g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]."

Транскрипт

1 Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также основными теоремами дифференциального исчисления. Теорема Ролля. Если функция y = f() удовлетворяет условиям: (i) f() непрерывна на отрезке [a, b]; (ii) существует производная f () в интервале (a, b); (iii) f(a) = f(b), т.е. на концах отрезка функция принимает одинаковые значения, то существует точка c (a, b) такая, что f (c) = 0. Причина этого состоит в том, что функция, принимающая на концах отрезка одинаковые значения, внутри отрезка имеет либо максимум, либо минимум. А в точке локального максимума или минимума производная равна нулю по теореме Ферма 59

2 (необходимое условие экстремума). Геометрический смысл теоремы Ролля состоит в том, что существует точка, в которой касательная горизонтальна. Теорема Лагранжа. Если функция y = f() удовлетворяет условиям: (i) f() непрерывна на отрезке [a, b]; (ii) существует производная f () в интервале (a, b), то существует точка c (a, b), для которой выполняется равенство f(b) f(a) = f (c). (L) b a Геометрически теорема Лагранжа утверждает, что внутри отрезка найдется точка, в которой касательная параллельна секущей. При этом секущей (или хордой) называется прямая, соединяющая концевые точки (a, f(a)) и (b, f(b)) графика. Формула (L), переписанная в виде f(b) f(a) = f (c)(b a), называется формулой конечных приращений. Она утверждает, что приращение функции на отрезке равно приращению аргумента, умноженному на значение производной в некоторой промежуточной точке. Теорема Коши. Если функции y = f() и y = g() удовлетворяют условиям: (i) f() и g() непрерывны на отрезке [a, b]; 60

3 (ii) существуют производные f () и g () в интервале (a, b); (iii) g () 0 в интервале (a, b), то существует точка c (a, b), для которой выполняется равенство f(b) f(a) g(b) g(a) = f (c) g (c). (C) В частном случае, когда g() =, теорема Коши превращается в теорему Лагранжа. Задача 7.. Проверить справедливость теоремы Ролля для функции f() на данном отрезке и найти соответствующее значение c, фигурирующее в теореме: a) y = , [, 2 ] ; b) y = 2 +, [ ; 0 ] ; c) y = ln sin, [ π 6, 5π 6 ] ; d) y = ( )( 2)( ), [, ]. a) Так как функция y() = есть многочлен, то она дифференцируема на всей числовой прямой, тем более она непрерывна на [, 2 ] и дифференцируема на (, 2 ), то есть условия (i) и (ii) теоремы Ролля выполняются. Для проверки условия (iii) вычислим значения функции в концах отрезка: y( ) = ( ) + 4( ) 2 7( ) 0 = 0 и y(2) = 0, то есть y( ) = y(2), следовательно условие (iii) так же выполняется. Поэтому на основании теоремы Ролля существует точка c [, 2 ] такая, что y (c) = 0. Найдём точку c : из уравнения 7 4, y () = = 0, находим = 4+ 7, 2 = откуда получаем c = 2 = 7 4 (, 2 ). Ответ: a) c = 7 4 ; b) c = 2 ln ; c) c = ; d) c = 4 π. Задача 7.2. Проверить справедливость теоремы Лагранжа для функции f() на данном отрезке и найти соответствующее значение c, фигурирующее в теореме: a) y = 2, [ ; ] ; b) y = ln, [ ; ] ; c) y = +, [ 2 ; 2 ] ; d) y = arctg, [ 0; ]. Функция y = 2 дифференцируема при всех, поэтому условия (i)-(ii) теоремы Лагранжа для неё выполнены. Так как 6

