МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ 1-ой КОНТРОЛЬНОЙ РАБОТЫ

Размер: px
Начинать показ со страницы:

Download "МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ 1-ой КОНТРОЛЬНОЙ РАБОТЫ"

Транскрипт

1 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ -ой КОНТРОЛЬНОЙ РАБОТЫ Теоретические положения -ой части контрольной работы (тема: Элементы линейной алгебры) Определителем называется число, задаваемое таблицей n чисел, упорядоченных по столбцам и строкам, и равная сумме всевозможных произведений n элементов определителя, отличающихся друг от друга номером строки и столбца. Для вычисления определителя вводится вспомогательные понятия:. Минором ij элемента ij определителя n-го порядка называется определитель n -го порядка, получаемый из данного путем вычеркивания i-ой строки и j-ого столбца определителя.. Алгебраическим дополнением элемента ij определителя называется минор этого элемента, умноженный на в степени i + j: A ij ( ) i+j ij. Вычисление определителя осуществляется двумя способами:. По теореме разложения по любой строке (или столбцу): n A A. ij ij i j постоянная n ij ij j i постоянная. С помощью теоремы о линейной комбинации строк (или столбцов) можно определитель n-го порядка свести к определителю n -го порядка затем тем же способом понизить его порядок до. 3. Для вычисления определителя 3-го порядка можно применить правило Сарруса. В этом случае к определителю снизу приписываются две первые строки и составляются 3 «положительные» диагонали (из верхнего левого угла к нижнему правому углу) и три «отрицательные» диагонали (из верхнего правого угла к нижнему левому углу). Величина определителя в этом случае равна разности произведений, стоящих на положительных диагоналях, и произведений, стоящих на отрицательных диагоналях

2 Существуют другие модификации этого правила. Это правило справедливо только для определителей третьего порядка и не распространяется на определители более высокого порядка. Матрицей размера m n называется таблица чисел, расположенных в виде m строк и n столбцов, для которой справедливы определенные законы, называемые законами алгебры матриц. Матрица размера n n называется квадратной матрицей и ей сопоставляется в качестве числовой характеристики ее определитель (А). Если в матрице а ii, а ij 0, (i j), то матрица называется единичной. Решение систем линейных алгебраических уравнений осуществляется с помощью 3-х методов:. метод Крамера,. матричный метод, 3. метод Гаусса. По методу Крамера система а х + а х + а 3 х 3 в, а х + а х + а 3 х 3 в, а 3 х + а 3 х + а 33 х 3 в 3 будет иметь единственное решение, если определитель этой системы отличен от нуля. В этом случае х, х, 3 х3, где определители, и 3 получаются из определителя путем замены столбца коэффициентов при определяемом неизвестном на столбец свободных членов. Матричный метод может быть применен только для системы, определитель которой 0. В этом случае система записывается в виде А Х В, где А матрица системы: а а а 3 А а а а 3 а 3 а 3 а 33

3 В матрица-столбец свободных членов: в В в в 3 Х матрица-столбец неизвестных х Х х х 3 Тогда решение системы можно записать в виде: Х А В, где А матрица, обратная матрице А. Обратная матрица определена только для квадратных невырожденных матриц ( (А) 0) и вычисляется с помощью союзной матрицы А А А 3 А v А А А 3, А 3 А 3 А 33 где А ij алгебраические дополнения элементов а ij. Можно показать, что А v ( A ), где А А А 3 (А v ) А А А 3, А 3 А 3 А 33 т.е. (А v ) матрица, транспонированная по отношению к союзной матрице, т.е. в качестве столбцов матрицы записываются строки матрицы А v. Таким образом, для элементов обратной матрицы справедлива формула Aji ij. При этом, матрица А и ее обратная матрица А удовлетворяют соотношению А А А А Е, где Е единичная матрица. Наиболее общим методом решения и исследования систем линейных алгебраических уравнений является метод Гаусса. В этом случае составляется расширенная матрица системы а а а 3 в а а а 3 в а 3 а 3 а 33 в 3 3

4 и путем линейных преобразований строк этой матрицы приводится к виду * (*) 0 0 в * 0 0 в, * 0 0 в 3 что дает решение системы: х в *, х в *, х 3 в * 3. Если при линейных преобразованиях в одной из строк матрицы получились нули, то, следовательно, это уравнение исходной системы является линейной комбинацией других уравнений системы и в этом случае система совместна и имеет бесчисленное множество решений. Если при линейных преобразованиях в одной из строк расширенной матрицы * получаются нули, а в столбце свободных членов этой строки в i 0, то, следовательно, исходная система несовместна и решения не имеет. Преобразование исходной расширенной матрицы системы к виду (*) осуществляется с помощью прямого хода (получение нулей под диагональю) и затем обратного хода (получение нулей над диагональю). 4

