СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ"

Транскрипт

1 Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Часть II Внецентренное сжатие Изгиб с кручением Устойчивость сжатого стержня Методические указания к выполнению контрольных работ для студентов заочной формы обучения Хабаровск Издательство ХГТУ 00

2 Внецентренное растяжение или сжатие Внецентренное растяжение или сжатие - это такой случай нагружения, когда линия действия силы не совпадает с осью стержня, а имеет эксцентриситеты, (рис ) n a C N растяжение a n сжатие Рис Внецентренное сжатие Внутренние усилия в поперечном сечении Используя метод сечений, определим внутренние усилия Получим N ± ; ± ; ± ( ) При внецентренном растяжении - знак +, при сжатии знак Таким образом, внецентренное растяжение или сжатие есть частный случай совместного действия изгиба с растяжением или сжатием, причем усилия во всех поперечных сечениях будут одинаковы и все сечения - равноопасные Нормальные напряжения в точке с координатами, получим, используя принцип независимости действия сил: N + +, ( ) I I где - площадь поперечного сечения; I, I - главные центральные моменты инерции Формулу для напряжений можно записать иначе, если учесть () Тогда после упрощений получим

3 I где i ; ± ( + + ), () i i i I ( i i, - радиусы инерции сечения) Для определения опасных точек нужно знать положение нулевой линии ( n n ) В точках, наиболее удаленных от нулевой линии, возникают максимальные напряжения В уравнение () подставим координаты точек нулевой линии, 0 0 и приравняем его к нулю: i i 0 () Как видно из (), нулевая линия не проходит через центр тяжести сечения, поэтому можно пользоваться уравнением нулевой линии в отрезках i i a ; a (5) Имея нулевую линию, строим эпюру нормальных напряжений ( рис) n a a ma,c ma, n Рис Эпюра нормальных напряжений Расчет внецентренно сжатого стержня покажем на примере Задача Чугунный короткий стержень, поперечное сечение которого показано на рис, сжимается силой, приложенной в точке

4 Требуется следующее 5 Вычислить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении, выразив их через силу и размеры сечения Найти допускаемую нагрузку, если допускаемое напряжение на сжатие [ с ] 0 МПа, на растяжение [ ] МПа р 6 5 n 5,0 Решение Геометрические характеристики сечения Определяем положение центра тяжести сечения относительно оси :,60 () () S S + S c, + где S - статический момент относительно оси площади относительно оси n 7,50 7,50 Рис К задаче c, см Через центр тяжести проводим главные центральные оси, Вычисляем моменты инерции: () () I I + I ( + 5 5,0 ) + ( + 6 5,60 ) () () I I + I ( + ) 8,5 см i Вычисляем квадраты радиусов инерции: I 906 I 8,5 6,0 см ; i,08 см см Положение нулевой линии Так как сила приложена в точке, то в (5) следует ввести,5 см;, см; i,08 i a,8 см; a,5 6,0,8 см, Координаты точек, наиболее удаленных от нулевой линии: ;

5 B B 6,5 см зона сжатия, см 7,5 см зона растяжения 6,6 см Максимальные напряжения сжатия и растяжения ma, c ma, c (+ i 6,508 ; + i ),, (,5) (,5) (+ + ) 6,0,08 ; ma, ma, B ( + + i i,; Допускаемая нагрузка B ), ( 6,6) (,5) 7,5 ( + + 6,0,08 ); ma, c [ ] c 6,508 6,508 [ ] ; ,508 с 7658 н 76,6 кн ma, [ ] [ ] ;, 6 c ,, 9590 н 95,9 кн Допускаемой является меньшая нагрузка [ ] 95,9 кн Изгиб с кручением круглых валов Изгиб с кручением - это частный случай сложного сопротивления стержня С сочетанием изгиба и кручения наиболее часто приходится встречаться при расчете валов (рис, а) Силы, действующие на валы ( давление на зубья шестерен, натяжение ремней, собственный вес вала и шкивов и тп), вызывают в поперечных сечениях вала крутящий момент (рис,б), изгибающие моменты ( рис, в ) и ( рис, г ), поперечные силы Q, Q

6 7 а t d T T t б ( k ) в г д изг опасное сечение е ж з и ma,c τ ma изг изг ma,ρ След плоскости d τ ma действия изг Рис Изгиб с кручением

7 8 а б T D А D D В t,м,м,м,м a 0,9кН м,8 кн м,9 кн м t t T t a 60,9 в,9 ( кр ) кн м г д 8,6 кн 8,9 кн 8,6 кн 9,0 кн 5,68 кн е 0,7, 7,95 кн м,6 кн,8 кн,0 кн ж,77 кн,77 кн з 6,0 0,8, кн м,0,5 9,00 и изг кн м Рис К задаче