4 y() =, y() = 9, то, согласно теореме Лагранжа, существует точка c (; ) такая, что y (c) = y() y() = 8 2 = 4, т.е. 2c = 4, откуда c = 2 (; ). Ответ: a) c = 2; b) c = 2 ; c) c = π 2 ; d) c = 6±. Задача 7.. Найти точку, в которой касательная к графику y = f() параллельна секущей, соединяющей точки A и B на графике. Сделать поясняющий рисунок. a) y = 2 4, A(; ), B(5; 5); b) y = ln, A(; 0), B(e; ). Составим уравнение секущей прямой, проходящей через точки A и B: 4 = y+ 8, или y = 2 5. Её угловой коэффициент равен 2. Поскольку угловой коэффициент касательной к графику функции y = f() равен f (), то абсцисса искомой точки находится из уравнения f () = 2, т.е. 2 4 = 2, откуда =. Соответствующая ордината y = f() = 9 2 =. Ответ: a) (; ); b) (e ; ln(e )). 7.2 Правило Лопиталя Правило [ ] Лопиталя это правило раскрытия неопределенностей вида 00 или [ ], т.е. вычисления предела отношения двух бесконечно малых или бесконечно больших, с помощью производных: Если функции f() и g() удовлетворяют условиям: ) существуют производные f () и g () в проколотой окрестности точки 0, 2) lim f() g() = 0 или lim f() g() =, ) g () 0 в некоторой окрестности точки 0, f 4) существует lim () 0 g () (конечный или бесконечный), f() то существует lim 0 g() и эти пределы равны, т.е. 62

5 f() lim 0 g() f () 0 g (). Теорема справедлива не только в случае, когда 0, но и когда 0 + 0, 0 0, 0 ±. Короче говоря, при вычислении предела отношения двух б.м. или двух б.б. числитель и знаменатель можно заменить на их производные. Если после применения правила Лопиталя неопределенность не исчезла, то правило Лопиталя можно применить еще раз. Пример. Найти предел: sin n ; b) lim + (n натуральное число ). e sin [ 0 0] cos [ 0 0] sin 2 6 n [ ] b) lim + e + Замечание. Если предел n n e f lim () 0 g () [ ] n! =... + e = 0. [ 0 0] cos = 6 6 ; не существует, то это не f() значит, что предел lim 0 g() также не существует. Действительно, рассмотрим две б.б. f() = 2 + sin и g() = 2 sin при. Тогда lim f () g () f() lim g() 2+sin 2 sin Задача 7.4. Найти предел: 2+ sin 2 sin tg π π ; b) lim tg π 6 2+cos 2 cos =. не существует, однако 4 ; c) lim sin 2 2.

6 Ответ: a) ; b) 2 π ln π; c). Задача 7.5. Найти предел: ln ( 2 + ) e ; b) lim + 2 Ответ: a) 0; b) + ; c) 0. ln ; c) lim. 7. Другие виды неопределенностей Непосредственно правило [ ] Лопиталя применяется только к неопределенностям вида 00 или [ ]. Другие типы неопределенностей нужно сводить к неопределенностям этих типов. Неопределенности вида [0 ] и [ 2 ] можно свести к неопределенности вида 0 0 или с помощью следующих манипуляций: ( 0 ) = 0 0 = 0 0 или 0 = = ; 2 = 2 =. Неопределенности показательно-степенного вида [ ], [ 0 0] и [ 0] сводятся к неопределенностям вида 0 0 или с помощью основного логарифмического тождества A = e ln A (и непрерывности показательной функции) (метод логарифмирования): пусть требуется найти предел lim u() v() одного из перечисленных типов. 0 Тогда lim u() v() e v() ln u() = e B, 0 0 где B 0 v() ln u(). Пример. Найти предел: lim. lim [00 ] e ln = e B, где B ln [0 ] Ответ: e 0 =. ln [ ] 64 2 ( ) = 0.

7 Задача 7.6. Найти предел: ( ) 2 ln ; b) lim ln d) lim ( sin ). 2 ln [0 ] b) lim ( + 2 ln = 2. ln 2 [ ] ) [ ] ln + ( ) ln Ответ: a) 0 ; b) 2 ; c) 0 ; d) 0. Задача 7.7. Найти предел: (cos ) 2 ; c) lim ctg ln ( π ) π 2 ; = 0. [ 0 0] ( ) 4 tg ( ) ; b) lim + Ответ: a) e 2 ; b) 4 ; c) e 2 π. Задача 7.8. Найти пределы: 2 cos ; b) lim π 2 d) lim 0 9 lg cos ln ( π 2 arctg arcsin g) lim ; h) lim tg sin ( 6 j) lim ln tg π ; k) lim 2 ln ln + [ 0 0] = π ; c) lim tg (ln ) 2e. e arcsin ; c) lim + ) arctg ; 9 e sin2 e sin ; e) lim ; f) lim 2 ln ( ) tg sin sin 8 8 ln ln 8 ) tg π 6 ; l) lim 2 ( m) lim 2 e sin ) ctg π ; n) lim + +sin sin ; ( o) lim + tg 2 ) ln (+ 2 ). 65 ; i) lim (ctg ) ln ; ) ( ; ;