5 Пример выполнения заданий по теме «Элементы линейной алгебры» Задание. Рассмотрим систему линейных алгебраических уравнений: х 4х х х + х + х х 5х 6х 3 5. Определитель этой системы Необходимо вычислить его тремя различными способами. а) Разложим этот определитель по элементам I-го столбца: 4 4 A б) С помощью теоремы о линейной комбинации строк сведем определитель 3-го порядка к определителю -го порядка Выполнены следующие преобразования:. Из элементов III-й строки вычли элементы II-й строки.. Из элементов II-ой строки вычли элементы I-ой строки Разложим определитель по I-му столбцу. в) По правилу Сарруса: ( ( 6) + 3 ( 5) ( ) + 3 ( 4) ) (( ) 3 + +( 5) + +( 6)( 4) 3 ( ) ( ).. Вычислить минор М и алгебраическое дополнение А 3. Вычеркивая первую строку и второй столбец определителя, получим минор М. 5

6 М Алгебраическое дополнение А 3 ( ) +3 М 3 ( ) 5 4 ( ( 5) 3 ( 4)) Рассмотрим систему алгебраических уравнений х 4х х 3 3 3х + х + х 3 8 3х 5х 6х 3 5. Определитель этой системы был вычислен в п.. (А). Вычислим три вспомогательных определителя Таким образом, по методу Крамера х, х, х Матрица рассматриваемой системы: A Построим обратную матрицу А. Т. к. (А), то, следовательно, матрица А невырожденная и обратная матрица существует. Элементы обратной матрицы вычисляем по формуле: ij A ji 6

7 вычислив предварительно все алгебраические дополнения: А, А 4 4, А А 3, А 0, А А 3 8, А 3 7, А Следовательно, обратная матрица будет иметь вид: 4 А Проверим правильность вычисления обратной матрицы 4-4 А А ( 4) +( )( 8) ( 4) ( 7) ( 4) + ( 5) Т. е обратная матрица вычислена верно. 3. Рассмотрим решение этой системы матричным методом. Так как обратная матрица А была вычислена в п.4 4 А 0 7,

8 то можно получить решение системы в виде: х х х Рассмотрим решение той же системы методом Гаусса. Составим расширенную матрицу системы (, ) (3) (4) Проделаны следующие действия: Прямой ход:. из II строки I стр. 3,. из III строки II стр., 3. II стр. + III стр., 4. III стр. + II стр. 6, 5. III стр. : ( ) (5) На этом заканчивается прямой ход. Обратный ход: 6. II стр. + III стр. 7, 7. I стр. + III стр., 8. I стр. + II стр Последний столбец этой матрицы дает решение системы: х. х. х

9 Теоретические положения -ой части данной работы (тема: Аналитическая геометрия на плоскости) В II-ую часть контрольной работы включены две задачи:. Исследование прямых, их расположение на плоскости, свойства плоских фигур, в частности, треугольников.. Исследование кривых второго порядка, приведение уравнения кривой к каноническому виду и построение графика этой кривой. Для решения -ой задачи вводится некоторая система координат, в которой каждой точке плоскости ставятся в соответствие ее координаты. Треугольник задается с помощью координат его вершин. Если определены координаты вершин, то можно записать уравнения всех сторон треугольника в виде: x x x x где (х, у ) и (х, у ) координаты двух вершин треугольника, а (х, у) координаты текущей точки прямой, проходящей через данные вершины треугольника. Уравнение () может быть приведено к виду уравнения с угловым коэффициентом kх + в, где k тангенс угла наклона прямой к оси 0х. Если исследуется взаимное расположение двух прямых, то можно воспользоваться формулой для тангенса угла между двумя прямыми. tgϕ k k + kk. Эта формула позволяет установить условия параллельности и перпендикулярности этих прямых: k k условие параллельности; + k k 0 условие перпендикулярности. Если нужно написать уравнение прямой, перпендикулярной данной, то угловой коэффициент этой прямой вычисляется через угловой коэффициент исходной прямой по формуле k k () 9