8 9 Таким образом, в поперечном сечении вала одновременно возникают нормальные напряжения от изгиба и касательные напряжения от кручения Заметим, что касательные напряжения от поперечных сил, как правило, невелики, и их обычно не учитывают Для расчета вала сначала необходимо установить опасные сечения С этой целью должны быть построены эпюры крутящих моментов ( см рис, б ) и изгибающих моментов и (см рис, в, г ) При изгибе вала круглого или кольцевого сечения в каждом сечении имеет место прямой изгиб под действием резуль- тирующего изгибающего момента ( + ) ( рис, д ) Опасным будет то сечение, где величины и изг принимают наибольшие значения В опасном сечении для круглого или кольцевого вала опасные точки можно указать сразу - это точки, лежащие на пересечении плоскости действия суммарного изгибающего момента изг с контуром сечения ( рис, ж, з, точки и ) Именно в этих точках возникают одновременно наибольшие нормальные и касательные напряжения ( рис, и ) Поскольку материал вала в опасных точках испытывает плоское напряженное состояние, необходимо применять теории прочности Для пластичных материалов применяют -ю и -ю теории прочности Опустив вывод, приведем для круглого сечения условие прочности по -й теории (наибольших касательных напряжений): изг () расч () расч W [ ] (), где ( + ) ; () расч изг и по -й теории (энергетической) () расч () расч W [ ] (), где ( + 0,75 ) () расч изг Определив из ( ) или ( ) требуемый момент сопротивления W, найдем необходимый диаметр вала Задача Шкив с диаметром D и углом наклона ветвей ремня к горизонту α делает n оборотов в минуту и передает N квт Два других шкива имеют одинаковый диаметр D и одинаковые углы наклона ветвей к горизонту α, и каждый из них передает мощность N ( рис, а ) Требуется следующее

9 0 Определить моменты, приложенные к шкивам, по заданным N и n Построить эпюру крутящих моментов Определить окружные усилия t и t, действующие на шкивы, по найденным моментам и заданным диаметрам шкивов D и D Определить давление на вал 5 Определить силы, изгибающие вал в горизонтальной и вертикальной плоскостях 6 Построить эпюры изгибающих моментов от горизонтальных и вертикальных сил 7 Построить эпюру суммарных изгибающих моментов 8 Найти опасное сечение и определить максимальный расчетный момент ( по третьей теории прочности ) 9 Подобрать диаметр вала при [ ] 70 МПа и округлить его значение Дано : об o N 0 квт ; n 00 ; D, м; D, м; α 0 ; α мин 60 o Решение Определяем моменты, приложенные к шкивам 0 N N 9, 55 ; π n n где N - мощность в 0 9,55,8 кн м ; 00 об квт, n - скорость вращения вала в мин 0 9,55,9 кн 00 м Строим эпюру крутящих моментов (рис, в ) Определяем окружные усилия t и t Поскольку t D D D - t t, то t,8 t 5,6 кн, Аналогично D или t D,,9,8 кн Определяем давление на вал t 5,6 6, 8 кн ; t,8 9, 5 кн

10 5 Определяем силы, изгибающие вал в горизонтальной и вертикальной плоскостях ( рис, г ) - cosα 6, 8 cos 0 -,8 кн ( влево ); - sinα 6, 8 sin 0-8,9 кн ( вниз ) cosα 9,5 cos 60,77 кн ( вправо ); - sin α 9, 5 sin 60-8,6 кн ( вниз ) 6 Строим эпюры изгибающих моментов в вертикальной плоскости ( рис,д,е ) и в горизонтальной плоскости (рис, ж, з) 7 Строим эпюру суммарных изгибающих моментов Вычисляем суммарный изгибающий момент в характерных сечениях по формуле ( + изг ) и откладываем полученные значения на графике Имеем (0,7 + 6,0 ),0; (, + 0,8 ),5 ; (7,95 +, ) 9,00 Поскольку поперечное сечение круглое и момент сопротивления его при изгибе в любой плоскости одинаков, можно ординаты пространственной эпюры изг расположить в одной плоскости (рис, и ) 8 Находим опасное сечение Из эпюр и изг видно, что опасным является сечение, для которого кр, 9 кн м, изг, 0 кн м Для этого сечения вычисляем расчетный момент, используя третью теорию прочности Получим расч ( изг + кр ) (,0 +,9 ), 55 кн м 9 Определяем диаметр вала Из условия прочности расч расч [ ] W найдем требуемой момент сопротивления W расч [ ],55 0 Н м 6 79, 0 м 79, см Н м Зная момент сопротивления, вычисляем диаметр вала