8 Ответ: a) 2 ln 2; b) ; c) 2 ; d) 5 ln 0; e) 9 ln ; f) ; g) ; h) 8 cos 8; i) e ; j) 2 π ; k) e 6 π ; l) ; m) e π ; n) 0; o) e. Контрольные вопросы. Сформулировать теоремы Ролля, Лагранжа и Коши. 2. Каков геометрический смысл теоремы Лагранжа?. Что такое формула конечных приращений? 4. Сформулировать правило Лопиталя. Дополнительные вопросы и задачи D. Показать, что если хотя бы одно из условий (i) (iii) теоремы Ролля не выполняется, то утверждение теоремы Ролля может быть неверно. Приведите соответствующие контрпримеры. D2. Показать, что если хотя бы одно из условий (i) (iii) теоремы Лагранжа не выполняется, то утверждение теоремы Лагранжа может быть неверно. Приведите соответствующие контрпримеры. D. С помощью теоремы Лагранжа доказать, что если на некотором промежутке производная функции равна нулю (тождественно), то эта функция постоянна. D4. С помощью теоремы Лагранжа доказать, что если функция y = f() непрерывна на отрезке и имеет положительную (соответственно отрицательную) производную внутри отрезка, то она возрастает (соответственно убывает) на этом отрезке. D5. Доказать, что производная функции f() = ( 2 ) ( 2 4) имеет четыре действительных корня, и найти интервалы, в которых они находятся. D6. Применим правило Лопиталя для вывода первого замечательного предела: lim sin [ 0 0] cos =. Объясните почему это "доказательство"не проходит (не верно). Производные можно применять для доказательства неравенств. 66

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ Понятие производных и дифференциалов высших порядков Производная f ( называется производной первого порядка (или

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1)

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1) 1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения (2006-2007, сем.1 1. Сформулируйте определение ограниченного множества вещественных чисел. 2. Сформулируйте определение

Подробнее

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3 Лекции 56 Глава 6 Производная функции 6 Понятие производной Пусть функция определена и непрерывна на некотором промежутке X Взяв значение X придадим аргументу приращение так что и новое значение не выходит

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Уфимский государственный технический университет. lim 7 5). 1

Уфимский государственный технический университет. lim 7 5). 1 Уфимский государственный технический университет ПРОБНИК. Задача: Вычислить предел функции + 4 Ответы: ). ). ). /4 4). 0 5). нет правильного ответа. Задача: Найти предел: 0 sin5 7 Ответы: ). 5 ). 7 ).

Подробнее

Приложение производных к исследованию функций

Приложение производных к исследованию функций Приложение производных к исследованию функций Лекции 1 6 Л.И. Терехина, И.И. Фикс Курс: Высшая математика Семестр 1, 2009 год portal.tpu.ru Теорема 1 (Ферма) Если функция y = f (x): 1) непрерывна в замкнутом

Подробнее

Ответы к заданию Определение приращения аргумента Δx

Ответы к заданию Определение приращения аргумента Δx Ответы к заданию приращения аргумента Δ Приращением аргумента Δ f ( называется разность между значением аргумента в точке и любой другой точке из некоторой окрестности точки Δ, U ( : δ приращения f Δ (

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Лекция 7 Производная функции Правила и формулы дифференцирования П л а н Задачи, приводящие к понятию производной Понятие производной Основные

Подробнее

Филиал в г. Домодедово. МАТЕМАТИЧЕСКИЙ АНАЛИЗ (часть 1) Михин М.Н. Методические указания по подготовке к итоговой контрольной работе и экзамену

Филиал в г. Домодедово. МАТЕМАТИЧЕСКИЙ АНАЛИЗ (часть 1) Михин М.Н. Методические указания по подготовке к итоговой контрольной работе и экзамену МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ» (РГГУ) Филиал в г Домодедово

Подробнее

Лекции подготовлены доц. Мусиной М.В. Производная функции.

Лекции подготовлены доц. Мусиной М.В. Производная функции. Производная функции Понятие производной является одним из основных математических понятий Производная широко используется при решении целого ряда задач математики, физики и других наук, в особенности при

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения.