10 и уравнение прямой будет иметь вид: у у 0 k (х х 0 ), где (х 0, у 0 ) координаты точки, через которую проходит данная прямая. Чтобы написать уравнение медианы треугольника, проведенной из вершины В на сторону АС, нужно найти координаты ( )М середины стороны АС: xa + xc A + C xm, M, и затем записать уравнение прямой, проходящей через точки М и В. Для нахождения длины отрезка прямой можно воспользоваться формулой расстояния между двумя точками: d ( x x) + ( ). При определении различных характеристик треугольника полезно пользоваться методами векторной алгебры. В частности, для определения внутренних углов треугольника можно воспользоваться формулой скалярного произведения векторов: в xвx + в, Но т. к., по определению, скалярное произведение двух векторов есть число, равное произведению их длин на косинус угла между ними, то xвx + в cosϕ. x + в x + в Векторное произведение двух векторов может быть использовано для нахождения площади треугольника, т. к. по определению векторного произведения его величина равна произведению длин векторов на синус угла между ними, т. е. S в в x в x. Вторая задача -ой части контрольной работы заключается в исследовании кривых II-го порядка, приведении уравнения кривой к каноническому виду и построении графика этой кривой. При этом кривые II-го порядка могут быть приведены к одному из следующих трех видов:. Эллиптические кривые: x +. в Если правая часть уравнения равна нулю, то это уравнение называется вырожденным эллипсом и определяет координаты только одной точки. 0

11 x Уравнение + называется мнимым эллипсом и никакого в геометрического образа не имеет. x x. Гиперболические кривые ±. Уравнение 0 в в прямых. 3. у ±рх или х ± ру параболические кривые. определяет пару Для всех трех типов кривых II-го порядка необходимо определить фокусы и эксцентриситет:. Эллипсы имеют два фокуса F ( с; 0) и F (с; 0), если а > в, и F (0; с), F (0; с), если а < в, где c в.. Гиперболы также имеют два фокуса F ( с; 0) и F (с; 0) или F (0; с), F (0; с) в зависимости от расположения ветвей гиперболы на плоскости. При этом для гиперболы с + в. 3. Параболы имеют один фокус, расположенный внутри ветвей параболы на расстоянии р/ от вершины параболы.

12 Пример выполнения второй части работы по теме «Аналитическая геометрия на плоскости» Задание. Рассмотрим треугольник АВС с вершинами А( ; 0), В(; 4), С(4; 0) B K A M C. Составить уравнение стороны ВС, воспользовавшись уравнением прямой, проходящей через две точки: B x xb C B xc xb Подставляя координаты точек, получим: 4 x x + 8. k ВС Уравнение высоты АК, проведенной из вершины А. Т. к. АК перпендикулярно ВС, то k АК. k BC Высота проходит через ( )А и потому ее уравнение будет иметь вид: у у А k АК (х х А ). Подставляя числовые значения, получим: у 0 ½ (х +) у ½ х +. Для нахождения длины АК можно привести уравнение стороны ВС к нормальному виду: + x x Тогда расстояние ( )А от прямой ВС d A x A

13 3. Чтобы написать уравнение медианы ВМ, нужно найти координаты ( )М как середины отрезка ВС: х м x B + x C 3, у м B + C. М(3; ). Длина ВМ находится как расстояние между двумя точками: ВМ ( x x ) + ( ) (3 ) + ( 4) 5. M B 4. Для определения угла ВАС запишем векторы M AB ( xb xa) i + ( B A) j 4i + 4 j AC ( xc xa) i + ( C A) j 6i Скалярное произведение AB AC ( 4i + 4 j) 6i 4 B и cos BAC AB AC AB AC AB AC и, следовательно, cos ВАС π т.е. BAC Площадь АВС вычисляется через векторное произведение AB AC : S AB AC i AB AC j k и, следовательно, S ½ 4 кв. ед. Задание 3. Привести к каноническому виду и построить кривую х + 3у + 8х 6у Сгруппируем слагаемые, содержащие х и содержащие у: (х + 8х) + (3у 6у) Дополним выражения, стоящие в скобках, до полного квадрата (х + 4х + 4 4) + 3(у у + ) Отсюда, (х + ) + 3(у ) 6. 3

14 Деля на правую часть, получим каноническое уравнение эллипса: ( x + ) ( ) + 3 или x +, 3 где x x + Полуоси этого эллипса а 3, в. Т. к. а > в, то, следовательно, эллипс вытянут вдоль оси 0х, центр его лежит в точке ( ; ), а фокусы расположены на оси 0х и имеют координаты: F ( с;), F ( +с;), где с c Эксцентриситет эллипса ε. 3 в, т.е. F ( 3; ), F ( ; ) x x 4


Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия.

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия. Министерство образования и науки Российской Федерации Казанский государственный архитектурно-строительный университет Кафедра высшей математики Элементы векторной и линейной алгебры. Аналитическая геометрия.