11 d Так как W π, то d, см π, Округлив значение диаметра, получим окончательно d 0 мм Продольный изгиб W 79, Продольный изгиб это искривление оси стержня при внешней сжимающей нагрузке, действующей вдоль его оси При продольном изгибе расчет ведут на устойчивость первоначальной прямолинейной формы равновесия стержня Условие устойчивости записывается в виде А Р [ У ] ϕ [ с ], ( ) где ϕ - коэффициент снижения допускаемого напряжения при осевом сжатии [ с ] Он зависит от материала стержня и задается таблично в зависимости от гибкости стержня λ : λ µ l i мин, ( ) где i I мин мин - минимальный радиус инерции сечения ; l длина стержня ; µ - коэффициент приведения длины, зависящий от условий закрепления стержня ( рис ) 0,5l l/ l l/ 0,5l l/ µ µ µ0,7 µ0,5 µ0,5 µ/ Рис Коэффициенты приведения длины

12 При использовании условия устойчивости ( ) расчет может быть : а ) проверочным ϕ [ с ] ; ( ) б) по определению допускаемой нагрузки в) проектировочным [ ] [ с ] ; ϕ ( ) ϕ ( 5) [ ] с При проектировании сечения задача решается методом последовательных приближений, так как в начале расчета значение ϕ, зависящее от λ, а следовательно и от размеров поперечного сечения стержня, неизвестно Величина критической силы равна Р кр кр А, ( 6 ) где критическое напряжение определяется по одной из формул : а ) при λ λ - по формуле Эйлера пред π E кр ; ( 7 ) λ б) при λ < λ пред - по эмпирической формуле Ясинского, которая для стали СТ имеет вид 0 -, λ ( МПа ) ( 8 ) кр Значение предельной гибкости λ пред зависит от свойств материала: где пц λ пред π Е - предел пропорциональности Для стали СТ λ, 00 пред Задача 0 00 пц пц, ( 9 ) 5 00 МПа, Е 0 МПа, 5 Стальной стержень длиной l сжимается силой ( рис, а ) Поперечное сечение стержня - коробчатое ( рис, б ) Требуется следующее: Найти размеры поперечного сечения стержня при допускаемом напряжении на осевое сжатие [ ] 60 МПа Найти величину критической силы и коэффициент запаса устойчивости

13 700 кн a б a lм a 0,a Рис К задаче Решение Находим размеры поперечного сечения Выразим площадь сечения через размер a А a a,6a 0,6a,0a Определяем моменты инерции сечения относительно главных центральных осей a (0,6a) I a,6a 0,79a ; (a) (,6 a) I a 0,6a 0,69a I I 0,79 a Для нашего сечения мин Выразим минимальный радиус инерции I мин 0,79а iмин 0, 6а А,0а Определим гибкость стержня l 0,7 l l λ µ,9 i 0,6a a мин 5 Задаемся начальным значением ϕ, например, ϕ 0, 5 6 Из условия ( 5 ) определяем н 8750 мм ϕ [ ] 0,5 60 н мм 7 Зная площадь, находим размер a :

14 a 9, 7мм,0,0 8 Вычисляем гибкость l 0 λ,9,9 6,86 a 9,7 9 По таблицам [, с 57] находим ϕ 0, 85 Поскольку ϕ ϕ, задаем новое значение ϕ ( ϕ + ) и повторяем цикл операций ( п6-9 ) ϕ до тех пор, пока значения ϕ и ϕ не совпадут с заданной точностью Второе приближение , ϕ ( 0,5 +0,85 ) 0,675; 68 мм ; 68 0 a 78,9мм ; λ,9 7,0,0 78,9 По таблицам для λ 7, 0 находим ϕ 0,79 Третье приближение ϕ (0, ,79) 0,7; мм ; 0, a 75,80 мм; λ,9 76,07,0 75,80 По таблицам для λ 76,07 находим ϕ Четвертое приближение 0, ϕ (0,7 + 0,77) 0,75; 580мм ; 0, a 7,7мм; λ,9 77,5,0 7,7 По таблицам для λ 77,5 находим ϕ Пятое приближение 0, ϕ 5 (0,75 + 0,766) 0,760 ; 5756мм ; 0, a 7,0мм; λ,9 77,50,0 7,0 По таблицам для λ 77,50 находим ϕ 5 0,765

