СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Изгиб прямого бруса

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Изгиб прямого бруса"

Транскрипт

1 Министерство образования и науки Российской Федерации Вологодский государственный технический университет Кафедра сопротивления материалов СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Изгиб прямого бруса Методические указания по построению эпюр внутренних силовых факторов при деформации изгиба для студентов очной и заочной форм обучения технических специальностей Вологда 2011

2 УДК Сопротивление материалов. Изгиб прямого бруса: методические указания по построению эпюр внутренних силовых факторов при деформации изгиба для студентов очной и заочной форм обучения технических специальностей. Вологда: ВоГТУ, с. В методических указаниях даны общие указания о правилах и порядке построения эпюр в балках, методика их проверки, примеры построения эпюр в различных типах балок, даны задания для проверки правильности знаний и умений по построению эпюр и теме «Изгиб». Утверждено редакционно-издательским советом ВоГТУ Составитель: Шапкина В.А., канд. п. наук, доцент Рецензент: Михалевич Н.В., канд. техн. наук, доцент 2

3 Уважаемые студенты! Как показывает опыт, при изучении темы «Изгиб» наибольшую трудность для студентов представляет получение умений и навыков построения эпюр внутренних силовых факторов, а именно поперечной силы и изгибающего момента. С целью преодоления этих трудностей и были созданы методические указания, где в простой, подробной и доступной форме изложены правила построения эпюр в балках, а также правила их проверки. Следует отметить, что умения в построении эпюр будут востребованы и в большинстве последующих изучаемых тем как в сопромате, так и в строительной механике, а также во многих специальных дисциплинах расчетного характера. К работе над методическими указаниями следует приступать после знакомства и проработки теоретической части темы. В конце методических указаний предложены задания для проверки полученных умений и навыков, а также теоретических знаний по теме «Изгиб прямого бруса». Не отказывайте себе в удовольствии проверить свои знания. Желаем удачи! Краткая программа теоретической части Основные понятия и определения, классификация видов изгиба, прямой изгиб, сложный изгиб. Внутренние силовые факторы при прямом изгибе поперечная сила и изгибающий момент. Дифференциальные зависимости между изгибающим моментом, поперечной силой и интенсивностью распределения нагрузки. Построение эпюр поперечных сил и изгибающих моментов. Зависимость между изгибающим моментом и кривизной оси бруса. Жесткость сечения при изгибе. Нормальные напряжения при изгибе. Расчеты на прочность при изгибе. Осевые моменты сопротивления. Рациональные формы поперечных сечений балок. Касательные напряжения при изгибе. Главные и эквивалентные напряжения при изгибе. Теоретические предпосылки и методические указания к построению эпюр При прямом поперечном изгибе в поперечных сечениях балки возникают два внутренних силовых фактора поперечная сила Q y и изгибающий момент М х. Для построения эпюр этих внутренних силовых факторов важно знать, чему они численно равны (определение) и правила знаков. 3

4 Поперечная сила, возникающая в сечении балки это внутреннее усилие, равное алгебраической сумме проекций внешних сил, действующих по одну сторону от этого сечения на плоскость поперечного сечения. Правило знаков. Положительная поперечная сила поворачивает рассматриваемую часть балки по часовой стрелке (кратко по часовой плюс, против минус, рис.1,а). Изгибающий момент в сечении балки это внутреннее усилие, равное алгебраической сумме моментов внешних сил, действующих по одну сторону от этого сечения, относительно центра тяжести сечения. Правило знаков. Положительный изгибающий момент соответствует (т.е. вызывает) растяжению нижних волокон. а) б) Рис. 1 Для отыскания опасного сечения строят эпюры Q y и М х, используя метод сечения, либо метод характерных точек. Эпюра это график, показывающий изменение того или иного фактора по оси балки. Сечения расставляются на характерных участках, характерный участок балки это участок между какими-либо изменениями. Изменения это сосредоточенные силы или моменты, начало и конец распределенной нагрузки. Характерные точки это точки, сколь-либо заметные на балке, т.е. точки приложения сосредоточенных сил, моментов и т.д. Для того чтобы вычислить поперечную силу и изгибающий момент в произвольном сечении, необходимо мысленно рассечь плоскостью в этом месте балку и часть балки (любую), лежащую по одну сторону от рассматриваемого сечения, отбросить. Как правило, отбрасывают ту часть балки, которая пред- 4

5 ставляется наиболее сложной. Затем по действующим на оставленную часть балки внешним силам надо найти искомые значения Q y и М х, причем знак их надо определить в соответствии с принятыми ранее правилами знаков. При построении эпюры слева направо отбрасывается правая часть балки, а Q y и М х находятся по силам, действующим на левую часть. При построении эпюры справа налево, наоборот, отбрасывается левая часть, Q y и М х определяются по силам, действующим на правую часть балки. Для построения эпюр проводят нулевые линии под изображением балки. Тогда каждому сечению балки соответствует определенная точка этой линии. Положительные значения поперечных сил откладывают в принятом масштабе перпендикулярно нулевой линии вверх от нее, отрицательные вниз. При построении эпюры М х у строителей принято: ординаты, выражающие в определенном масштабе положительные значения изгибающих моментов, откладывать со стороны растянутых волокон, т.е. вниз, а отрицательные вверх от оси балки. У механиков положительные значения и поперечной силы, и изгибающего момента откладываются вверх. Найденные значения поперечной силы и изгибающего момента соединяют соответствующими линиями. Построенные эпюры Q у и М x заштриховывают прямыми линиями, перпендикулярными нулевой линии. Каждый штрих таким образом характеризует значение внутреннего силового фактора Q у или М x, действующих в данном сечении балки. На эпюрах ставятся знаки. Следует хорошо усвоить дифференциальные зависимости между интенсивностью распределенной нагрузки, поперечной силой и изгибающим моментом, что позволит быстро и правильно строить эпюры. Необходимо запомнить следующие правила: 1. На участке балки, где отсутствует распределенная нагрузка, эпюра Q y прямая, параллельная базовой линии, а эпюра М х - наклонная прямая. 2. Под сосредоточенной силой на эпюре Q y наблюдается скачок, численно равный приложенной внешней силе, а на эпюре М х излом. 3. В точке приложения сосредоточенной пары сил (момента) на эпюре момента происходит скачок на размер момента этой пары, а эпюра Q y не претерпевает изменений. 4. На участке действия равномерно распределенной нагрузки эпюра Q y выражается наклонной прямой, а эпюра М х параболой, обращенной выпуклостью навстречу действию распределенной нагрузки. 5