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

Задачи для отработки пропущенных занятий

Задачи для отработки пропущенных занятий Задачи для отработки пропущенных занятий Оглавление Тема: Матрицы, действия над ними. Вычисление определителей.... 2 Тема: Обратная матрица. Решение систем уравнений с помощью обратной матрицы. Формулы

Подробнее

Методические указания к контрольным работам

Методические указания к контрольным работам Методические указания к контрольным работам Контрольная работа «Переаттестация» Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости Расстояние между двумя точками M ( ) и ( ) плоскости

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Методические указания к выполнению индивидуальных домашних заданий ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ m n называется прямоугольная табли- Матрицей размера ца

Подробнее

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством Определители Определитель второго порядка задается равенством Определитель третьего порядка задается равенством Свойства определителей Определитель равен нулю если он содержит две одинаковые или пропорциональные

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1 Кафедра Математики, физики и информационных технологий 2 Направление подготовки 010302

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , )

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , ) Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный политехнический университет» Университетский центр социально-гуманитарных

Подробнее

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы к зачету по математике семестр для студентов курса ИСиА, -6 гр. направление

Подробнее

Высшая математика для психологов

Высшая математика для психологов Саратовский государственный университет им Н Г Чернышевского Галаев СВ, Шевцова ЮВ Высшая математика для психологов Часть (Линейная алгебра и аналитическая геометрия) Саратов 00 СОДЕРЖАНИЕ Глава Векторная

Подробнее

ПРОГРАММА ЭКЗАМЕНА. по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX»)

ПРОГРАММА ЭКЗАМЕНА. по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX») ПРОГРАММА ЭКЗАМЕНА по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX») 1 курс 1 семестр для групп ФН11, Э4, Э9, Э7, АК1,АК2, АК3, АК4, Знание: Физико-математические науки Направление науки: Математические

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

2. Даны векторы a, b, 6. Найти фундаментальную систему решений однородной СЛАУ

2. Даны векторы a, b, 6. Найти фундаментальную систему решений однородной СЛАУ Экзаменационный билет 1 по курсу: 1. Дать определение скалярного произведения векторов. Доказать свойства скалярного произведения. Вывести формулу скалярного произведения в ортонормированном базисе. Приложения

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ . Дифференциалы высоких порядков. Экзаменационный билет. Матрицы, основные понятия и определения.. Написать уравнение окружности, если точки А(;) и В(-;6) являются концами одного из диаметров.. Даны вершины

Подробнее

Экзаменационный билет 1.

Экзаменационный билет 1. Экзаменационный билет 1. 1. Векторы в пространстве. Основные определения и операции над векторами: сумма векторов, произведение вектора на число. Свойства. Теорема о коллинеарных векторах. 2. Расстояние

Подробнее

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица.

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица. ВОПРОСЫ ТЕОРИИ I. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ 1) Дать определение матрицы. Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными? Как выполняется операция транспонирования? Когда

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике МИНИСТЕРСТВО СВЯЗИ И ИНФОРМАТИЗАЦИИ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СВЯЗИ» Кафедра математики и физики ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Подробнее

Билет 1 1. Матрицы, действия над ними. 2. Уравнение параболы в канонической системе координат.

Билет 1 1. Матрицы, действия над ними. 2. Уравнение параболы в канонической системе координат. Билет. Матрицы, действия над ними.. Уравнение параболы в канонической системе координат. Билет. Свойства матричных операций.. Взаимное расположение прямой и плоскости. Угол между ними, условия параллельности

Подробнее

10. АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ

10. АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ . АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ.. ЛИНИИ ПЕРВОГО ПОРЯДКА (ПРЯМЫЕ НА ПЛОСКОСТИ... ОСНОВНЫЕ ТИПЫ УРАВНЕНИЙ ПРЯМЫХ НА ПЛОСКОСТИ Ненулевой вектор n перпендикулярный заданной прямой называется нормальным

Подробнее

Сборник тестовых заданий

Сборник тестовых заданий федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» КАФЕДРА «МАТЕМАТИКА» М. В. ИШХАНЯН, А.И.

Подробнее

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) 8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

1. Найти значение матричного многочлена:

1. Найти значение матричного многочлена: 1. Найти значение матричного многочлена: f(a) = A + 5A E f(x) = x + 5x, A = ( 0 1 4 ) 5 1 A = ( 0 1 4 ) ( 0 1 4 ) = 5 1 5 1 + 0 5 + 1 ( ) ( ) + 4 1 = ( 0 + 1 0 + 4 5 0 + 1 1 + 4 ( ) 0 ( ) + 1 4 + 4 1)

Подробнее

Образец решения. получаем элемент матрицы AB, стоящий в 1-ой строке и 2-ом столбце (элемент C 12

Образец решения. получаем элемент матрицы AB, стоящий в 1-ой строке и 2-ом столбце (элемент C 12 1. Даны матрицы: Образец решения 1 2 1 1 0 2 3 0 2 1 1 0 A, B 1 1 0 2 1 1 2 1 1 0 1 1 Найти матрицу и выяснить, имеет ли она обратную матрицу. Решение. Найдѐм матрицу Найдѐм транспонированную матрицу Найдѐм