15 6 Поскольку ϕ 5 близко к значению ϕ 5, процесс последовательных приближений завершаем Принимая a 7мм, проверим условие устойчивости ( ) Для 0 a 7мм λ,9 77, , По таблицам для λ 9 находим ϕ 0, ,0 7,9Н / мм ϕ[] 0,76 60,9Н / мм Перенапряжение составляет 0,8% < 5%, что допустимо Итак, a 7мм, А 5695мм Находим величину критической силы и коэффициент запаса устойчивости Поскольку λ 77,9 < 00, критическое напряжение вычисляем по формуле ФС Ясинского (8 ): кр 0, 77,9, ( МПа) Тогда критическая сила кр А, н 59,кН Коэффициент запаса устойчивости n кр 59,, Библиографический список Сопротивление материалов: Методические указания и контрольные задания для студентов-заочников всех специальностей техн высш учеб заведений кроме строительных /Сост АВ Дарков, Б Н Кутуков -е изд М: Высш шк, с Методические указания к выполнению контрольных работ по сопротивлению материалов Ч / Сост Тен Ен Со, Ю И Кадун, А Н Пашков Хабаровск: Хабар политехн ин-т, с Сопротивление материалов / Под ред ГС Писаренко 5-е изд Киев: Выща шк, с Александров А В, Потапов В Д, Державин Б П Сопротивление материалов М: Высш шк, с 5 Дарков А В, Шпиро Г С Сопротивление материалов 5-е изд М: Высш шк, с

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Государственный комитет Российской Федерации по высшему образованию Казанский государственный технологический университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к самостоятельной работе студентов

Подробнее

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения Контрольные задания по сопротивление материалов для студентов заочной формы обучения Составитель: С.Г.Сидорин Сопротивление материалов. Контрольные работы студентов заочников: Метод. указания /С.Г.Сидорин,

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Подробнее

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета.

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета. b Методические рекомендации к практической подготовке по дисциплине "Сопротивление материалов" для студентов-заочников специальности -70 0 0 "Водоснабжение, водоотведение и охрана водных ресурсов" Отмена

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ФЕДЕРЛЬНОЕ ГЕНТСТВО ПО ОБРЗОВНИЮ Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ПРИМЕРЫ РЕШЕНИЯ ЗДЧ КОНТРОЛЬНЫХ РБОТ ПО СОПРОТИВЛЕНИЮ

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней Задача 1 Для внецентренно сжатого короткого стержня с заданным поперечным сечением по схеме (рис.7.1) с геометрическими размерами

Подробнее

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1.

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1. Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 4а ГОСТ 8509-86) и швеллера 4 (ГОСТ 840-89), требуется: 1. Вычертить сечение в масштабе 1: и указать на нем все оси и

Подробнее

Изгиб с кручением. Работа 12

Изгиб с кручением. Работа 12 Работа 1 Изгиб с кручением Задание 1 Шкив с диаметром D 1 и с углом наклона ветвей ремня к горизонту α 1 делает n оборотов в минуту и передает мощность Р квт ( см. рисунок). Два других шкива имеют одинаковый

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (ЧАСТЬ II)

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (ЧАСТЬ II) ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (ЧАЬ II) Хабаровск 00 Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования Хабаровский

Подробнее

Расчеты на прочность

Расчеты на прочность Расчеты на прочность Различают два вида расчетов: проектный (проектировочный) и проверочный (поверочный). Проектирование детали можно вести в следующей последовательности: 1. Составляют расчетную схему

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Подробнее

Задания для контрольных работ по сопротивлению материалов с примерами их решения МДТТ МЕХАНИКА ТЕЛА ТВЕРДОГО

Задания для контрольных работ по сопротивлению материалов с примерами их решения МДТТ МЕХАНИКА ТЕЛА ТВЕРДОГО Задания для контрольных работ по сопротивлению материалов с примерами их решения МДТТ МЕХАНИКА ТЕЛА ДЕФОРМИРУЕМОГО ТВЕРДОГО Хабаровск 0 Министерство образования и науки Российской Федерации Федеральное

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

Устойчивость за пределом пропорциональности. Расчет сжатых стержней на устойчивость

Устойчивость за пределом пропорциональности. Расчет сжатых стержней на устойчивость Устойчивость за пределом пропорциональности. Расчет сжатых стержней на устойчивость 1. Стержень диаметром d=2см, длиной l=60см сжимается силой F. Материал стержня сталь3 Схема закрепления стержня показана

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Томский государственный архитектурно-строительный университет

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Томский государственный архитектурно-строительный университет ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Томский государственный архитектурно-строительный университет РАСЧЕТ ВАЛА НА ИЗГИБ С КРУЧЕНИЕ етодические указания Томск-00 УДК 59 оисеенко РП Расчет вала на изгиб

Подробнее

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Омск 011 РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Методические указания к выполнению курсовой работы для студентов специальности

Подробнее

Внецентренное действие продольных сил

Внецентренное действие продольных сил Внецентренное действие продольных сил C C Центральное сжатие (растяжение) Внецентренное сжатие (растяжение) Внецентренное сжатие (растяжение) это случай нагружения, когда линия действия сжимающей (растягивающей

Подробнее

РАСЧЕТ БРУСА ПРИ СЛОЖНОМ СОПРОТИВЛЕНИИ

РАСЧЕТ БРУСА ПРИ СЛОЖНОМ СОПРОТИВЛЕНИИ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Образовательный сектор с учебной лабораторией НОЦ ИС РАСЧЕТ БРУСА

