Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов"

Транскрипт

1 Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов. Рассматриваются приложения скалярного, векторного и смешанного произведений векторов. Дается обобщение понятия вектора. Геометрическим вектором, как известно, называют направленный отрезок. Он характеризуется своей длиной (модулем) и направлением. В математике изучают так называемые свободные векторы. Свободные векторы считаются равными, если их модули равны, а направления одинаковые. В физике, однако, важна точка приложения вектора (силы) или линия действия вектора (момента силы). Такие векторы не являются свободными. Это, соответственно, связанные и скользящие векторы. Под линейными операциями над векторами понимают сложение векторов и умножение вектора на действительное число. Складывают два вектора по правилу параллелограмма (треугольника). Это правило можно обобщить на слагаемых. Пристраивая каждый раз в конец предыдущего вектора начало последующего, получим пространственную ломаную линию. Вектор, соединяющий начало первого и конец последнего и будет суммой векторов R =. a i i = При умножении вектора a на число λ его модуль увеличивается (уменьшается) в λ раз, а направление не изменяется, если λ > 0. Если λ < 0, то направление изменяется на противоположное. В любом случае векторы a и b = λ a

2 лежат на одной прямой (или на параллельных прямых). Такие векторы называют коллинеарными. Нулевой вектор считается коллинеарным любому другому вектору. Коллинеарные векторы a и b связаны соотношением b = λ a. Векторы, лежащие в одной плоскости (или в параллельных плоскостях), называют компланарными. Легко убедиться, что линейные операции удовлетворяют следующим свойствам: ) a + b = b + a, ) ( a + b ) + c = a + ( b + c ), ) λ ( a + b ) = λ a + λ b. Рассмотрим систему векторов a, a,..., a. () Вектор b = α i a i, где α i - числа, называют линейной i = комбинацией векторов αi Определение. Если существуют числа α i не все равные нулю такие, что линейная комбинация векторов αi обращается в нуль, то система векторов () называется линейно зависимой. Если линейная комбинация обращается в нуль только при α i = 0, то линейно независимой. Заметим, что если среди векторов системы () есть хотя бы один нулевой вектор, то она будет линейно зависимой. Если среди векторов есть хотя бы два линейно зависимых, то и вся система будет линейно зависимой. Теорема. Три компланарных геометрических вектора линейно зависимы.

3 Доказательство. Будем считать, что векторы a, a, a лежат в одной плоскости и исходят из одной точки. Используя правило сложения векторов, получим a = OA + OB Поскольку векторы OA и OB коллинеарны векторам a и a, то OA a = λ OB a = λ Тогда, a = λa + λ a или λa + λa + ( ) a = 0. Последнее равенство и означает линейную зависимость векторов a, a, a. Теорема доказана. Теорема. Три некомпланарных вектора линейно независимы. Доказательство от противного. Пусть векторы a, a, a линейно зависимы. Перепишем условие линейной зависимости α a + α a + α a = 0 иначе: α α a = ( ) a + ( ) a = λ a + λ a, α 0. () α α Из () следует, что все три вектора a, a, a лежат в одной плоскости, т.е. компланарны, что противоречит условию теоремы. Это противоречие и доказывает теорему. Аналогично можно доказать, что два геометрических вектора линейно зависимы только тогда, когда они коллинеарны. Теорема. Любые четыре геометрических вектора линейно зависимы. Доказательство. Если хотя бы два из четырех векторов a, a, a, a 4 линейно зависимы, то и все четыре также линейно зависимые. Поэтому предположим, что a, a, a линейно независимые, а, следовательно, они не компланарные. Пусть все векторы исходят из одной точки O. Проведем через точку A

4 4 (конец вектора a ) прямую, параллельную вектору a до 4 пересечения с плоскостью, в которой лежат векторы a и a, в точке B. Через точку B проведем линию, параллельную вектору a до пересечения в точке D. Тогда согласно правилу сложения векторов имеем a4 = OD + DB + BA = λ a + λa + λa. Последнее равенство и означает линейную зависимость четырех векторов. Теорема доказана. Любая упорядоченная некомпланарная (линейно независимая) тройка геометрических векторов (,, ) называется базисом в пространстве. Векторы,, называются базисными. Если базисные векторы взаимно перпендикулярны, то базис называется ортогональным. Единичные векторы i i 0 = называются ортами. Базис называется i ортонормированным, если базисные векторы единичные и взаимно перпендикулярные. Совокупность точки и базиса называют декартовой системой координат. Орты прямоугольной декартовой системы координат обычно обозначают i, j, k. Пусть (,, ) некоторый базис. Присоединим к базисным векторам четвертый вектор a. Поскольку всякая четверка векторов линейно зависима, т.е. α + α + α + α 4a = 0, то α α α a = ( ) + ( ) + ( ) = α α α = λ + λ + λ, α 4 0. () Формула () дает разложение вектора a по базису (,, ). Коэффициенты λ, λ, λ называются координатами вектора a в этом базисе. Можно убедиться, что разложение вектора по базису единственное. Последнее означает, что координаты вектора