6 5. Если на участке действия распределенной нагрузки эпюра пересекает базовую линию, то в этом сечении изгибающий момент принимает экстремальное значение. 6. Если на границе действия распределенной нагрузки не приложено сосредоточенных сил, то на эпюре Q y участок, параллельный оси абсцисс, переходит в наклонный без скачка, а параболическая и наклонная части эпюры М х сопрягаются плавно без изгиба. 7. Изгибающий момент в концевых сечениях балки всегда равен нулю, за исключением случая, когда в концевом сечении действует сосредоточенная пара сил. В этом случае изгибающий момент в концевом сечении балки равен моменту действующей пары сил. 8. В сечении, соответствующем заделке, Q y и М х численно равны опорной реакции и реактивному моменту заделки. Последовательность решения задач на построение эпюр: 1) определить реакции опор балки (по двум уравнениям моментов: одно относительно левой опоры, второе относительно правой), а затем обязательно проверить правильность решения по уравнению проекций на ось, перпендикулярную балке. Следует помнить, что допущенная ошибка при определении опорных реакций не позволит правильно решить задачу; 2) построить эпюру поперечных сил (можно использовать метод построения по характерным сечениям либо точкам); 3) построить эпюру изгибающих моментов (методы построения аналогичны); 4) произвести проверку правильности построения эпюр согласно дифференциальных зависимостей. Данную последовательность можно представить в виде структурнологической схемы (рис. 2). 6

7 Рис. 2 7

8 Примеры построения эпюр Q у и М x Задача 1. Построить эпюры внутренних силовых факторов (Q у и М x ) для двухопорной балки с определенными опорными реакциями. Решение. 1. Построение эпюры Q у. Эпюру будем строить методом характерных точек. Из теоретического курса известно, что на участке балки с равномерно распределенной нагрузкой эпюра Q у ограничивается наклонной прямой, а на участке, на котором нет распределенной нагрузки, прямой, параллельной оси, поэтому для построения эпюры поперечных сил достаточно определить значения Q у в начале и конце каждого участка. В сечении, соответствующем точке приложения сосредоточенной силы, поперечная сила должна Рис. 3 быть вычислена чуть левее этой точки (на бесконечно близком расстоянии от нее) и чуть правее ее; поперечные силы в таких местах обозначаются соответственно лев Q у и прав Q у. Строим эпюру Q у методом характерных точек, ходом слева. Для большей наглядности отбрасываемую часть балки на первых порах рекомендуется закрывать листом бумаги. Характерными точками для двухопорной балки (рис.3,а) будут C и D начало и конец распределенной нагрузки, а также и B точки приложения опорных реакций, E точка приложения сосредоточенной силы. Проведем мысленно ось y перпендикулярно оси балки через точку С и не будем менять ее положение, пока не пройдем всю балку от C до E. Рассматривая левые отсеченные по характерным точкам части балки, проецируем на ось y действующие на данном участке силы с соответствующими знаками. В результате получаем: Q = 0 ; С Q лев Q Q = qa = 10 0, 5 = 5кН; прав лев = D = Q + V = , 3 8, 3кН; = V q( a + b ) = 13, 3 10( 0, 5 + 2, 5 ) = 16, 7 кн; 8

9 Q Q Q лев B = Q = V Q = 16,7 кн; D прав лев B B лев Е = Q прав B = Q + V = 16, , = 15кН; В = 15 кн. Для проверки правильности определения поперечной силы в сечениях можно пройти балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Помните, что правило знаков при этом изменится. Результат должен получиться тот же. Совпадение результатов может служить контролем построения эпюры Q у. Проводим нулевую линию под изображением балки и от нее в принятом масштабе откладываем найденные значения поперечных сил с учетом знаков в соответствующих точках. Получим эпюру Q у (рис. 3,б). Построив эпюру, обратите внимание на следующее: эпюра под распределенной нагрузкой изображается наклонной прямой, под ненагруженными участками отрезками, параллельными нулевой линии, под сосредоточенной силой на эпюре образуется скачок, равный значению силы. Если наклонная линия под распределенной нагрузкой пересекает нулевую линию, отметьте эту точку это точка экстремума, и она является теперь для нас характерной, согласно дифференциальной зависимости между Q у и М x, в этой точке момент имеет экстремум и его нужно будет определить при построении эпюры изгибающих моментов. В нашей задаче это точка К. Сосредоточенный момент на эпюре Q у себя никак не проявляет, так как сумма проекций сил, образующих пару, равна нулю. 2. Построение эпюры моментов Строим эпюру изгибающих моментов, как и поперечных сил, методом характерных точек, ходом слева. Известно, что на участке балки с равномерно распределенной нагрузкой эпюра изгибающих моментов очерчивается кривой линией (квадратичной параболой), для построения которой надо иметь не менее трех точек и, следовательно, должны быть вычислены значения изгибающих моментов в начале участка, конце его и в одном промежуточном сечении. Такой промежуточной точкой лучше всего взять сечение, в котором эпюра Q у пересекает нулевую линию, т.е. где Q у = 0. На эпюре М в этом сечении должна находиться вершина параболы. Если же эпюра Q у не пересекает нулевую линию, то эпюру М можно строить по двум точкам (начала и конца действия распределенной нагрузки), помня, что выпуклостью парабола всегда обращена вниз, если нагрузка действует сверху вниз. Существует правило «дождя», которое очень помогает при построении параболической части эпюры М. 9