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Филиал Федерального государственного автономного образовательного учреждения высшего профессионального образования «Казанский (Приволжский) федеральный

Подробнее

19. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ Основные понятия. Устойчивое и неустойчивое равновесие

19. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ Основные понятия. Устойчивое и неустойчивое равновесие Лекция 19 Понятие об устойчивости систем. Формы и методы определения устойчивости. Задача Эйлера. Условия закрепления концов стержня. Критические напряжения. Расчет на устойчивость. Расчет на устойчивость

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики Утверждаю Зав. кафедрой профессор И.В. Демьянушко «0» января 007г. А.М. ВАХРОМЕЕВ РАСЧЕТ

Подробнее

ЗАДАЧА 1. I-швеллер 36, II-уголок 90 х 90 х 8.

ЗАДАЧА 1. I-швеллер 36, II-уголок 90 х 90 х 8. ЗДЧ.. Определить положение центра тяжести сечения.. Найти осевые (экваториальные и центробежные моменты инерции относительно случайных осей, проходящих через центр тяжести ( c и c.. Определить направление

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

1. Цели и задачи дисциплины Цель дисциплины

1. Цели и задачи дисциплины Цель дисциплины 2 1.1. Цель дисциплины 1. Цели и задачи дисциплины Дисциплина «Сопротивление материалов» относится к общетехническому циклу и имеет своей целью усвоение будущими специалистами основ инженерной подготовки

Подробнее

Расчет элементов стальных конструкций.

Расчет элементов стальных конструкций. Расчет элементов стальных конструкций. План. 1. Расчет элементов металлических конструкций по предельным состояниям. 2. Нормативные и расчетные сопротивления стали 3. Расчет элементов металлических конструкций

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИ- МОЙ СТЕРЖНЕВОЙ СИСТЕМЫ НА ИЗГИБ И УСТОЙЧИВОСТЬ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИ- МОЙ СТЕРЖНЕВОЙ СИСТЕМЫ НА ИЗГИБ И УСТОЙЧИВОСТЬ инистерство образования и науки России Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технологический университет» РАСЧЕТ

Подробнее

Министерство образования Российской Федерации Государственное образовательное учреждение Уральский государственный технический университет УПИ

Министерство образования Российской Федерации Государственное образовательное учреждение Уральский государственный технический университет УПИ Министерство образования Российской Федерации Государственное образовательное учреждение Уральский государственный технический университет УПИ РАСЧЕТ НА УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ Методические указания

Подробнее

5. Расчет остова консольного типа

5. Расчет остова консольного типа 5. Расчет остова консольного типа Для обеспечения пространственной жесткости остовы поворотных кранов обычно выполняют из двух параллельных ферм, соединенных между собой, где это возможно, планками. Чаще

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Н. Б. ЛЕВЧЕНКО СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ЧАСТЬ Санкт-Петербург 00 1 Министерство образования Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет Кафедра сопротивления

Подробнее

ОГБОУ «Кораблинский агротехнологический техникум» РАБОЧАЯ ТЕТРАДЬ. по учебной дисциплине. ОП.02. Техническая механика.

ОГБОУ «Кораблинский агротехнологический техникум» РАБОЧАЯ ТЕТРАДЬ. по учебной дисциплине. ОП.02. Техническая механика. ОГБОУ «Кораблинский агротехнологический техникум» РАБОЧАЯ ТЕТРАДЬ по учебной дисциплине ОП.02. Техническая механика по специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта»

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИ- ПЛИНЫ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИ- ПЛИНЫ 1 Министерство образования и науки Республики Казахстан Павлодарский государственный университет им. С. Торайгырова Кафедра «Промышленное и гражданское строительство» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (СОПРОМАТ)

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (СОПРОМАТ) ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (СОПРОМАТ) Приер. Стальной ступенчатый стержень (рис ), защелен одни концо и нагружен силаи F и F. Все действующие нагрузки и разеры показаны на рисунке.

Подробнее

1. Цели и задачи дисциплины Цель дисциплины

1. Цели и задачи дисциплины Цель дисциплины 1.1. Цель дисциплины 1. Цели и задачи дисциплины Дисциплина «Сопротивление материалов» относится к общетехническому циклу и имеет своей целью усвоение будущими специалистами основ инженерной подготовки

Подробнее

Кафедра теоретической механики и сопротивления материалов

Кафедра теоретической механики и сопротивления материалов МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» Кафедра теоретической

Подробнее

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ Омск 008 Федеральное агентство по образованию Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра строительной

Подробнее

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях Содержание РГР. Растяжение сжатие.... Определение усилий в стержнях и расчет их на прочность..... Определение усилий в стержнях..... Определение диаметра стержней.... Расчет ступенчатого бруса на прочность