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения. Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения Цель: сформировать умение находить производные функций, заданных в явном, логарифмическом и параметрическом

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

1. ПРОИЗВОДНАЯ. называется приращением функции. Если существует предел. , то он называется производной функции f x. f x lim lim

1. ПРОИЗВОДНАЯ. называется приращением функции. Если существует предел. , то он называется производной функции f x. f x lim lim ПРОИЗВОДНАЯ Определение производной Пусть на множестве X задана функция f Фиксируем точку X и задаем приращение аргумента Тогда точка соответствует f и f f называется приращением функции Если существует

Подробнее

1. ПРОИЗВОДНАЯ. f x lim lim x. в точке x. dy Существуют и другие обозначения производной: y,, называется сложной, если u есть функция от x :

1. ПРОИЗВОДНАЯ. f x lim lim x. в точке x. dy Существуют и другие обозначения производной: y,, называется сложной, если u есть функция от x : СОДЕРЖАНИЕ ПРОИЗВОДНАЯ Определение производной Дифференцирование неявных функций Логарифмическое дифференцирование Производные высших порядков Дифференцирование функции, заданной параметрически 6 Уравнение

Подробнее

1. Производная Рассмотрим график непрерывной функции секущая графика. будем называть касательной. в точке x

1. Производная Рассмотрим график непрерывной функции секущая графика. будем называть касательной. в точке x Лекция: Основы дифференциального исчисления Конспект лекции. Производная Рассмотрим график непрерывной функции на отрезке b M M секущая графика. Тогда тангенс угла наклона секущей. Предельное положение

Подробнее

С.А. Лавренченко. Лекция 9. Экстремумы

С.А. Лавренченко. Лекция 9. Экстремумы 1 СА Лавренченко Лекция 9 Экстремумы 1 Определения и примеры Определение 11 Говорят, что функция имеет (или достигает) абсолютный максимум в точке, если для всех из области определения Значение называется

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

Тема 1. Предел и непрерывность функции

Тема 1. Предел и непрерывность функции Уметь: Тема 1. Предел и непрерывность функции Вычислять пределы функций и числовых последовательностей, используя различные приемы, в том числе, замечательные пределы, проводить сравнение бесконечно малых

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

1. Производная ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. 1. Основные определения

1. Производная ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. 1. Основные определения ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. Производная. Основные определения Определение. Производной функции y = f (x) в точке x 0 называется предел отношения приращения этой функции y в точке

Подробнее

13. Экспонента и логарифм

13. Экспонента и логарифм 13. Экспонента и логарифм Для завершения доказательства предложения 12.8 нам остается дать одно определение и доказать одно предложение. Определение 13.1. Ряд a i называется абсолютно сходящимся, если

Подробнее

Р. М. Гаврилова, Г. С. Костецкая. Методические указания

Р. М. Гаврилова, Г. С. Костецкая. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические указания для самостоятельной работы студентов 1 курса физического факультета

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

Т. В. Тарбокова, В. М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ. Производная, и её приложения. Издание третье. / x

Т. В. Тарбокова, В. М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ. Производная, и её приложения. Издание третье. / x ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Т В Тарбокова, В М Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ

Подробнее

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 1 Определения Сформулируйте определение: 2 ноября 2013 г. 1. ограниченного

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Министерство образования и науки Российской Федерации Курганский государственный университет Кафедра экономической теории и моделирования экономических процессов МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

Подробнее

Дифференциальное исчисление. Часть 2. "ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ". Составитель В.П.Белкин

Дифференциальное исчисление. Часть 2. ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. Составитель В.П.Белкин Дифференциальное исчисление Часть "ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ" Составитель ВПБелкин Приращение функции Пусть функция y f () определена в некоторой окрестности точки Изменим это значение аргумента на новое

Подробнее

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем -

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - { теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - теорема Коши - формула конечных приращений - правило Лопиталя

Подробнее

Образцы базовых задач и вопросов по МА за 1 семестр

Образцы базовых задач и вопросов по МА за 1 семестр Образцы базовых задач и вопросов по МА за семестр Предел последовательности Простейшие Вычислите предел последовательности l i m 2 n 6 n 2 + 9 n 6 4 n 6 n 4 6 4 n 6 2 2 Вычислите предел последовательности

Подробнее

Вопросы к экзамену по курсу 1-2 модулей

Вопросы к экзамену по курсу 1-2 модулей На устном экзамене студент получает два вопроса и две задачи. Вопросы к экзамену по курсу 1- модулей 1. Расскажите о числах: натуральных, целых, рациональных и иррациональных. Расскажите о числовой прямой

Подробнее

1. Производная функции в точке

1. Производная функции в точке приращения аргумента Δ приращения Δ функции f производной функции точке f в Основные правила дифференцирования функций функции в точке Приращением аргумента Δ функции f называется разность между значением

Подробнее

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции.