5 5 однозначно определяют сам вектор. Иначе говоря, упорядоченную тройку чисел ( λ, λ, λ ) можно считать вектором в фиксированном базисе. Очевидно, в множестве компланарных векторов любые два неколлинеарных вектора образуют базис, а всякий третий можно разложить по этому базису. В множестве коллинеарных векторов линейно независимый вектор один, он и образует базис в этом множестве. Пример. Являются ли векторы a, a, a линейно зависимыми? a = (,,5) = i + j + 5k, a = (,,) = i + j + k, a = (, 7,) = i 7 j + k. Решение. Составим линейную комбинацию и приравняем ее нулю α a + α a + α a = 0, где 0 = (0,0,0) нуль вектор. Если все α i = 0, то система линейно независимая. Используя правила умножения вектора на число, сложение и сравнение векторов, заданных своими координатами, получим следующую систему линейных уравнений α + α α = 0, α + α 7α = 0, 5α + α + α = 0. Заметим, что формулы Крамера, полученные нами в Лекции. для системы двух уравнений, справедливы и для любой линейной системы уравнений с неизвестными. Если определитель системы 0, то система имеет единственное i решение, определяемое формулами Крамера i =, i =,,,. Вычислим определитель нашей системы 0 0 = 7 = = =. 5 5

6 6 Определители,, равны нулю, т.к. имеют нулевые столбцы, поэтому система имеет только нулевое решение α = α = α = 0. Следовательно данные векторы линейно независимые. Скалярным произведением двух векторов a и b, как известно, называют число, определяемое формулой ( a, b) = a b cos( a, b). (4) Можно проверить, что скалярное произведение обладает следующими свойствами: ) (, ) ( ab = ba, ), ) ( λab, ) = ( a, λb ) = λ( ab, ), ) ( s, ) (, ) ( a + b c = a c + b, c), 4) ( a, a) = a > 0, a 0. Из (4) также следует, что (, ab) = a пр a b = b пр b a. (5) Рассмотрим ортонормированный базис ( i, j, k ). Очевидно ( i, i) = ( j, j) = ( k, k) =, ( i, j) = ( i, k ) = ( j, k ) = 0. (6) Пусть = i + j + k, y = yi + y j + yk. Используя свойства скалярного произведения и учитывая (6), найдем выражение скалярного произведения через координаты перемножаемых векторов в ортонормированном базисе. (, y) = y + y + y = y. Если = y, то из (7) найдем, что (, ) = = + +, = (, ) = + +. Пример. Вычислить работу силы F = i j + k при перемещении материальной точки из пункта A( 0, ) в пункт B(, 5, ). i= i i (7)

7 Решение. Работа A = F AB cos( F, AB) = ( F, AB). 7 Поскольку Базис AB = (, 45,), то A = + ( ) ( 4) + 5 = 9. (,, ) называют правым, если поворот первого вектора ко второму на наименьший угол между ними со стороны третьего кажется против стрелки часов. В противном случае базис называют левым. На первом рисунке базис ( i, j, k ) правый, а на втором левый. В дальнейшем будем пользоваться правым базисом. Определение. Векторным произведением двух векторов a и b называют третий вектор c, удовлетворяющий следующим требованиям: ) вектор c перпендикулярен векторам a и b ; ) тройка векторов a,b, c правая; ) модуль векторного произведения равен площади параллелограмма, построенного на перемножаемых векторах, т.е. c = a b si( a, b ). Обозначают векторное произведение так c = a b = [ a, b]. Рассмотрим ортонормированный базис ( i, j, k ). Согласно определению векторного произведения найдем: i i = j j = k k = 0, i j = k, j i = k, i k = j, k i = j, j k = i, k j = i. (8) Отметим следующие свойства векторного произведения., y = y,, ) [ ] [ ] ) [ λ y] = [ λy] = λ[ y],,,,