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

ОПД.Ф СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

ОПД.Ф СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ОГЛАВЛЕНИЕ ОПДФ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ РАСЧЕТ ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК ПОПЕРЕЧНЫХ СЕЧЕНИЙ ПРОСТЕЙШИХ ФОРМ Методические указания к решению задач и выполнению расчетно-графической работы Предисловие

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

Виды нагружения стержня

Виды нагружения стержня Виды нагружения стержня 1. Схема нагружения стержня внешними силами представлена на рисунке. Длины участков одинаковы и равны l. Третий участок стержня испытывает деформации 1) чистый изгиб и кручение;

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

РАСЧЕТЫ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ ОСЕВОМ ДЕЙСТВИИ НАГРУЗОК

РАСЧЕТЫ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ ОСЕВОМ ДЕЙСТВИИ НАГРУЗОК Министерство образования и науки Российской Федерации Федеральное агентство по образованию Югорский государственный университет Инженерный факультет Кафедра «Строительные технологии и конструкции» РАСЧЕТЫ

Подробнее

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ Министерство путей сообщения Российской федерации Дальневосточный государственный университет путей сообщения Кафедра "Строительная механика" А.В. Хлебородов РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование и управление в технических системах» МЕТОДИЧЕСКИЕ

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

Составитель: преподаватель спецдисциплин Вечерко Т.А. Красноярск

Составитель: преподаватель спецдисциплин Вечерко Т.А. Красноярск МИНИСТЕРСТВО ОБРАЗОВАНИЯ КРАСНОЯРСКОГО КРАЯ краевое государственное бюджетное профессиональное образовательное учреждение «Красноярский технологический техникум пищевой промышленности» Методические указания

Подробнее

УСТОЙЧИВОСТЬ ЦЕНТРАЛЬНО СЖАТЫХ СТЕРЖНЕЙ

УСТОЙЧИВОСТЬ ЦЕНТРАЛЬНО СЖАТЫХ СТЕРЖНЕЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

Дисциплина «Сопротивление материалов»

Дисциплина «Сопротивление материалов» Дисциплина «Сопротивление материалов» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Сопротивление материалов» относится к вариативной

Подробнее

Содержание. Список литературы 15

Содержание. Список литературы 15 2 Содержание Расчёт и конструирование плоской статически определимой фермы Задание........................................ 3 Выбор размеров фермы............................. 4 Расчёт усилий от действия

Подробнее

Числовые данные к задаче 2

Числовые данные к задаче 2 ЗАДАЧА Абсолютно жесткий брус АВ опирается на шарнирно-неподвижную опору и прикреплен с помощью шарниров к двум стальным стержням. ребуется подобрать сечения стержней по условию их прочности, приняв запас

Подробнее

Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1

Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1 Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1 Произвести расчет прокатной двутавровой балки на прочность по методу предельных состояний,

Подробнее

Задача 1. Решение. Рис. 1 Ступенчатый брус

Задача 1. Решение. Рис. 1 Ступенчатый брус Задача 1 Ступенчатый брус (рис. 1) нагружен силами P 1, P 2 и P 3, направленными вдоль его оси. Заданы длины участков a, b и c и площади их поперечных сечений F 1 и F 2. Модуль упругости материала Е 2

Подробнее

436 Подбор поперечной арматуры

436 Подбор поперечной арматуры 436 Подбор поперечной арматуры 1 Программа предназначена для расчета поперечной арматуры, требуемой для обеспечения прочности по наклонным и пространственным сечениям, а также для конструирования хомутов

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Владимирский государственный университет Кафедра сопротивления материалов СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания и задания к курсовым работам для студентов

Подробнее

РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ ИЛИ СЖАТИИ

РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ ИЛИ СЖАТИИ Министерство образования Российской Федерации Кубанский государственный технологический университет Кафедра сопротивления материалов и строительной механики РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7 ОГЛАВЛЕНИЕ Предисловие... 4 Введение... 7 Глава 1. Механика абсолютно твердого тела. Статика... 8 1.1. Общие положения... 8 1.1.1. Модель абсолютно твердого тела... 9 1.1.2. Сила и проекция силы на ось.