10 Для строителей это правило выглядит следующим образом: представьте, что распределенная нагрузка это дождь, подставьте под него зонт в перевернутом виде, так чтобы дождь не стекал, а собирался в нем. Тогда выпуклость зонта будет обращена вниз. Точно так и будет выглядеть очертание эпюры моментов под распределенной нагрузкой. Для механиков существует так называемое правило «зонта». Распределенная нагрузка представляется дождем, а очертание эпюры должно напоминать очертания зонтика. В данном примере эпюра построена для строителей. Если требуется более точное построение эпюры, то должны быть вычислены значения изгибающих моментов в нескольких промежуточных сечениях. Условимся для каждого такого участка изгибающий момент сначала определить в произвольном сечении, выражая его через расстояние х от какой-либо точки. Затем, давая расстоянию х ряд значений, получим значения изгибающих моментов в соответствующих сечениях участка. Для участков, на которых нет распределенной нагрузки, изгибающие моменты определяют в двух сечениях, соответствующих началу и концу участка, так как эпюра М на таких участках ограничивается прямой. Если к балке приложен внешний сосредоточенный момент, то обязательно надо вычислять изгибающий момент чуть левее места приложения сосредоточенного момента и чуть правее его. Для двухопорной балки характерные точки следующие: C и D начало и конец распределенной нагрузки; А опора балки; В вторая опора балки и точка приложения сосредоточенного момента; Е правый конец балки; точка К, соответствующая сечению балки, в котором Q у = 0. Ход слева. Правую часть до рассматриваемого сечения мысленно отбрасываем (возьмите лист бумаги и прикройте им отбрасываемую часть балки). Находим сумму моментов всех сил, действующих слева от сечения относительно рассматриваемой точки. Итак, М С = 0; M = q a a / 2 = 10 0, 5 0, 25 = 1, 25кН м. Прежде чем определить момент в сечении К, необходимо найти расстояние х=ак. Составим выражение для поперечной силы в данном сечении и приравняем его к нулю (ход слева): 1) QK = qa + V qx = 0, откуда x = ( qa + V ) / q = ( 10 0, , 3 ) / 10 = 0, 83м. Это расстояние можно 2) найти также из подобия треугольников KLN и KIG на эпюре Q у (рис. 3, б). Определяем момент в точке К: 3) 2 2 M = q( a + x ) / 2 + V x = 10( 0, 5 + 0, 83) / , 3 0, 83 2, 2 кн м; К = 10

11 2 2 M D = V b Q( a + b ) / 2 = 13, 3 2, 5 30( 0, 5 + 2, 5 ) / 2 = 117, кн м. Пройдем оставшуюся часть балки ходом справа. M = 0 ; Е M прав B лев M B = Fd прав B = M М = 15 1 = 15 кн м; = 15 5 = 20 кн м; M D = F( c + d ) M + VB c = 15 ( 0, 5 + 1) , 0, 5 = 117, кн м. Как видим, момент в сечении D при ходе слева и справа получился одинаковый эпюра замкнулась. По найденным значениям строим эпюру. Положительные значения откладываем вниз от нулевой линии, а отрицательные вверх (см. рис 3,в). Задача 2. Построить эпюры внутренних силовых факторов (Q у и М x ) для балки с заделкой с определенными опорными реакциями. Решение. 1. Построение эпюры поперечных сил. Для консольной балки (рис.4, а) характерные точки: А точка приложения опорной реакции V ; С точка приложения сосредоточенной силы; D, B начало и конец распределенной нагрузки. Для консоли поперечная сила определяется ана- Рис. 18 логично двухопорной балке. Итак, при ходе слева: прав Q = V = 10кН ; Q Q Q Q лев С прав С D В = Q = V = Q = Q прав С D прав = 10кН ; F = 10 8 = 2кН ; = 2кН ; qс = = 2 2 = 0. Рис. 4 Для проверки правильности определения поперечной силы в сечениях пройдите балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Помните, что правило знаков при этом изменится. Результат должен получиться тот же. Строим эпюру поперечной силы (рис.4,б). 11