Подробнее

План практических занятий по линейной алгебре1 семестр

План практических занятий по линейной алгебре1 семестр План практических занятий по линейной алгебре1 семестр Занятие 1 Алгебра матриц 1 (±) 276 = 2 1 1 0 1 4, = 2 1 0 3 2 2 2 = 3 4, = 2 4 5 6 Найти A+B+AT +B T Найти 3A+2B 0 0 3 (±) =, = + 0 Доказать, что

Подробнее

Итоговый тест. Время выполнения 100 минут. Расстояние между точками A ( 1; равно. 1)5, 2)3, 3)41, 4)7 Ответ:1) 2

Итоговый тест. Время выполнения 100 минут. Расстояние между точками A ( 1; равно. 1)5, 2)3, 3)41, 4)7 Ответ:1) 2 Итоговый тест. Время выполнения минут. Расстояние между точками A ( ; ) и B( ;) ), ), ), )7 Ответ:) равно Координаты середины отрезка, соединяющего точки A ( ; ) и B ( ;) ) (;); ) (;), ) (;), ) (;) Ответ:)

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

. Найдите произведение. ; B) 2. Найти матрицы n - ой степени : B n ; B) 3.Решите уравнение: 0. x C) x D) x ; B) A) 5 B)9 C)4 D)2

. Найдите произведение. ; B) 2. Найти матрицы n - ой степени : B n ; B) 3.Решите уравнение: 0. x C) x D) x ; B) A) 5 B)9 C)4 D)2 и Найдите произведение A) 8 8 ; B) 8 C) 8 8 D) 8 8 Найти матрицы n - ой степени : α α α α B cos sin sin cos ; A) n n n n B n cos sin sin cos ; B) n n n n B n cos sin sin cos C) n n n n B n cos sin sin

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

1. При каких значениях ранг матрицы. Решение:

1. При каких значениях ранг матрицы. Решение: . При каких значениях ранг матрицы равен двум? Решение: Ранг матрицы равен порядку базисного минора. Поскольку требуется, чтобы ранг матрицы был равен двум, то базисным должен быть какой-либо минор второго

Подробнее

ВСГТУ Кафедра «Прикладная математика»

ВСГТУ Кафедра «Прикладная математика» Министерство общего и профессионального образования РФ ВСГТУ Кафедра «Прикладная математика» Дидактические материалы к практическим занятиям По высшей математике по темам «Векторная алгебра и аналитическая

Подробнее

Фонд оценочных средств по аналитической геометрии и линейной алгебре Вопросы к экзамену

Фонд оценочных средств по аналитической геометрии и линейной алгебре Вопросы к экзамену Вопросы к экзамену Вопросы для проверки уровня обучаемости «ЗНАТЬ» Раздел 1 Элементы линейной алгебры 1 Операции над матрицами и их свойства Определители -го и 3-го порядков 3 Определение минора и алгебраического

Подробнее

ЗАДАЧНИК-ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЗАДАЧНИК-ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ Ответы Учебное издание Министерство образования и науки Российской Федерации Камчатский государственный университет имени Витуса Беринга Островерхая Лидия Дмитриевна Задачник-практикум по высшей математике

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ Балаковский инженерно-технологический институт - филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Подробнее

Тема: «Линейная алгебра и аналитическая геометрия» Номер варианта определяется по последней цифре зачётной книжки. 1 вариант

Тема: «Линейная алгебра и аналитическая геометрия» Номер варианта определяется по последней цифре зачётной книжки. 1 вариант Задания для выполнения расчётно-графической работы по математике на I полугодие - учебного года для студентов курса заочной формы обучения ИСиА Тема: «Линейная алгебра и аналитическая геометрия» Номер

Подробнее

1. Перечень компетенций с указанием этапов (уровней) их формирования.

1. Перечень компетенций с указанием этапов (уровней) их формирования. 1. Перечень компетенций с указанием этапов (уровней) их формирования. Компетенция ОК-10: способностью и готовностью к письменной и устной коммуникации на родном языке Знать: Уровень 1 Основные понятия

Подробнее

Экономический факультет. Кафедра естественнонаучных и гуманитарных дисциплин. Ю.И.Швецова ЛИНЕЙНАЯ АЛГЕБРА

Экономический факультет. Кафедра естественнонаучных и гуманитарных дисциплин. Ю.И.Швецова ЛИНЕЙНАЯ АЛГЕБРА МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ЗАБАЙКАЛЬСКИЙ АГРАРНЫЙ ИНСТИТУТ - филиал ФГБОУ ВО «Иркутский государственный аграрный университет имени ААЕжевского» Экономический факультет Кафедра

Подробнее

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы.