Подробнее

Сопротивление материалов

Сопротивление материалов Сопротивление материалов (для бакалавров) МЕХАНИКА ТЕЛА ДЕФОРМИРУЕМОГО ТВЕРДОГО Хабаровск 2012 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ Министерство образования Российской Федерации Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра строительной механики РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ Методические

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

РАСЧЕТ СТЕРЖНЕЙ НА CЛОЖНОЕ СОПРОТИВЛЕНИЕ

РАСЧЕТ СТЕРЖНЕЙ НА CЛОЖНОЕ СОПРОТИВЛЕНИЕ 1 ФГБ ОУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» Кафедра строительной механики А.М. ЛУКЬЯНОВ, М.А.ЛУКЬЯНОВ, А.И. МАРАСАНОВ РАСЧЕТ СТЕРЖНЕЙ НА CЛОЖНОЕ СОПРОТИВЛЕНИЕ Методические указания

Подробнее

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины)

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСТПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб Введение Настоящая программа базируется на основных разделах следующих дисциплин: Математика; Физика; Теоретическая механика; Сопротивление материалов; Теория упругости и пластичности; Статика, динамика

Подробнее

Контрольные вопросы по сопротивлению материалов

Контрольные вопросы по сопротивлению материалов Контрольные вопросы по сопротивлению материалов 1. Основные положения 2. Каковы основные гипотезы, допущения и предпосылки положены в основу науки о сопротивлении материалов? 3. Какие основные задачи решает

Подробнее

Решение: Исходные данные: = 2 = 2 = 2

Решение: Исходные данные: = 2 = 2 = 2 Задача 1 Для данного бруса требуется: - вычертить расчетную схему в определенном масштабе, указать все размеры и величины нагрузок; - построить эпюру продольных сил; - построить эпюру напряжений; - для

Подробнее

Ключевые слова: консольная неравнобокая балка, тонкостенный открытый профиль, напряжения нормальные и касательные, прочность.

Ключевые слова: консольная неравнобокая балка, тонкостенный открытый профиль, напряжения нормальные и касательные, прочность. УДК 64.07.014.-415.046. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ ТОНКОСТЕННОЙ БАЛКИ ОТ- КРЫТОГО ПРОФИЛЯ Максак Татьяна Васильевна д.т.н., профессор кафедры Агроинженерии Ачинский филиал Красноярского государственного аграрного

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА. Новосибирск 2014

ТЕХНИЧЕСКАЯ МЕХАНИКА. Новосибирск 2014 Министерство сельского хозяйства Российской Федерации ФГБОУ «Новосибирский государственный аграрный университет» Факультет среднего профессионального образования ТЕХНИЧЕСКАЯ МЕХАНИКА Методические указания

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАСЧЕТУ НА ПРОЧНОСТЬ ПРИВОДНЫХ ВАЛОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАСЧЕТУ НА ПРОЧНОСТЬ ПРИВОДНЫХ ВАЛОВ 2011 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАСЧЕТУ НА ПРОЧНОСТЬ ПРИВОДНЫХ ВАЛОВ М. В. Фомин МГТУ им. Н.Э. Баумана Расчеты на прочность приводных валов 1. Приводной вал с барабаном и муфтой Вращающий момент на приводном

Подробнее

РАСЧЕТ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ОТКРЫТОГО ПРОФИЛЯ

РАСЧЕТ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ОТКРЫТОГО ПРОФИЛЯ РАСЧЕТ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ОТКРЫТОГО ПРОФИЛЯ Омск 8 Федеральное агентство по образованию Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра Строительная механика РАСЧЕТ ТОНКОСТЕННЫХ

Подробнее

Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения

Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения Определение напряжений и проверка прочности балок при плоском поперечном изгибе Если Вы научились строить

Подробнее

М Е Т О Д И Ч Е С К И Е У К А З А Н И Я С О П Р О Т И В Л Е Н И Ю М А Т Е Р И А Л О В

М Е Т О Д И Ч Е С К И Е У К А З А Н И Я С О П Р О Т И В Л Е Н И Ю М А Т Е Р И А Л О В МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОУВПО ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ М Е Т О Д И Ч

Подробнее

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными Растяжение (сжатие) элементов конструкций. Определение внутренних усилий, напряжений, деформаций (продольных и поперечных). Коэффициент поперечных деформаций (коэффициент Пуассона). Гипотеза Бернулли и

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

2.3. СВАРНЫЕ СОЕДИНЕНИЯ Расчет нахлесточного сварного соединения. = 400 МПа. Расчет. S y

2.3. СВАРНЫЕ СОЕДИНЕНИЯ Расчет нахлесточного сварного соединения. = 400 МПа. Расчет. S y .. СВАРНЫЕ СОЕДИНЕНИЯ..1. Расчет нахлесточного сварного соединения Рассчитать нахлесточное сварное соединение, изображенное на рис...1.1, если а 50 мм. Соединение нагружено силой F 0 кн, действующей под

Подробнее

ОП. 02.«Техническая механика»

ОП. 02.«Техническая механика» КОМИТЕТ ОБРАЗОВАНИЯ И НАУКИ КУРСКОЙ ОБЛАСТИ ОБЛАСТНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РЫЛЬСКИЙ АГРАРНЫЙ ТЕХНИКУМ» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП. 0.«Техническая

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АСТРАХАНСКОЙ ОБЛАСТИ Государственное автономное образовательное учреждение Астраханской области высшего профессионального образования «АСТРАХАНСКИЙ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика» МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Кафедра: «Машины и оборудование пищевой промышленности основы механики» РЕФЕРАТ

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Н. Б. ЛЕВЧЕНКО СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ЧАСТЬ Санкт-Петербург 001 Министерство образования Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет Кафедра сопротивления

Подробнее

Создание и применение опорных конспектов с применением ЭВМ.