12 2. Построение эпюры моментов Для консольной балки эпюра изгибающих моментов строится аналогично предыдущему построению. Характерные точки для этой балки (см. рис. 4,а) следующие: А опора; С точка приложения сосредоточенного момента и силы F; D и В начало и конец действия равномерно распределенной нагрузки. Поскольку эпюра Q x на участке действия распределенной нагрузки нулевую линию не пересекает, эпюру моментов на данном участке можно строить по двум точкам D и В. Ход слева: лев лев C M M 17 кн м; M M прав C = = M + V a = , 5 = 12кН м; = M + V a + M = , = 2кН м; M D = M + V( a + b ) + M Fb = ( 0, 5 + 0, 5 ) , 5 = 1 кн м. Ходом справа находим M B = 0. По найденным значениям строим эпюру изгибающих моментов (см. рис. 4,в). Вопросы для самопроверки (в том числе для защиты расчетно-графических работ) 1. Что такое прямой изгиб? 2. Что такое чистый и поперечный изгиб? 3. Какие внутренние силовые факторы возникают в поперечных сечениях балки при поперечном изгибе? 4. Как вычисляют изгибающий момент в поперечном сечении бруса и каково правило знаков при этом? 5. Как вычисляют поперечную силу в поперечном сечении балки и каково правило знаков при этом? 6. Как формулируют и записывают дифференциальные зависимости между изгибающим моментом, поперечной силой и интенсивностью распределения нагрузки? 7. Что такое эпюры поперечных сил и изгибающих моментов? Как и для чего они строятся? 8. Как изменяется поперечная сила в сечении, соответствующем точке приложения внешней сосредоточенной силы? Изменяется ли изгибающий момент в этом сечении? 12

13 9. Как изменяется изгибающий момент в сечении, в котором к балке приложен внешний сосредоточенный момент? Изменяется ли значение поперечной силы в этом сечении? 10. Как вычислить изгибающий момент в любом сечении балки по построенной для нее эпюре поперечных сил? 11. Чему равна поперечная сила в сечениях бруса, в которых изгибающий момент достигает экстремальных (максимального или минимального) значений? 12. Как определяют экстремальное значение изгибающего момента? 13. В чем заключается проверка правильности эпюр поперечных сил и изгибающих моментов? Задания для закрепления знаний, умений и навыков при построении эпюр 1. Найдите ошибки в построении эпюр Рис. 5 13

14 2. Для балки, нагруженной как указано на схеме, определить соответствующие эпюры поперечной силы Q и изгибающего момента M х. 3. Построить для заданных балок эпюры поперечной силы и изгибающего момента без числовых значений по очертаниям, пользуясь выводами из дифференциальных зависимостей 14

15 4. Для заданных схем нагружения балок найти правильное очертание эпюр Q и M х. 15

16 Рекомендуемая литература 1. Беляев Н.М. Сопротивление материалов. / Н.М. Беляев. - М.: Наука, 1976, - 607с. 2. Александров А.В. Сопротивление материалов: учебник для вузов / А.В. Александров, В.Д. Потапов, Б.П. Державин; под ред. А.В. Александрова. Изд.5-е, стер. М.: Высш. Шк., с. 3. Александров А.В. Сборник задач по сопротивлению материалов. / А.В. Александров. М.: Высш.шк., с. Подписано в печать Усл. печ. л. 1,0 Тираж экз. Печать офсетная. Бумага писчая. Заказ. Отпечатано: РИО ВоГТУ, г. Вологда, ул. Ленина, 15 16

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

290300, , , , ,

290300, , , , , МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Анализ внутренних силовых факторов МЕТОДИЧЕСКИЕ УКАЗАНИЯ УХТА 2002 УДК 539.3/6 А-72 Андронов И. Н. Анализ

Подробнее

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ УСИЛИЙ

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ УСИЛИЙ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет путей сообщения» Кафедра строительной механики Б.П. ДЕРЖАВИН,

Подробнее

Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения

Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения Определение напряжений и проверка прочности балок при плоском поперечном изгибе Если Вы научились строить

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

прочности. В этом случае два последних пункта плана объединяются в один.

прочности. В этом случае два последних пункта плана объединяются в один. 76 Изгиб Раздел 5 прочности. В этом случае два последних пункта плана объединяются в один. 5.1. Изгиб балки Если рассмотреть равновесие выделенной двумя сечениями части балки, то реакции отброшенных частей,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

ПРИМЕРЫ построения эпюр внутренних силовых факторов 1. Консольные балки Термин консо ль произошёл от французского слова console, которое, в свою очередь, имеет латинское происхождение: в латинском языке

Подробнее

2. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ Необходимость построения эпюр. Общие правила и порядок их построения.

2. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ Необходимость построения эпюр. Общие правила и порядок их построения. 41. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ.1. Необходимость построения эпюр. Общие правила и порядок их построения. Первый вопрос, на который должен получить ответ конструктор, какие по величине и

Подробнее

А. А. Лахтин СТРОИТЕЛЬНАЯ МЕХАНИКА СООРУЖЕНИЙ

А. А. Лахтин СТРОИТЕЛЬНАЯ МЕХАНИКА СООРУЖЕНИЙ Федеральное агентство железнодорожного транспорта Уральский государственный университет путей и сообщения Кафедра «Механика деформируемого твердого тела, основания и фундаменты» А. А. Лахтин СТРОИТЕЛЬНАЯ

Подробнее

ПОСТРОЕНИЕ ЭПЮР ПРОДОЛЬНЫХ УСИЛИЙ, НАПРЯЖЕНИЙ И ПЕРЕМЕЩЕНИЙ ПРИ РАСТЯЖЕНИИ - СЖАТИИ СТЕРЖНЯ ПЕРЕМЕННОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

ПОСТРОЕНИЕ ЭПЮР ПРОДОЛЬНЫХ УСИЛИЙ, НАПРЯЖЕНИЙ И ПЕРЕМЕЩЕНИЙ ПРИ РАСТЯЖЕНИИ - СЖАТИИ СТЕРЖНЯ ПЕРЕМЕННОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Подробнее

Внутренние усилия и их эпюры

Внутренние усилия и их эпюры 1. Внутренние усилия и их эпюры Консольная балка длиной нагружена силами F 1 и F. Сечение I I расположено бесконечно близко в заделке. Изгибающий момент в сечении I I равен нулю, если значение силы F 1