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы. Вопросы и задачи к экзамену по аналитической геометрии, зима 1 I. Теоретические вопросы. Условные бозначения. (*) в конце фразы означает, что студенты будущей группы 2362 ее положения доказывать не должны,

Подробнее

Глава 1. Элементы линейной алгебры.

Глава 1. Элементы линейной алгебры. Глава Элементы линейной алгебры Матрицы О п р е д е л е н и е Матрицей размерности m n называется прямоугольная таблица чисел, расставленных в m строк и n столбцов Обозначаются матрицы латинскими буквами,,

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования Критерии и показатели оценивания компетенций

Критерии и показатели оценивания компетенций на различных этапах их формирования Критерии и показатели оценивания компетенций ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Общие сведения 1. Кафедра Общих дисциплин 2. Направление подготовки 38.03.01 «Экономика» 3. Дисциплина (модуль) Б1.Б.8 Линейная алгебра Перечень компетенций - способностью осуществлять

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1 Аннотация Определитель матрицы произвольного порядка. Вычисление определителей 2-ого и 3-его порядков. Миноры и алгебраические

Подробнее

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р.

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р. Векторная алгебра Аналитическая геометрия Ищанов ТР h://schowru/veor-lger-lches-geomerhml Задача Написать разложение вектора по векторам r 8 r Требуется представить вектор в виде r где числа Найдем их

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ к первой части контрольной работы 1 по дисциплине «Математика»

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ к первой части контрольной работы 1 по дисциплине «Математика» СТАРООСКОЛЬСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ ИМ СЕРГО ОРДЖОНИКИДЗЕ»

Подробнее

1. Перечень компетенций с указанием этапов (уровней) их формирования.

1. Перечень компетенций с указанием этапов (уровней) их формирования. 1. Перечень компетенций с указанием этапов (уровней) их формирования. ОК-7: способность к самоорганизации и самообразованию. Знать: Уровень 1 Основные определения курса аналитической геометрии и линейной

Подробнее

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1 1 Простейшие задачи аналитической геометрии на плоскости 11 Расстояние между двумя точками Рассмотрим прямоугольную систему координат (декартовую, рис Рис 1 Любой точки M соответствуют координаты OA x

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Приложение 5 Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению заданий модуля «Линейная и векторная алгебра. Аналитическая геометрия» по курсу «Высшая математика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению заданий модуля «Линейная и векторная алгебра. Аналитическая геометрия» по курсу «Высшая математика» Министерство образования и науки Украины ХАРЬКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ Специальности: ; ; ; МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению заданий модуля «Линейная

Подробнее

«Векторная алгебра и аналитическая геометрия»

«Векторная алгебра и аналитическая геометрия» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Новосибирский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МАТРИЦЫ: а) Определение, виды матриц, операции над матрицами (сложение матриц, умножение матрицы на число, умножение матриц, транспонирование),

Подробнее

ЗАДАНИЕ N 1 Формула вычисления определителя третьего порядка следующие произведения: 1) aek 2) cdk 3) bfd 4) adf

ЗАДАНИЕ N 1 Формула вычисления определителя третьего порядка следующие произведения: 1) aek 2) cdk 3) bfd 4) adf ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Б1.ДВ.2.1 Аналитическая геометрия Примерные тестовые задания Тест 1 ЗАДАНИЕ N 1 Формула вычисления

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

Чистопольский филиал «Восток» Кафедра Естественнонаучных дисциплин. Методические указания по дисциплине Математика часть 1

Чистопольский филиал «Восток» Кафедра Естественнонаучных дисциплин. Методические указания по дисциплине Математика часть 1 Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ Л.П. КАГАДИЙ, И.Л. ШИНКОВСКАЯ, И.П. ЗАЕЦ, Л.Ф.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ Л.П. КАГАДИЙ, И.Л. ШИНКОВСКАЯ, И.П. ЗАЕЦ, Л.Ф. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ ЛП КАГАДИЙ ИЛ ШИНКОВСКАЯ ИП ЗАЕЦ ЛФ СУШКО ВЫСШАЯ МАТЕМАТИКА Часть I Утверждено на заседании Ученого совета академии

Подробнее

Линейная алгебра и аналитическая геометрия:

Линейная алгебра и аналитическая геометрия: МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖД ЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ВМ Смоленцев Линейная алгебра

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ ПО АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ ПО АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра высшей математики Т.А. Волкова СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ ПО АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к решению задач по дисциплине Высшая математика и варианты контрольных заданий практические

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ!УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

Ответы. Ответы к задаче 1

Ответы. Ответы к задаче 1 Ответы Ответы к задаче Три Три x, x, x ; ; ; свободные члены системы не содержат неизвестных и записываются обычно в правых частях уравнений 5 Уравнения называют линейными, если они представляют собой

Подробнее

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x.

