТВИЕМ НИЖежера ВВОД СИГНАЛА ПО ПРОИЗВОДНОЙ ОТ ВХОДНОГО ДАВЛЕНИЯ В ПРЕДОХРАНИТЕЛЬНОМ КЛАПАНЕ С СЕРВОДЕЙСТВИЕМ В настоящей статье приводится теоретический анализ и результаты экспериментальной проверки ввода сигнала

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

Лекция 12. РЕЗОНАНС. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Лекция 12. РЕЗОНАНС. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 4 Лекция РЕЗОНАНС ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ Резонанс и его значение в радиоэлектронике Комплексные передаточные функции 3 Логарифмические частотные характеристики 4 Выводы Резонанс и

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Лекция 6 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА

Лекция 6 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА Лекция 6 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА План Тригонометрическая форма ряда Фурье Ряд Фурье в комплексной форме Комплексный частотный спектр 3 Мощности в цепях несинусоидального тока Коэффициенты,

Подробнее

1. ВВЕДЕНИЕ. Физика это наука о наиболее общих свойствах и формах движения материи.

1. ВВЕДЕНИЕ. Физика это наука о наиболее общих свойствах и формах движения материи. 1. ВВЕДЕНИЕ Физика это наука о наиболее общих свойствах и формах движения материи. В механической картине мира под материей понималось вещество, состоящее из частиц, вечных и неизменных. Основные законы,

Подробнее

Лекция 1. Дифференциальные уравнения первого порядка

Лекция 1. Дифференциальные уравнения первого порядка Лекция 1 Дифференциальные уравнения первого порядка 1 Понятие дифференциального уравнения и его решения Обыкновенным дифференциальным уравнением 1-го порядка называется выражение вида F( x, y, y ) 0, где

Подробнее

Лекция 1. Понятие множества. Определение функции, основные свойства. Основные элементарные функции

Лекция 1. Понятие множества. Определение функции, основные свойства. Основные элементарные функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Лекция. Понятие множества. Определение функции основные свойства. Основные элементарные функции СОДЕРЖАНИЕ: Элементы теории множеств Множество вещественных чисел Числовая

Подробнее

Определение параметров механической колебательной системы по характеристике переходного процесса и годографу АФЧХ

Определение параметров механической колебательной системы по характеристике переходного процесса и годографу АФЧХ Определение параметров механической колебательной системы по характеристике переходного процесса и годографу АФЧХ # 0, январь 06 Наумов А. М.,* УДК: 68.5 Россия, МГТУ им. Н.Э. Баумана *a63@ail.ru Введение.

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

1 Цели и задачи дисциплины. 2 Требования к уровню освоения содержания дисциплины

1 Цели и задачи дисциплины. 2 Требования к уровню освоения содержания дисциплины 1 Цели и задачи дисциплины 1.1 Освоение общих принципов и средств, необходимых для управления динамическими системами различной физической природы применительно к производственным и технологическим процессам.

Подробнее

Тематические вопросы в магистратуру по дисциплине «Автоматизация типовых технологических процессов и производств»

Тематические вопросы в магистратуру по дисциплине «Автоматизация типовых технологических процессов и производств» по дисциплине «Автоматизация типовых технологических процессов и производств» 1. Современный уровень автоматизации технологических процессов. Уровень автоматизации и перспективы ее развития. Общие сведения

Подробнее

ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ

ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ Н. В. Чашников nik239@list.ru 13 марта 21 г. Пусть натуральное число, отличное от единицы. Определим периодический B-сплайн первого

Подробнее

Глава 4. Обыкновенные дифференциальные уравнения

Глава 4. Обыкновенные дифференциальные уравнения Глава 4. Обыкновенные дифференциальные уравнения 1. Дифференциальные уравнения первого порядка Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких

Подробнее

1. Геометрия комплексных чисел

1. Геометрия комплексных чисел . Геометрия комплексных чисел В первой главе комплексные числа изучались с алгебраической точки зрения. Мы рассмотрели основные алгебраические операции и свойства комплексных чисел. Но комплексные числа

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-Net.Ru Общероссийский математический портал А. М. Ильин, М. А. Меленцов, Асимптотика решений систем дифференциальных уравнений с малым параметром при больших значениях времени, Тр. ИММ УрО РАН, 25,

Подробнее

(n 1) (t)) y(t) = y 2 (t) m (t)) y m (t) u (t) = u (t)u 2 (t) + sin t, u(0) = 1, u (0) = 1, u (0) = 2. y 1 = u, y 2 = u, y 3 = u

(n 1) (t)) y(t) = y 2 (t) m (t)) y m (t) u (t) = u (t)u 2 (t) + sin t, u(0) = 1, u (0) = 1, u (0) = 2. y 1 = u, y 2 = u, y 3 = u Глава 3 Численное интегрирование обыкновенных дифференциальных уравнений!" $# &%' '()* +(, '+ -.' / ' 01!23434 5'6 %7 2098: : 1;= @?BA&C Рассмотрим методы численного интегрирования обыкновенных дифференциальных

Подробнее

Лекция 2.7. Производные и дифференциалы высших порядков

Лекция 2.7. Производные и дифференциалы высших порядков 1 Лекция 7 Производные и дифференциалы высших порядков Аннотация: Вводится понятие дифференцируемой функции, дается геометрическая интерпретация первого дифференциала и доказывается его инвариантность

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ

ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Сыктывкарский лесной институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Санкт-Петербургский

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

Операционное исчисление. Преобразование Лапласа

Операционное исчисление. Преобразование Лапласа Лекция 6 Операционное исчисление Преобразование Лапласа Образы простых функций Основные свойства преобразования Лапласа Изображение производной оригинала Операционное исчисление Преобразование Лапласа

Подробнее

Лекция 11. Основные понятия теории поля. Скалярное поле.

Лекция 11. Основные понятия теории поля. Скалярное поле. Лекция 11 Основные понятия теории поля Скалярное поле Теория поля раздел физики, механики, математики, в котором изучаются скалярные, векторные, тензорные поля К рассмотрению скалярных и векторных полей

Подробнее

Ю. Н. Соколов. Функции MATLAB в задачах анализа и проектирования систем управления

Ю. Н. Соколов. Функции MATLAB в задачах анализа и проектирования систем управления Ю. Н. Соколов Функции MATLAB в задачах анализа и проектирования систем управления 2004 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского Харьковский

Подробнее