Подробнее

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение)

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) В.Ф. ДЕМЕНКО. МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) 1 Правила знаков при построении эпюр поперечных

Подробнее

МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ ( ГОСУДАРСТВЕННАЯ АКАДЕМИЯ) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ Г.М.ЧЕНТЕМИРОВ

МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ ( ГОСУДАРСТВЕННАЯ АКАДЕМИЯ) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ Г.М.ЧЕНТЕМИРОВ МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ ( ГОСУДАРСТВЕННАЯ АКАДЕМИЯ) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ Г.М.ЧЕНТЕМИРОВ МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО СТРОИТЕЛЬНОЙ МЕХАНИКЕ РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ

Подробнее

Решение: Исходные данные: = 2 = 2 = 2

Решение: Исходные данные: = 2 = 2 = 2 Задача 1 Для данного бруса требуется: - вычертить расчетную схему в определенном масштабе, указать все размеры и величины нагрузок; - построить эпюру продольных сил; - построить эпюру напряжений; - для

Подробнее

СТАТИЧЕСКИ ОПРЕДЕЛИМАЯ МНОГОПРОЛЕТНАЯ БАЛКА. ЛИНИИ ВЛИЯНИЯ

СТАТИЧЕСКИ ОПРЕДЕЛИМАЯ МНОГОПРОЛЕТНАЯ БАЛКА. ЛИНИИ ВЛИЯНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАНИЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМАЯ МНОГОПРОЛЕТНАЯ

Подробнее

ВЫЧИСЛЕНИЕ ЭКСТРЕМУМОВ ИЗГИБАЮЩИХ МОМЕНТОВ

ВЫЧИСЛЕНИЕ ЭКСТРЕМУМОВ ИЗГИБАЮЩИХ МОМЕНТОВ Министерство образования и науки Российской Федерации Южно-Уральский государственный университет Кафедра строительной механики 624.07(07) С23 В.Ф. Сбитнев ВЫЧИСЛЕНИЕ ЭКСТРЕМУМОВ ИЗГИБАЮЩИХ МОМЕНТОВ Учебное

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

М Е Т О Д И Ч Е С К И Е У К А З А Н И Я С О П Р О Т И В Л Е Н И Ю М А Т Е Р И А Л О В

М Е Т О Д И Ч Е С К И Е У К А З А Н И Я С О П Р О Т И В Л Е Н И Ю М А Т Е Р И А Л О В МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОУВПО ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ М Е Т О Д И Ч

Подробнее

ПРИМЕРЫ построения эпюр внутренних силовых факторов. Шарнирно закреплённые балки Балка, закреплённая с помощью шарниров, должна иметь не менее двух точек опоры. Поэтому в случае шарнирно закреплённых (шарнирно

Подробнее

Методические указания

Методические указания Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1.

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1. Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 4а ГОСТ 8509-86) и швеллера 4 (ГОСТ 840-89), требуется: 1. Вычертить сечение в масштабе 1: и указать на нем все оси и

Подробнее

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max );

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max ); Лекция Деформация балок при изгибе Дифференциальное уравнение изогнутой оси балки Метод начальных параметров Универсальное уравнение упругой линии ДЕФОРМАЦИЯ БАЛОК ПРИ ПЛОСКОМ ИЗГИБЕ Основные понятия и

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

Г.А. Тюмченкова РАСТЯЖЕНИЕ И СЖАТИЕ ПРЯМОГО БРУСА

Г.А. Тюмченкова РАСТЯЖЕНИЕ И СЖАТИЕ ПРЯМОГО БРУСА Министерство образования и науки Самарской области Государственное бюджетное профессиональное образовательное учреждение Самарской области «САМАРСКИЙ ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ» (ГБПОУ «СЭК») Г.А. Тюмченкова

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ Министерство образования Российской Федерации Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра строительной механики РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ Методические

Подробнее

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Омск 011 РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Методические указания к выполнению курсовой работы для студентов специальности

Подробнее

Кафедра «Динамика и прочность машин" Малинина Н.А., Малинин Г.В., Малинин В.В.

Кафедра «Динамика и прочность машин Малинина Н.А., Малинин Г.В., Малинин В.В. ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ И АВТОМАТИЗАЦИИ ПРОИЗВОДСТВА Кафедра «Динамика и прочность машин" Малинина Н.А., Малинин

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

РАСЧЕТЫ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ ОСЕВОМ ДЕЙСТВИИ НАГРУЗОК

РАСЧЕТЫ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ ОСЕВОМ ДЕЙСТВИИ НАГРУЗОК Министерство образования и науки Российской Федерации Федеральное агентство по образованию Югорский государственный университет Инженерный факультет Кафедра «Строительные технологии и конструкции» РАСЧЕТЫ

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

Нижнекамский химико-технологический институт. Сабанаев И.А., Алмакаева Ф.М. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ ПРИ ПЛОСКОМ ИЗГИБЕ БАЛКИ

Нижнекамский химико-технологический институт. Сабанаев И.А., Алмакаева Ф.М. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ ПРИ ПЛОСКОМ ИЗГИБЕ БАЛКИ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Казанский государственный технологический университет» Нижнекамский химико-технологический

Подробнее

Механические испытания на изгиб Рис.6.3 Рис.6.4

Механические испытания на изгиб Рис.6.3 Рис.6.4 Лекция 8. Плоский изгиб 1. Плоский изгиб. 2. Построение эпюр поперечной силы и изгибающего момента. 3. Основные дифференциальные соотношения теории изгиба. 4. Примеры построения эпюр внутренних силовых

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

Начертательная геометрия: Методические указания и задания для самостоятельной работы студентов заочной формы обучения - Вологда: ВоГТУ, с.