8 8 ) [ + y, z] = [, z] + [ y, z], 4)[, ] = 0. Используя свойства векторного произведения и соотношения (8), найдем векторное произведение двух векторов = i + j + k, y = y i + y j + yk, заданных в ортогональном базисе своими координатами. y = ( y y) i ( y y) j+ ( y y) k = i j k = i j + k =. (9) y y y y y y y y y Пример. Найти момент силы F = i j + 5k, приложенной в точке A(,, ), относительно начала координат. Решение. i j k M = F = = 5 = i j + 5k. Определение. Смешанным произведением трех векторов a,b, c называют число, равное ( a b, c). Рассмотрим геометрический смысл смешанного произведения. Векторы a,b, c выберем в качестве ребер и построим параллелепипед. Пусть S = a b, тогда S = S осн -площадь основания параллелепипеда, а смешанное произведение ( a b, c) = ( S, c) = S c cos θ = S ( ± H) = ± V. Здесь H - высота параллелепипеда, а V его объем. 0

9 9 Таким образом, смешанное произведение только знаком может отличаться от объема параллелепипеда, построенного на перемножаемых векторах как на ребрах. Если тройка ( abc,, ) правая, то знак смешанного произведения будет положительным. Из геометрического смысла смешанного произведения ясно, что векторно можно перемножать любые два из трех векторов, от этого может измениться только знак. Легко проверить, что тройки векторов ( abc,, ), ( bca,, ) и ( cab,, ) одинаковой ориентации, так что ( a b, c) = = ( b c, a) = ( c a, b). Поэтому смешанное произведение обозначают ( abc,, ) = abc, не указывая, какие векторы перемножаются векторно. Выразим смешанное произведение через координаты перемножаемых векторов в ортонормированной системе координат. Пусть = (,, ), y = ( y, y, y ), z = ( z, z, z ). Поскольку y i j k = +, то y y y y y y ( + y, z) = z z z = y y y y y y = y y y. (0) z z z Теорема 4. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения. Доказательство ясно из геометрической интерпретации смешанного произведения. Следствие. Три вектора abc,, линейно независимы только в том случае, если их смешанное произведение отлично от нуля. Доказательство очевидно.

10 0 Пример 4. Проверить линейную независимость векторов a =,,5), a = (,,), a = (, 7,) (см. пример выше). ( Решение. Найдем их смешанное произведение aaa = 5 7 = 0. Данные векторы, согласно следствию, линейно независимые. Обобщим понятие вектора. Назовем вектором упорядоченную совокупность действительных чисел, т.е. = (,,, ) вектор, i его координаты. При сложении векторов их соответствующие координаты будем складывать, а при умножении на число- умножать на это число. Множество всех таких векторов с определенными выше операциями называют арифметическим пространством и обозначают R. Обычное пространство геометрических векторов обозначают R, множество компланарных геометрических векторов - R, коллинеарных - R. Зафиксировав в пространстве R ортонормированный базис (,,, ), понятия скалярного, векторного и смешанного произведений можно обобщить и на векторы этого пространства i i i i = (,, ), i =,,,. Cкалярным произведением двух векторов и пространства R назовем число, определяемое следующей формулой, ) = k = ( k k. () Векторным произведением ( ) вектора пространства R назовем вектор S этого же пространства, определяемый следующей формулой ().

11 S V =. () =. () Смешанным произведением векторов пространства назовем число V, определяемое формулой (). Лекция. Вопросы для самоконтроля. Что называется геометрическим вектором?. Какие вы знаете векторы?. Какие операции над векторами называются линейными? 4. По какому правилу складываются векторы? 5. Какие геометрические векторы называются коллинеарными? Компланарными? 6. Дайте определение линейно зависимых и линейно независимых векторов. 7. Приведите примеры линейно зависимых и линейно независимых векторов? 8. Что такое ортонормированный базис в R? 9. Что, значит, разложить вектор по базису? 0. Дайте определения скалярного, векторного и смешанного произведений векторов?. Чем отличаются свойства скалярного произведения от свойств векторного произведения?. Чему для вектора a равно выражение a? R

12 . Какому условию должны удовлетворять векторы a, b, c,чтобы из них можно было образовать треугольник? 4. Даны векторы: a =(,0,,0), а =(,,-,), а =(,0,,), а 4 =(-,,,4). Найти: а)скалярное произведение векторов а и а ; б) Векторное произведение S векторов а,а,а ; в) Смешанное произведение V данных векторов.


Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

Векторное и смешанное произведение векторов

Векторное и смешанное произведение векторов Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих

Подробнее

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения.

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

Лекция 4: Векторное произведение векторов

Лекция 4: Векторное произведение векторов Лекция 4: Векторное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой и следующей

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

6. Базис и координаты вектора. Прямоугольная декартова система координат

6. Базис и координаты вектора. Прямоугольная декартова система координат 6. Базис и координаты вектора. Прямоугольная декартова система координат Понятия вектора и линейных операций над векторами алгебраизируют геометрические высказывания т.е. заменяют геометрические утверждения

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Лекция 6 Тема: Векторное произведение векторов

Лекция 6 Тема: Векторное произведение векторов Лекция 6 Тема: Векторное произведение векторов План лекции Ориентация векторного базиса в пространстве Определение векторного произведения двух векторов Свойства векторного произведения 4 Вычисление векторного

Подробнее

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число Лекция 4 Скалярное произведение φ Определение. Углом φ между ненулевыми векторами и называется тот из углов, образованных этими векторами, отложенными от единого начала, который лежит в пределах от до

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации

МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации ОДЕССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СВЯЗИ им АС ПОПОВА Кафедра высшей математики ВЕКТОРНАЯ АЛГЕБРА Учебное

Подробнее

Лекция 3 Скалярное, векторное и смешанное произведение векторов

Лекция 3 Скалярное, векторное и смешанное произведение векторов Лекция 3 Скалярное, векторное и смешанное произведение векторов 1. ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1,

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 2 Векторная алгебра 1. Даны три вектора a = {0; 1; 3}, b = {3; 2; 1}, c = {4; 0; 4}. Требуется найти: a) вектор d = 2 a b

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая

Подробнее

Лекция 5: Смешанное произведение векторов

Лекция 5: Смешанное произведение векторов Лекция 5: Смешанное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции рассматривается

Подробнее

Лекция 3. Базис. Вычтем из первого разложения второе:

Лекция 3. Базис. Вычтем из первого разложения второе: Лекция 3 Базис Теорема 3.1. Любой вектор d единственным образом раскладывается по данному базису, b, c в пространстве. Аналогично, любой вектор c на плоскости единственным образом раскладывается по данному

Подробнее

a b =S пар. = a b sin( a,b );

a b =S пар. = a b sin( a,b ); Практическое занятие 4 Тема: Векторное произведение векторов План Определение и свойства векторного произведения Векторное произведение в координатах Приложение векторного произведения к вычислению площадей

Подробнее

Глава 1. Элементы линейной алгебры.

Глава 1. Элементы линейной алгебры. Глава Элементы линейной алгебры Матрицы О п р е д е л е н и е Матрицей размерности m n называется прямоугольная таблица чисел, расставленных в m строк и n столбцов Обозначаются матрицы латинскими буквами,,

Подробнее

Основы векторной алгебры

Основы векторной алгебры Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Основы векторной алгебры Раздел электронного учебника для сопровождения лекции Изд. 4-е, испр. и

Подробнее

ПОДРОБНЫЙ ПЛАН ЛЕКЦИЙ ПО КУРСУ "ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ"

ПОДРОБНЫЙ ПЛАН ЛЕКЦИЙ ПО КУРСУ ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ПОДРОБНЫЙ ПЛАН ЛЕКЦИЙ ПО КУРСУ "ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" ЛЕКЦИЯ 1. Множество. Операции над множествами. Диаграммы Венна. Теоретикомножественные тождества. Декартово произведение множеств.