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x. Демонстрационный вариант 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. 2. Найдите базис системы

Подробнее

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7.

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7. 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. Ответ: Если в качестве базисных переменных выбрать

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

Экзамен по ЛА для бакалавров экономики в уч. году, ДЕМОвариант 01

Экзамен по ЛА для бакалавров экономики в уч. году, ДЕМОвариант 01 Ne Экзамен по ЛА для бакалавров экономики в 04-0 уч году, Найдите вектор Ne (6 4 ; 6 8 ) и Ne ДЕМОвариант 0 (x ; y )(у которого Ne и x < 0) такой, чтобы система векторов (x ; y ) образовывала бы ортогональный

Подробнее

Дисциплина «Алгебра и геометрия»

Дисциплина «Алгебра и геометрия» Методические материалы для преподавателей. Примерные планы лекционных занятий. Раздел «Алгебра: основные алгебраические структуры, линейные пространства и линейные отображения» Лекция 1 по теме «Комплексные

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль. Аналитическая геометрия на плоскости и в пространстве Лекция 7 Аннотация Линии второго порядка на плоскости: эллипс, гипербола, парабола. Определение, общие характеристики.

Подробнее

Линейная алгебра и аналитическая геометрия. Группа АМ Вопросы к экзамену.

Линейная алгебра и аналитическая геометрия. Группа АМ Вопросы к экзамену. 1.Векторная алгебра. Матрицы. Обратная матрица. Линейная алгебра и аналитическая геометрия. Группа АМ-14-06. Вопросы к экзамену. 1. Определение вектора. Равенство векторов. Свободные вектора. Линейные

Подробнее

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ. Кафедра высшей математики ЛИНЕЙНАЯ АЛГЕБРА

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ. Кафедра высшей математики ЛИНЕЙНАЯ АЛГЕБРА МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ Кафедра высшей математики ЛИНЕЙНАЯ АЛГЕБРА Методические указания для самостоятельной работы обучающихся по направлению подготовки «Экономика» квалификация степень «бакалавр»

Подробнее

Министерство сельского хозяйства РФ. А. Н. Манилов. Линейная алгебра. Методические указания и контрольные задания

Министерство сельского хозяйства РФ. А. Н. Манилов. Линейная алгебра. Методические указания и контрольные задания Министерство сельского озяйства РФ А Н Манилов Линейная алгебра Методические указания и контрольные задания для студентов-заочников направления «Экономика» Санкт Петербург Введение Настоящие указания предназначены

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

Вопросы и задачи к экзамену 1 семестр

Вопросы и задачи к экзамену 1 семестр Направление: «Строительство» Вопросы и задачи к экзамену семестр. Матрицы: определение, виды. Действия с матрицами: транспонирование, сложение, умножение на число, умножение матриц. 2. Элементарные преобразования

Подробнее

Примеры к выполнению контрольной работы 1 Линейная алгебра. Задача 1. Найти значения неизвестных x, y, z из системы уравнений:

Примеры к выполнению контрольной работы 1 Линейная алгебра. Задача 1. Найти значения неизвестных x, y, z из системы уравнений: Примеры к выполнению контрольной работы Линейная алгебра Задача Найти значения неизвестных,, z из системы уравнений: (a b ) (b a) bz ( a b)(a c ) (c ) (c ) c z a b c ( a c) c z a c а) по формулам Крамера

Подробнее

МАТЕМАТИКА ЧАСТЬ I ИЗДАТЕЛЬСТВО ТГТУ

МАТЕМАТИКА ЧАСТЬ I ИЗДАТЕЛЬСТВО ТГТУ МАТЕМАТИКА ЧАСТЬ I ИЗДАТЕЛЬСТВО ТГТУ Министерство образования и науки Российской Федерации ГОУ ВПО «Тамбовский государственный технический университет» МАТЕМАТИКА Задания для контрольной работы для студентов

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

Репозиторий БНТУ. Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Репозиторий БНТУ. Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет маркетинга менеджмента предпринимательства Кафедра «Бизнес-администрирование» МАТЕМАТИКА Методическое

Подробнее

Свойства определителя квадратной матрицы. Обратная

Свойства определителя квадратной матрицы. Обратная СОДЕРЖАНИЕ КУРСА ЛЕКЦИЙ 1 Семестра Раздел 1. Векторная и линейная алгебра. 10 часов. Лекция 1. Матрицы, операции над ними. Определители. Определение матрицы. Обозначения матрицы. Элементы, строки, столбцы.