Начертательная геометрия: Методические указания и задания для самостоятельной работы студентов заочной формы обучения - Вологда: ВоГТУ, с. Ô Å Ä Å Ð Ë Ü Í Å Ã Å Í Ò Ò Á Ð Ç Í Þ Ê ô ô Н А Ч Е Р Т А Т Е Л Ь Н А Я Г Е О М Е Т Р И Я Ì ô ö : 9 - - Ò ø 9 УДК +: Начертательная геометрия: Методические указания и задания для самостоятельной работы

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

РЕШЕНИЕ ЗАДАЧ по сопротивлению материалов

РЕШЕНИЕ ЗАДАЧ по сопротивлению материалов .. Э. А. Буланов РЕШЕНИЕ ЗАДАЧ по сопротивлению материалов 5-е издание (электронное) Москва БИНОМ. Лаборатория знаний 2015 УДК 539.3/.6 ББК 30.121 Б90 Б90 Буланов Э. А. Решение задач по сопротивлению материалов

Подробнее

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ Министерство путей сообщения Российской федерации Дальневосточный государственный университет путей сообщения Кафедра "Строительная механика" А.В. Хлебородов РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ

Подробнее

Кафедра «Сопротивление материалов машиностроительного профиля» В. А. СИДОРОВ Л. Е. РЕУТ А. А. ХМЕЛЕВ ЭПЮРЫ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ

Кафедра «Сопротивление материалов машиностроительного профиля» В. А. СИДОРОВ Л. Е. РЕУТ А. А. ХМЕЛЕВ ЭПЮРЫ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Сопротивление материалов машиностроительного профиля» В. А. СИДОРОВ Л. Е. РЕУТ А. А. ХМЕЛЕВ ЭПЮРЫ

Подробнее

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1.1. Статически неопределимые стержневые системы Статически неопределимыми системами называются системы, для которых, пользуясь только условиями статики, нельзя определить

Подробнее

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие Задача 1 Для бруса прямоугольного сечения (рис. 1) определить несущую способность и вычислить перемещение свободного конца бруса. Дано: (шифр 312312) схема 2; l=0,5м; b=15см; h=14см; R p =80МПа; R c =120МПа;

Подробнее

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

Рис Таким образом, ЗРС геометрически неизменяема. 8

Рис Таким образом, ЗРС геометрически неизменяема. 8 1. Расчет статически определимых элементарных расчетных схем на прочность 1.1. Однопролетная балка Для заданной расчетной схемы балки требуется: 1.1.1. Провести полный кинематический анализ заданной расчетной

Подробнее

Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ»

Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ» Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ» Контрольные задания по дисциплине «Строительная механика» 1 Оглавление Общие

Подробнее

ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ И ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК СЕЧЕНИЙ

ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ И ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК СЕЧЕНИЙ Министерство образования и науки Российской Федерации Саратовский государственный технический университет Балаковский институт техники, технологии и управления ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ И

Подробнее

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра сопротивления материалов и деталей машин

Подробнее

РАСЧЕТ ТРЕХШАРНИРНОЙ АРКИ

РАСЧЕТ ТРЕХШАРНИРНОЙ АРКИ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Владимирский государственный университет Кафедра сопротивления материалов РАСЧЕТ ТРЕХШАРНИРНОЙ

Подробнее

РАСЧЕТНЫЕ ЗАДАНИЯ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ

РАСЧЕТНЫЕ ЗАДАНИЯ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА. Часть 1

СТРОИТЕЛЬНАЯ МЕХАНИКА. Часть 1 СТРОИТЕЛЬНАЯ МЕХАНИКА Часть Хабаровск 2003 Министерство общего образования Российской Федерации Хабаровский государственный технический университет СТРОИТЕЛЬНАЯ МЕХАНИКА Часть Методические указания для

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. К. Манжосов РАСЧЕТ СТАТИЧЕСКИ

Подробнее

РАСЧЕТНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

РАСЧЕТНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

РАСЧЕТ ТРЕХШАРНИРНЫХ АРОК

РАСЧЕТ ТРЕХШАРНИРНЫХ АРОК МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ В. К. Манжосов

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ Å. Þ. Àñàäóëèíà ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ УЧЕБНОЕ ПОСОБИЕ ДЛЯ СПО 2-е издание, исправленное и дополненное Ðåêîìåíäîâàíî Ó åáíî-ìåòîäè åñêèì îòäåëîì ñðåäíåãî

Подробнее

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ)

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

СЛОЖНОЕ СОПРОТИВЛЕНИЕ

СЛОЖНОЕ СОПРОТИВЛЕНИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Лекция 2 (продолжение) Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Расчет статически определимых стержней на растяжение-сжатие Пример 1 Круглая колонна диаметра d

Подробнее

РАСЧЕТ БАЛКИ СТЕНКИ МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ

РАСЧЕТ БАЛКИ СТЕНКИ МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Томский государственный архитектурно-строительный университет УДК 39.3 Расчет балки стенки методом конечных разностей: методические указания /Сост. И.Ю. Смолина, Д.Н.