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции. Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C -гладкие функции. Определение 1 Функция называется выпуклой (вогнутой), если ее надграфик (подграфик) выпуклая область. Пример 1 x

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте Перечень тем и вопросов, выносимых на зимнюю сессию 2013-2014 уч. год, 1 курс, 2 поток Дисциплина Математический анализ, лектор к.ф.-м.н., доцент Фроленков И.В. 1. Понятие функции. График функции. Обзор

Подробнее

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования.

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования. Производная функции Ее геометрический и физический смысл Техника дифференцирования Основные определения Пусть f ( ) определена на (, ) a, b некоторая фиксированная точка, приращение аргумента в точке,

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры.

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры. Математический анализ, 27/28 Группы БПМ7 75 Промежуточный экзамен, модули 2 На устном экзамене студент получает два теоретических вопроса и две задачи ВОПРОСЫ К ЭКЗАМЕНУ Расскажите о числах: натуральных,

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ''Оренбургский государственный

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ МОДУЛЬ 2 «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ»

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ МОДУЛЬ 2 «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ» АВ Гласко ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ МОДУЛЬ «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ» Москва, МГТУ им НЭ Баумана 3 Лекция 8 Понятие производной Рассмотрим функцию y=f(), определенную

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА. Контрольная работа для студентов заочной формы обучения

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА. Контрольная работа для студентов заочной формы обучения Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный архитектурно-строительный университет»

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 011/01 учебный год Тема. Пределы, непрерывность, производные 1 Тема: Предел функции 1. Предел функции Пусть f(x) функция, определенная на множестве Х; А и а числа. Опр.

Подробнее

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» М.П. Дымков ВЫСШАЯ МАТЕМАТИКА Второй семестр Курс лекций для студентов экономических специальностей

Подробнее

2. Предел функции. изменении аргумента. С помощью предела можно выяснить, имеет ли

2. Предел функции. изменении аргумента. С помощью предела можно выяснить, имеет ли . Предел функции. Актуальность изучения темы Теория пределов играет основополагающую роль в математическом анализе, позволяет определить характер поведения функции при заданном изменении аргумента. С помощью

Подробнее

Примерные практические задания:

Примерные практические задания: Банк заданий по теме «ПРОИЗВОДНАЯ» МАТЕМАТИКА 11 класс (база) Учащиеся должны знать/понимать: Понятие производной. Определение производной. Теоремы и правила нахождения производных суммы, разности, произведения

Подробнее

ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРИНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРИНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ ХАРЬКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ для модуля ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРИНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Харьков

Подробнее

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики ФУНКЦИЯ И ЕЕ

Подробнее

Глава II. Производная

Глава II. Производная Глава II Производная Производная функции в точке Геометрический и механический смысл производной Рассмотрим сначала два примера ) Пусть материальное тело совершает прямолинейное движение За время t тело

Подробнее

«Предел, непрерывность, дифференциальное исчисление функции одной переменной»

«Предел, непрерывность, дифференциальное исчисление функции одной переменной» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Новосибирский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

Оглавление. А.А.Быков bykovaa.ru, abkov.ru

Оглавление. А.А.Быков bykovaa.ru, abkov.ru ksm-n05-производная и дифференциал А.А.Быков bykovaa.ru abkov.ru Оглавление 5. Лекция 5. Понятие производной... 4 5.. Производная... 4 5... Определение производной в точке 4 5... Производная степенной

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

17. Дополнения. Доказательство. Зададимся числом " > 0. Покажем для начала, что существует такое x 0, что. < " при x > x 0. (17.1)

17. Дополнения. Доказательство. Зададимся числом  > 0. Покажем для начала, что существует такое x 0, что. <  при x > x 0. (17.1) 17. Дополнения На этой сокращенной лекции последней лекции первого семестра мы осветим два вопроса, на которые не хватило времени в прошлый раз. Мы видели, что для раскрытия неопределенности вида 0=0,

Подробнее

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми.

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми. Контрольная работа Тема Пределы и производные функций Найти пределы нижеследующих функций одной переменной (без правила Лопиталя) а) б) в) г) Пример а) Решение Определяем вид неопределенности При формальных

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора.