Подробнее

Элементы линейной алгебры и аналитической геометрии

Элементы линейной алгебры и аналитической геометрии Министерство образования Российской Федерации Ростовский Государственный Университет Механико-маттематический факультет Кафедра геометрии Казак В.В. Практикум по аналитической геометрии для студентов первого

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Xətti cəbr (Rus) ümumi imtahahn sualları

Xətti cəbr (Rus) ümumi imtahahn sualları Xətti ər Rus) üui ithhn sullrı Показать, что вектора ;;) ;; ) ; ;) образуют базис вектора и написать линейную комбинацию вектора Если ;; ) на эти вектора найти Х из уравнения Показать, что вектора ; )

Подробнее

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости Лекция 9,30 Глава Аналитическая геометрия на плоскости Системы координат на плоскости Прямоугольная и полярная системы координат Системой координат на плоскости называется способ, позволяющий определять

Подробнее

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2)

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2) Занятие 9 Прямая на плоскости и плоскость в пространстве На этом занятии мы будем заниматься кривыми и поверхностями, которые задаются простейшими уравнениями алгебраическими уравнениями первой степени.

Подробнее

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров.

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров. Лекция 2. Определители Миноры и алгебраические дополнения. Рекуррентное определение определителя n-го порядка. Соответствие между общим определением и правилом Саррюса при n=3. Основные свойства определителей.

Подробнее

Содержание Введение 1. Линейная алгебра 2. Аналитическая геометрия и векторная алгебра 3. Введение в анализ 4. Дифференциальное исчисление

Содержание Введение 1. Линейная алгебра 2. Аналитическая геометрия и векторная алгебра 3. Введение в анализ 4. Дифференциальное исчисление Содержание Введение Линейная алгебра Задачи для аудиторных занятий Образцы решения задач Задачи для самоподготовки Аналитическая геометрия и векторная алгебра Задачи для аудиторных занятий Образцы решения

Подробнее

МАТЕМАТИКА. Контрольные работы 1 и 2. Для студентов ЗФ 1 курса 1-го семестра обучения

МАТЕМАТИКА. Контрольные работы 1 и 2. Для студентов ЗФ 1 курса 1-го семестра обучения Министерство транспорта Российской Федерации (Минтранс России) Федеральное агентство воздушного транспорта (Росавиация) ФГОУ ВПО «Санкт-Петербургский государственный университет гражданской авиации» МАТЕМАТИКА

Подробнее

8. Кривые второго порядка Окружность

8. Кривые второго порядка Окружность 8 Кривые второго порядка 81 Окружность Множество точек плоскости, равноудаленных от одной точки, называемой центром, на расстояние, называемое радиусом, называется окружностью Пусть центр окружности находится

Подробнее

СПРАВОЧНОЕ ПОСОБИЕ ПО РЕШЕНИЮ ЗАДАЧ КУРСА АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ И ЛИНЕЙНОЙ АЛГЕБРЫ

СПРАВОЧНОЕ ПОСОБИЕ ПО РЕШЕНИЮ ЗАДАЧ КУРСА АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ И ЛИНЕЙНОЙ АЛГЕБРЫ Министерство образования Республики Беларусь Учреждение образования «Международный государственный экологический университет им АД Сахарова» Факультет экологического мониторинга Кафедра физики и высшей

Подробнее

Приамурский институт агроэкономики и бизнеса ЛИНЕЙНАЯ АЛГЕБРА

Приамурский институт агроэкономики и бизнеса ЛИНЕЙНАЯ АЛГЕБРА Частное образовательное учреждение высшего образования Приамурский институт агроэкономики и бизнеса Кафедра информационных технологий и математики ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЛИНЕЙНАЯ

Подробнее

ЛЕКЦИЯ 11. Линии второго порядка. В качестве примера найдем уравнения задающие окружность, параболу, эллипс и. Окружность.

ЛЕКЦИЯ 11. Линии второго порядка. В качестве примера найдем уравнения задающие окружность, параболу, эллипс и. Окружность. ЛЕКЦИЯ Линии второго порядка гиперболу В качестве примера найдем уравнения задающие окружность, параболу, эллипс и Окружность Окружностью называется множество точек плоскости, равноудалённых от заданной

Подробнее

1. Линейная алгебра. a21x1 a12 x2 a13 x3 b2

1. Линейная алгебра. a21x1 a12 x2 a13 x3 b2 1. Линейная алгебра 1.1. В 1 представлены задачи на решение линейных алгебраических крамеровских систем с определителем, отличным от нуля, вычисление определителей и действий с матрицами. Линейные алгебраические

Подробнее