Подробнее

Министерство образования Российской Федерации

Министерство образования Российской Федерации Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число

Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число Далее - несколько нелинейных операций над векторами Для пары векторов, число вектор скалярное произведение

Подробнее

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет,

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению плоскости. Излагаемый в ней материал

Подробнее

Линейная алгебра и аналитическая геометрия

Линейная алгебра и аналитическая геометрия Федеральное агентство по образованию Белгородский государственный технологический университет им ВГ Шухова Кафедра прикладной математики Утверждено научно-методическим советом университета Линейная алгебра

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ

Подробнее

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость

Подробнее

ГУРЬЯНОВ Н.Г., ТЮЛЕНЕВА О.Н. АЛГЕБРА. Учебное пособие. Казань

ГУРЬЯНОВ Н.Г., ТЮЛЕНЕВА О.Н. АЛГЕБРА. Учебное пособие. Казань Казанский (Приволжский) федеральный университет Институт математики и механики им НИ Лобачевского ГУРЬЯНОВ НГ ТЮЛЕНЕВА ОН АЛГЕБРА Учебное пособие Казань УДК 7 Печатается по решению учебно-методической

Подробнее

Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА

Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА Доказать тождество: а y y y y б Доказать что Даны ненулевой вектор и скаляр Найти любое решение уравнения Подсказка: вектор характеризуется направлением и длиной так

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Лекция 4. a 1 1 a 1 2 a 1 n. a 2 1 a 2 2 a 2 n. a m 1 a m 2 a m n. (2) первый индекс номер строки, а второй номер столбца: a 11 a 12 a 1n

Лекция 4. a 1 1 a 1 2 a 1 n. a 2 1 a 2 2 a 2 n. a m 1 a m 2 a m n. (2) первый индекс номер строки, а второй номер столбца: a 11 a 12 a 1n Лекция 4 1. МАТРИЦЫ 1.1. Основные определения. Матрица размера m n прямоугольная таблица из чисел элементов матрицы, состоящая из m строк и n столбцов. Нумерация элементов матрицы: 1 верхний индекс номер

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ВВ Конев ВЕКТОРНАЯ АЛГЕБРА Рекомендовано в качестве

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Алгебра и аналитическая геометрия

Алгебра и аналитическая геометрия Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Алтайская государственная педагогическая академия»

Подробнее

ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1 Скалярное произведение векторов. Заметив, что есть проекция вектора на направление вектора, мы можем записать

ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1 Скалярное произведение векторов. Заметив, что есть проекция вектора на направление вектора, мы можем записать ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ 1 Скалярное произведение векторов Скалярным произведением двух векторов называется число, равное произведению их длин (модулей), умноженному на косинус угла между ними. Скалярное

Подробнее

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица.

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица. ВОПРОСЫ ТЕОРИИ I. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ 1) Дать определение матрицы. Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными? Как выполняется операция транспонирования? Когда

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

«Элементы векторной алгебры и аналитической геометрии»

«Элементы векторной алгебры и аналитической геометрии» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( )

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( ) ЗАДАЧИ для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса x bx + c f x = +, если известны ее значения в трех указанных x точках: Найдите функцию ( ) а) f ( ) f ( ) f (

Подробнее

ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ»

ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» ВАРИАНТ Даны вершины треугольника: А(-); В(5-) и С(-) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма построенного

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет. Кафедра «Высшая математика»

Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет. Кафедра «Высшая математика» Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет Кафедра «Высшая математика» ЛГ Лелевкина, АК Курманбаева ВЕКТОРНАЯ АЛГЕБРА Учебно-методическое

Подробнее

Решение типового варианта заданий по теме. "Аналитическая геометрия и векторная алгебра"

Решение типового варианта заданий по теме. Аналитическая геометрия и векторная алгебра Решение типового варианта заданий по теме "Аналитическая геометрия и векторная алгебра" Автор: ассистент кафедры высшей математики БГУИР Василюк Людмила Ивановна Содержание Задание Задание 0 Задание Задание

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ

ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ Быкова Л.М., Добрынина Н.Н., Свердлова О.Л. ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ Рекомендовано учебно-методическим советом факультета технической кибернетики Ангарской государственной технической

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы к зачету по математике семестр для студентов курса ИСиА, -6 гр. направление

Подробнее

МАТЕМАТИКА. Контрольные работы 1 и 2. Для студентов ЗФ 1 курса 1-го семестра обучения

МАТЕМАТИКА. Контрольные работы 1 и 2. Для студентов ЗФ 1 курса 1-го семестра обучения Министерство транспорта Российской Федерации (Минтранс России) Федеральное агентство воздушного транспорта (Росавиация) ФГОУ ВПО «Санкт-Петербургский государственный университет гражданской авиации» МАТЕМАТИКА

Подробнее

Контрольная 2 Геометрия-1. Матфак ВШЭ, осень Если в условии не оговорено обратное, то система координат предполагается прямоугольной декартовой.