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора. ЛЕКЦИЯ N6 Правило Бернулли-Лопиталя Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Раскрытием неопределенностей

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр,

Вопросы и задачи к экзамену по математическому анализу I семестр, Вопросы и задачи к экзамену по математическому анализу I семестр, - Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

Лекция 2.5. Производные основных элементарных функций

Лекция 2.5. Производные основных элементарных функций Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется МАТЕМАТИЧЕСКИЙ АНАЛИЗ 9 ФУНКЦИЯ -ОЙ ПЕРЕМЕННОЙ. ОСНОВНЫЕ ПОНЯТИЯ И ГРАФИКИ. ОПР Величина называется переменной, если в рамках данной задачи она принимает различные числовые значения. ОПР Величина С называется

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления»

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления» 4 Методические указания к выполнению контрольной работы «Производная и ее приложения Приложения дифференциального исчисления» Производная Приложения дифференциального исчисления Производной функции f (

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности Вопросы и задачи к экзамену по математическому анализу I семестр, - г Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ М и н и с т е р с т в о о б р а з о в а н и я и н а у к и Р о с с и й с к о й Ф е д е р а ц и и Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

Последовательность. n n

Последовательность. n n Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность).

Подробнее

Алгебра и начала анализа, ХI

Алгебра и начала анализа, ХI Алгебра и начала анализа, ХI АЛГЕБРА И НАЧАЛА АНАЛИЗА По Положению о государственной (итоговой) аттестации выпускников XI(XII) классов общеобразовательных учреждений Российской Федерации учащиеся сдают

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 Дифференциальное исчисление функций одной

Подробнее

Вопросы и задачи к экзамену по математическому анализу ( )

Вопросы и задачи к экзамену по математическому анализу ( ) Вопросы и задачи к экзамену по математическому анализу (2013 2014) 29 августа 2013 г. Тема I. Вещественные числа 1. Определения 1.1. Сформулируйте правило сравнения вещественных чисел. Сформулируйте определение:

Подробнее

Лекция Исследование функции и построение ее графика

Лекция Исследование функции и построение ее графика Лекция Исследование функции и построение ее графика Аннотация: Функция исследуется на монотонность, экстремум, выпуклость-вогнутость, на существование асимптот Приводится пример исследования функции, строится

Подробнее

ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ

ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ ОВ Сорокина Учебное пособие для студентов нематематических

Подробнее

Алгебра 10 класс. Тема 1. Тригонометрические функции и преобразования. Основные понятия. Буквой Z обозначается множество целых чисел:

Алгебра 10 класс. Тема 1. Тригонометрические функции и преобразования. Основные понятия. Буквой Z обозначается множество целых чисел: Алгебра 0 класс Тема Тригонометрические функции и преобразования Основные понятия Буквой Z обозначается множество целы чисел: Z {0; ; ; ;} Арксинусом числа а, принадлежащего промежутку [- ; ], называется

Подробнее

ПОДГОТОВКА К ТЕСТИРОВАНИЮ ПО МАТЕМАТИКЕ

ПОДГОТОВКА К ТЕСТИРОВАНИЮ ПО МАТЕМАТИКЕ РОСЖЕЛДОР Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный университет путей сообщения» ФГБОУ ВО РГУПС ЕВ Пиневич, ВА Липович, ИС Стасюк

Подробнее

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики АВ Капусто Минск 016 016 Кафедра высшей

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ Пределы Методические указания

Подробнее

Программа экзамена по математике. Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ

Программа экзамена по математике. Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ Программа экзамена по математике для студентов специальности «Финансы и кредит» (заочная форма обучения) 1 Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ Понятие функции Определение функции,

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Ответы к заданию

Ответы к заданию Ответы к заданию.. понятия одного аргумента.. Основные элементарные.. элементарных функций.4. предела f в точке. х Х Если каждому элементу х из множества Х поставлен в соответствие определенный элемент

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных 1 СА Лавренченко Лекция 10 Исследование функции при помощи производных 1 Исследование функции при помощи первой производной Под интервалом мы будем подразумевать или конечный интервал, или один из следующих

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ.

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Подробнее

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2 Вариант Найти область определения функции : y + Область определения данной функции определяется неравенством Кроме того знаменатель не должен обращаться в нуль Найдём корни знаменателя: Объединяя результаты

Подробнее