Подробнее

Б.А. Тухфатуллин, Л.Е. Путеева, Д.Н. Песцов СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ ПРИ ИЗГИБЕ. ВАРИАНТЫ ЗАДАНИЙ И ПРИМЕРЫ РЕШЕНИЯ

Б.А. Тухфатуллин, Л.Е. Путеева, Д.Н. Песцов СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ ПРИ ИЗГИБЕ. ВАРИАНТЫ ЗАДАНИЙ И ПРИМЕРЫ РЕШЕНИЯ инистерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

на расчетно-проектировочную работу «Расчет статически определимых балок»

на расчетно-проектировочную работу «Расчет статически определимых балок» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА»

Подробнее

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ БАЛКИ ПРИ ПРЯМОМ ИЗГИБЕ

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ БАЛКИ ПРИ ПРЯМОМ ИЗГИБЕ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

ПРИМЕРЫ ВЫПОЛНЕНИЯ ЗАДАНИЙ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ «ТЕХНИЧЕСКАЯ МЕХАНИКА»

ПРИМЕРЫ ВЫПОЛНЕНИЯ ЗАДАНИЙ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ «ТЕХНИЧЕСКАЯ МЕХАНИКА» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Построение эпюр внутренних силовых факторов

Построение эпюр внутренних силовых факторов Построение эпюр внутренних силовых факторов Построение эпюр внутренних силовых факторов... 1 1.1 Внутренние силы упругости. Метод сечений... 1 1.2 Виды сопротивлений... 3 1.3 Виды опорных закреплений...

Подробнее

СБОРНИК ЗАДАЧ ПО ТЕХНИЧЕСКОЙ МЕХАНИКЕ

СБОРНИК ЗАДАЧ ПО ТЕХНИЧЕСКОЙ МЕХАНИКЕ ÑÐÅÄÍÅÅ ÏÐÎÔÅÑÑÈÎÍÀËÜÍÎÅ ÎÁÐÀÇÎÂÀÍÈÅ В. И. СЕТКОВ СБОРНИК ЗАДАЧ ПО ТЕХНИЧЕСКОЙ МЕХАНИКЕ Рекомендовано Федеральным государственным учреждением «Федеральный институт развития образования» в качестве учебного

Подробнее

СОДЕРЖАНИЕ. Введение Расчет вала на прочность и жесткость Краткие теоретические сведения 13

СОДЕРЖАНИЕ. Введение Расчет вала на прочность и жесткость Краткие теоретические сведения 13 Татьянченко А.Г. «Пособие для расчетных работ по сопротивлению материалов» 1 СОДЕРЖАНИЕ Введение.... 1. Расчет вала на прочность и жесткость.... 1.1. Краткие теоретические сведения. 1.. Пример расчета

Подробнее

ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ И РАСЧЕТЫ НА ПРОЧНОСТЬ СТЕРЖНЕВЫХ СИСТЕМ

ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ И РАСЧЕТЫ НА ПРОЧНОСТЬ СТЕРЖНЕВЫХ СИСТЕМ ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ И РАСЧЕТЫ НА ПРОЧНОСТЬ СТЕРЖНЕВЫХ СИСТЕМ Нижний Новгород УДК 67 ББК О 64 Рецензенты: доктор технических наук, профессор РКВафин; доктор технических наук, профессор БАГордеев; кандидат

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА

СТРОИТЕЛЬНАЯ МЕХАНИКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Сопротивление материалов» СТРОИТЕЛЬНАЯ МЕХАНИКА Методические указания к контрольным работам

Подробнее

Прямой поперечный изгиб Расчёты на прочность

Прямой поперечный изгиб Расчёты на прочность МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) Прямой поперечный изгиб

Подробнее

Тест: "Техническая механика "Сопротивление материалов ". Задание #1. Выберите один из 3 вариантов ответа: 1) - Высоте a.

Тест: Техническая механика Сопротивление материалов . Задание #1. Выберите один из 3 вариантов ответа: 1) - Высоте a. Тест: "Техническая механика "Сопротивление материалов ". Задание #1 Деформация l пропорциональна Выберите один из 3 вариантов ответа: 1) - Высоте a 2) - Ширине b 3) + Длине l Задание #2 Для какой части

Подробнее

Хабаровск Издательство ТОГУ

Хабаровск Издательство ТОГУ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет».частные

Подробнее

А.В. Ильяшенко, А.Я. Астахова ВНУТРЕННИЕ УСИЛИЯ И НАПРЯЖЕНИЯ ПРИ ПРЯМОМ ИЗГИБЕ СТЕРЖНЕЙ В ТЕСТАХ

А.В. Ильяшенко, А.Я. Астахова ВНУТРЕННИЕ УСИЛИЯ И НАПРЯЖЕНИЯ ПРИ ПРЯМОМ ИЗГИБЕ СТЕРЖНЕЙ В ТЕСТАХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Подробнее

В.О. Мамченко. РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ ПРЯМОМ ПЛОСКОМ ИЗГИБЕ Учебно-методическое пособие

В.О. Мамченко. РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ ПРЯМОМ ПЛОСКОМ ИЗГИБЕ Учебно-методическое пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ- ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ В.О. Мамченко

Подробнее

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ Омск 008 Федеральное агентство по образованию Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра строительной

Подробнее

Задания и методические указания к расчетно-проектировочным работам. Часть 2

Задания и методические указания к расчетно-проектировочным работам. Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ 1 Кафедра сопротивления материалов СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Задания и методические указания к расчетно-проектировочным

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Томский государственный архитектурно-строительный университет

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Томский государственный архитектурно-строительный университет ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Томский государственный архитектурно-строительный университет РАСЧЕТ ВАЛА НА ИЗГИБ С КРУЧЕНИЕ етодические указания Томск-00 УДК 59 оисеенко РП Расчет вала на изгиб

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ Å. Þ. Àñàäóëèíà ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ УЧЕБНОЕ ПОСОБИЕ ДЛЯ АКАДЕМИЧЕСКОГО БАКАЛАВРИАТА 2-е издание, исправленное и дополненное Ðåêîìåíäîâàíî Ó åáíî-ìåòîäè

Подробнее

Государственное образовательное учреждение высшего профессионального образования. «Ивановская государственная текстильная академия» (ИГТА)

Государственное образовательное учреждение высшего профессионального образования. «Ивановская государственная текстильная академия» (ИГТА) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Ивановская государственная текстильная академия» (ИГТА) СМИванов,

Подробнее

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ)

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ) Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. К. Манжосов РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ

Подробнее

УДК 539.3/6 А 66 Прямой поперечный изгиб. Расчеты на прочность: Методические указания/ И.Н.Андронов, В.П.Власов, Р.А. Вербаховская. - Ухта: УГТУ, 003.

УДК 539.3/6 А 66 Прямой поперечный изгиб. Расчеты на прочность: Методические указания/ И.Н.Андронов, В.П.Власов, Р.А. Вербаховская. - Ухта: УГТУ, 003. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Прямой поперечный изгиб. Расчеты на прочность. МЕТОДИЧЕСКИЕ УКАЗАНИЯ УХТА 003 УДК 539.3/6 А 66 Прямой поперечный

Подробнее

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ПЛОСКОМ ИЗГИБЕ

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ПЛОСКОМ ИЗГИБЕ МИНИСТЕРСТО ОБРАЗОАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТО ПО ОБРАЗОАНИЮ КУБАНСКИЙ ГОСУДАРСТЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИЕРСИТЕТ КАФЕДРА СОПРОТИЛЕНИЯ МАТЕРИАЛО И СТРОИТЕЛЬНОЙ МЕХАНИКИ ОПРЕДЕЛЕНИЕ

Подробнее

Расчет плоской рамы методом перемещений

Расчет плоской рамы методом перемещений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет плоской

Подробнее

РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ

РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от г.

УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от г. УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от 0.08. 06 г. Планы практических заданий для студентов курса семестр заочной формы получения образования специальности «Техническое обеспечение процессов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

Начертательная геометрия Плоскости

Начертательная геометрия Плоскости ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра начертательной геометрии и графики Начертательная геометрия Плоскости Методические указания и задания для

Подробнее

Расчёт статически определимой многопролетной балки на действие постоянных нагрузок с определением перемещений

Расчёт статически определимой многопролетной балки на действие постоянных нагрузок с определением перемещений Расчёт статически определимой многопролетной балки на действие постоянных нагрузок с определением перемещений Требуется:. Построить эпюры поперечных сил и изгибающих моментов.. При жесткости EI = кнм определить

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

Простые виды сопротивления прямых брусьев

Простые виды сопротивления прямых брусьев Приложение Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования Саратовский государственный аграрный университет имени

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Подробнее

Расчет прочности тонкостенного стержня открытого профиля

Расчет прочности тонкостенного стержня открытого профиля НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.Алексеева Кафедра «Аэро-гидродинамика, прочность машин и сопротивление материалов» Расчет прочности тонкостенного стержня открытого профиля

Подробнее

РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ ИЛИ СЖАТИИ

РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ ИЛИ СЖАТИИ Министерство образования Российской Федерации Кубанский государственный технологический университет Кафедра сопротивления материалов и строительной механики РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ

Подробнее

Кафедра «Динамика и прочность машин» Н.А. Малинина, Г.В. Малинин РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

Кафедра «Динамика и прочность машин» Н.А. Малинина, Г.В. Малинин РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ И АВТОМАТИЗАЦИИ ПРОИЗВОДСТВА Кафедра «Динамика и прочность машин» Н.А. Малинина, Г.В. Малинин

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

Исходные данные по предпоследней цифре

Исходные данные по предпоследней цифре Методическое руководство Задание Статически неопределимые системы Работа Для балки, изображенной на рисунке (рис.) требуется: ) найти изгибающий момент на левой опоре (в долях ); ) построить эпюры Q y

Подробнее

3.9. Эпюры поперечных сил и изгибающих моментов

3.9. Эпюры поперечных сил и изгибающих моментов Лекция. ВНУТРЕННИЕ СИЛОВЫЕ ФАКТОРЫ В БРУСЕ. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ УСИЛИЙ.9. Эпюры поперечных сил и изгибающих моментов Эпюрой поперечных сил (изгибающих моменто назовем график изменения поперечных

Подробнее

Примеры решения задач по «Механике» Пример решения задачи 1

Примеры решения задач по «Механике» Пример решения задачи 1 Примеры решения задач по «еханике» Пример решения задачи Дано: схема конструкции (рис) kh g kh / m khm a m Определить реакции связей и опор Решение: Рассмотрим систему уравновешивающихся сил приложенных

Подробнее

Кафедра «Сопротивление материалов» СОПРОТИВЛЕНИЕ МАТЕРИЛОВ ВНЕЦЕНТРЕННОМУ РАСТЯЖЕНИЮ. Методические указания к лабораторной работе

Кафедра «Сопротивление материалов» СОПРОТИВЛЕНИЕ МАТЕРИЛОВ ВНЕЦЕНТРЕННОМУ РАСТЯЖЕНИЮ. Методические указания к лабораторной работе ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Сопротивление материалов» СОПРОТИВЛЕНИЕ МАТЕРИЛОВ ВНЕЦЕНТРЕННОМУ РАСТЯЖЕНИЮ Методические указания к лабораторной

Подробнее