Создание и применение опорных конспектов с применением ЭВМ. Создание и применение опорных конспектов с применением ЭВМ. (Опубликовано. Материалы VI Международной научно-практической конференции, г. Челябинск, 7 декабря 1 года) Автор :Девятайкин Владимир Павлович

Подробнее

МЕХАНИКА МОДУЛЬ 1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

МЕХАНИКА МОДУЛЬ 1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ЦВЕТНЫХ МЕТАЛЛОВ И ЗОЛОТА

Подробнее

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ Цель курса ознакомить студентов с основными понятиями напряженно-деформированного состояния изотропного тела, константами упругости, теориями прочности, растяжением, сжатием,

Подробнее

Ключевые слова: методика, вездеход, расчет, метод конечных элементов.

Ключевые слова: методика, вездеход, расчет, метод конечных элементов. МАШИНОСТРОЕНИЕ И МАТЕРИАЛОВЕДЕНИЕ ВЕСТНИК ТОГУ 014 1 (3) УДК 6036 : 60331 А Д Ловцов, Н А Иванов, 014 ПРОЕКТИРОВАНИЕ И РАСЧЕТ РАМЫ ЛЕГКОГО КОЛЕСНОГО ВЕЗДЕХОДА С ИСПОЛЬЗОВАНИЕМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

Подробнее

МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. Примеры решения задач

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. Примеры решения задач Федеральное агентство железнодорожного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ

Подробнее

ВЕРОЯТНОСТНЫЕ МЕТОДЫ КОНСТРУКТИВНОГО РАСЧЕТА ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПОД СЛУЧАЙНЫМ СИЛОВЫМ ВОЗДЕЙСТВИЕМ

ВЕРОЯТНОСТНЫЕ МЕТОДЫ КОНСТРУКТИВНОГО РАСЧЕТА ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПОД СЛУЧАЙНЫМ СИЛОВЫМ ВОЗДЕЙСТВИЕМ Министерство образования и науки Российской Федерации Саратовский государственный технический университет ВЕРОЯТНОСТНЫЕ МЕТОДЫ КОНСТРУКТИВНОГО РАСЧЕТА ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПОД СЛУЧАЙНЫМ СИЛОВЫМ ВОЗДЕЙСТВИЕМ

Подробнее

РАСЧЕТ ТРЕХШАРНИРНЫХ АРОК

РАСЧЕТ ТРЕХШАРНИРНЫХ АРОК МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ В. К. Манжосов

Подробнее

ОП. 02 «Техническая механика»

ОП. 02 «Техническая механика» КОМИТЕТ ОБРАЗОВАНИЯ И НАУКИ КУРСКОЙ ОБЛАСТИ ОБЛАСТНОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «РЫЛЬСКИЙ АГРАРНЫЙ ТЕХНИКУМ» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП. 0 «Техническая механика»

Подробнее

1.1. Цели изучения сопротивления материалов

1.1. Цели изучения сопротивления материалов 3 1. Цели освоения дисциплины 1.1. Цели изучения сопротивления материалов В соответствии с ФГОС одной из общих целей сопротивления материалов является подготовка к области профессиональной деятельности

Подробнее

Внутренние усилия и напряжения

Внутренние усилия и напряжения 1. Внутренние усилия и напряжения Интегральная связь между крутящим моментом Mz и касательными напряжениями имеет вид 2. Если известно нормальное и касательное напряжения в точке сечения, то полное напряжение

Подробнее

КОРОЛЁВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

КОРОЛЁВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика СП КОРОЛЁВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

Подробнее

ОСНОВЫ ТЕОРИИ СОПРОТИВЛЕНИЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ. ПРОСТЕЙШИЕ СЛУЧАИ НАГРУЖЕНИЯ

ОСНОВЫ ТЕОРИИ СОПРОТИВЛЕНИЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ. ПРОСТЕЙШИЕ СЛУЧАИ НАГРУЖЕНИЯ Глава 4 ОСНОВЫ ТЕОРИИ СОПРОТИВЛЕНИЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ. ПРОСТЕЙШИЕ СЛУЧАИ НАГРУЖЕНИЯ Как уже говорилось выше, железобетон это анизотропный материал сложной структуры, характеризующийся нелинейной

Подробнее