Контрольная 2 Геометрия-1. Матфак ВШЭ, осень Если в условии не оговорено обратное, то система координат предполагается прямоугольной декартовой. Вариант 1 Задача 1. Является ли векторным пространством множество многочленов P (x) степени не выше 2, удовлетворяющих условию P (1) = 0? Если да, постройте какой-нибудь базис и найдите размерность этого

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

Образец варианта расчетно-графической работы по курсу Линейная алгебра и аналитическая геометрия.

Образец варианта расчетно-графической работы по курсу Линейная алгебра и аналитическая геометрия. Образец варианта расчетно-графической работы по курсу Линейная алгебра и аналитическая геометрия Элементы линейной алгебры: матрицы определители системы линейных уравнений Условия задач Составить две матрицы

Подробнее

ЗАДАЧИ по теме «ВЕКТОРЫ»

ЗАДАЧИ по теме «ВЕКТОРЫ» УТВЕРЖДАЮ: ДЕ Капуткин, Председатель Учебно-методической комиссии по реализации Соглашения с Департаментом образования г Москвы "30" августа 013г ЗАДАЧИ по теме «ВЕКТОРЫ» МИСиС-013 1 Какие векторы равны

Подробнее

Лекция 6: Система координат. Координаты точки

Лекция 6: Система координат. Координаты точки Лекция 6: Система координат. Координаты точки Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов

Подробнее

Практические указания по векторной алгебре (варианты курсовых работ)

Практические указания по векторной алгебре (варианты курсовых работ) Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им. К.Э.Циолковского

Подробнее

б) Координаты точек K и L середин ребер A 1 B 1 и CC 1 соответственно. Найдем координаты точек K, L из разложения векторов AK,

б) Координаты точек K и L середин ребер A 1 B 1 и CC 1 соответственно. Найдем координаты точек K, L из разложения векторов AK, . Дан параллелепипед ABCDA B C D. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA, найти координаты: а) вершин C, B, C ; б) точек K и L середин ребер A B и CC соответственно. Решение:

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика» Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Высшая математика» Е Б Павельева В Я Томашпольский Линейная алгебра Методические указания

Подробнее

Лекция 5. Лекция 6. Лекция 7. Лекция 8.

Лекция 5. Лекция 6. Лекция 7. Лекция 8. Очная форма обучения. Бакалавры. I курс, I семестр. Направление 220700- «Автоматизация технологических процессов и производств» Дисциплина - «Математика». Лекции Лекция 1. Векторные и скалярные величины.

Подробнее

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b,

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b, Векторы Даны координаты векторов a b c в правом ортонормированном базисе i j k Показать что векторы a b c тоже образуют базис и найти координаты вектора в базисе a b c ) ( ) a ( ) b ( ) c ( ) ) ( ) a (

Подробнее

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами. ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического

Подробнее

ЛЕКЦИИ ПО ВЫСШЕЙ АЛГЕБРЕ

ЛЕКЦИИ ПО ВЫСШЕЙ АЛГЕБРЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» АИ Шерстнёва,

Подробнее

10. Линейные операторы

10. Линейные операторы 35 0 Линейные операторы До сих пор мы рассматривали в линейном пространстве L скалярные функции векторного аргумента - линейные комбинации векторов Теперь мы сосредоточимся на рассмотрении векторных функций

Подробнее

Линейная алгебра Лекция 7. Векторы

Линейная алгебра Лекция 7. Векторы Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Подробнее

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Е. И. Галахов, О. А. Салиева ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Учебное пособие Москва 2009 1 Галахов Е. И., Салиева О. А. Векторная алгебра и аналитическая

Подробнее

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы.

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы. Вопросы и задачи к экзамену по аналитической геометрии, зима 1 I. Теоретические вопросы. Условные бозначения. (*) в конце фразы означает, что студенты будущей группы 2362 ее положения доказывать не должны,

Подробнее

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1 Лекция - Тема: Метод координат в пространстве Преобразование координат План лекции АСК в пространстве Расстояние между точками и деление отрезка в данном отношении (в пространстве) ПДСК в пространстве

Подробнее

Конспект лекции 10 АФФИННЫЕ ПРОСТРАНСТВА

Конспект лекции 10 АФФИННЫЕ ПРОСТРАНСТВА Конспект лекции 10 АФФИННЫЕ ПРОСТРАНСТВА 0. План лекции Лекция Аффинные пространства. 1. Аффинный базис. 2. Аффинные координаты точек. 3. Векторное уравнение прямой. 4. Векторное уравнение плоскости. 5.

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 3 ПОТОК. Лектор П. В. Голубцов

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 3 ПОТОК. Лектор П. В. Голубцов АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 3 ПОТОК Лектор П. В. Голубцов 1.1. Векторы. Список вопросов к первой части экзамена 1. Сформулируйте определение линейных операций над векторами. Перечислите свойства линейных операций

Подробнее

Экзаменационный билет 1.

Экзаменационный билет 1. Экзаменационный билет 1. 1. Векторы в пространстве. Основные определения и операции над векторами: сумма векторов, произведение вектора на число. Свойства. Теорема о коллинеарных векторах. 2. Расстояние

Подробнее

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

1. Перечень компетенций с указанием этапов (уровней) их формирования.

1. Перечень компетенций с указанием этапов (уровней) их формирования. 1. Перечень компетенций с указанием этапов (уровней) их формирования. Компетенция ОК-10: способностью и готовностью к письменной и устной коммуникации на родном языке Знать: Уровень 1 Основные понятия

Подробнее

1. Перечень компетенций с указанием этапов (уровней) их формирования.

1. Перечень компетенций с указанием этапов (уровней) их формирования. 1. Перечень компетенций с указанием этапов (уровней) их формирования. ОК-7: способность к самоорганизации и самообразованию. Знать: Уровень 1 Основные определения курса аналитической геометрии и линейной

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

СБОРНИК ЗАДАЧ ПО ВЕКТОРНОЙ АЛГЕБРЕ

СБОРНИК ЗАДАЧ ПО ВЕКТОРНОЙ АЛГЕБРЕ ФГБОУ ВПО "Саратовский государственный университет имени Н.Г.Чернышевского" СБОРНИК ЗАДАЧ ПО ВЕКТОРНОЙ АЛГЕБРЕ Учебное пособие А.В. Букушева, А.В. Гохман, М.В. Лосик Саратов 2013 ВВЕДЕНИЕ Традиционно курс

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , )

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , ) Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный политехнический университет» Университетский центр социально-гуманитарных

Подробнее

9. Линейные пространства

9. Линейные пространства 9 Линейные пространства 3 Нам часто приходится рассматривать некоторые множества объектов, для которых установлены так называемые линейные операции: сложение элементов множества и умножение элемента множества

Подробнее

Тест 371. Сонаправленные векторы. Равенство векторов

Тест 371. Сонаправленные векторы. Равенство векторов Тест 371. Сонаправленные векторы. Равенство векторов Пусть ABCD параллелограмм, O точка пересечения его диагоналей, точка K середина его стороны АВ, точка L середина его стороны ВС. Тогда: 1. векторы АВ

Подробнее

Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность

Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность Практическое занятие 3. Практикум (рекомендации к практической части) МОДУЛЬ. ВЕКТОРНАЯ АЛГЕБРА Тема: Линейные операции над векторами План. Понятие вектора. Основные отношения векторов.. Сложение векторов.

Подробнее

А. В. Овчинников. Контрольные задания по аналитической геометрии для студентов 1 курса

А. В. Овчинников. Контрольные задания по аналитической геометрии для студентов 1 курса Московский государственный университет им М В Ломоносова Физический факультет Кафедра математики А В Овчинников Контрольные задания по аналитической геометрии для студентов курса Москва Содержание Правила

Подробнее

Сборник задач по аналитической геометрии

Сборник задач по аналитической геометрии Нижегородский государственный университет им НИЛобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс "Новые многофункциональные материалы и нанотехнологии" ДВ

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я линейная зависимость и независимость векторов

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я линейная зависимость и независимость векторов А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я линейная зависимость и независимость векторов ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной

Подробнее

R может быть задана с помощью

R может быть задана с помощью 5... Уравнения плоскости. Плоскость в пространстве 5.. ПЛОСКОСТЬ. R может быть задана с помощью n, B, C, вектора перпендикулярного плоскости, и точки M,, этой плоскости. Вектор n, B, C,, лежащей на E перпендикулярный

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра инженерной математики ВЫСШАЯ МАТЕМАТИКА

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра инженерной математики ВЫСШАЯ МАТЕМАТИКА Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра инженерной математики ВЫСШАЯ МАТЕМАТИКА Руководство к решению задач для студентов механико-технологического

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее