ЛЕКЦИЯ 22 Расчет статически неопределимых систем методом сил. 1 Статически неопределимые стержневые системы

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ЛЕКЦИЯ 22 Расчет статически неопределимых систем методом сил. 1 Статически неопределимые стержневые системы"

Транскрипт

1 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ Расчет статически неопределимых систем методом сил 1 Статически неопределимые стержневые системы Стержневой системой называется всякая конструкция, состоящая из элементов, имеющих форму бруса. Примеры стержневых систем показаны на рис. 1 Рис. 1 Стержневая система называется рамой, если ее элементы работают, в основном, на изгиб и кручение. Примеры рам показаны на рис.. Рис. Стержневая система называется статически неопределимой (СН), если реакции ее связей, а следовательно, и ВСФ в элементах системы не могут быть определены из уравнений статического равновесия. Примеры статически неопределимых стержневых систем и рам показаны на рис. 3.

2 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 Рис. 3 Внешние связи. Связи необходимые и дополнительные (лишние) Известно, что внешняя связь это связь, исключающая абсолютное (линейное или угловое) перемещение некоторого сечения. Необходимым числом связей называется их минимальное количество, обеспечивающее кинематическую неизменяемость системы. Отметим, что необходимое число связей всегда равно числу независимых уравнений статического равновесия, которые могут быть составлены для системы внешних сил, действующих на данную конструкцию. Дополнительные связи связи, наложенные на систему сверх необходимого числа. 3 Степень статической неопределимости системы Будем рассматривать только внешним образом статически неопределимые системы (СНС). Для них K = m n, (1) где: K степень статической неопределимости; m число внешних связей; n число необходимых связей.

3 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ Пример: Рис. 4 4 Порядок раскрытия статической неопределимости систем методом сил Очевидно, что реакции дополнительных связей не могут быть найдены из уравнений статического равновесия. Их определяют, записывая дополнительные уравнения, имеющие геометрическую природу. (а) установить степень статической неопределимости Рис. 5 Перечеркнутыми стрелками указаны перемещения, которые ограничены в рассматриваемом сечении из-за наличия опоры данного типа. (б) отбросить дополнительные связи При этом необходимо следить, чтобы система не превратилась в механизм.

4 4 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 Определение система, полученная из исходной путем отбрасывания лишних связей и удаления всех внешних нагрузок, называется основной системой (ОС). Рис. 6 (в) заменить действие отброшенных дополнительных (лишних) связей их реакциями, обозначив эти неизвесные реакции 1,,, k, и построить эквивалентную систему Определение Эквивалентная система (ЭС) это система, получаемая из ОС путем приложения всех внешних сил и реакций всех отброшенных дополнительных связей. Например, используя первую основную систему, получаем ЭСI: Рис. 7 (г) годобрать реакции отброшенных связей таким образом, чтобы выполнялись ограничения на перемещения, или обусловленные Для этого составим уравнения, фиксирующие тот факт, что перемещения точки приложения каждой из дополнительных связей в соответствующем направлении равны нулю. Число таких уравнений всегда равно числу

5 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ отброшенных дополнительных связей (или искомых реакций), следовательно, система уравнений разрешима всегда. Решая полученную систему уравнений, находим 1,,, k. На этом раскрытие статической неопределимости закончено. (д) в дальнейшем рассматриваем статически определимую систему, нагруженную внешними силами, в число которых включены и найденные в п. (г) реакции отброшенных дополнительных связей 5 Методика составления уравнений для определения лишних неизвестных. Вывод канонических уравнений метода сил для нахождения неизвестных реакций лишних связей Рис. 8 Уравнения, составленные по п. (г) решения, записываются в строго определенной, канонической форме. Рассмотрим пример. Здесь Р произвольная плоская система сил, действующих в плоскости конструкции. 1. Установим степень статической неопределимости системы: m = 6, n = 3, К = m n = 3.. Выберем одну из основных систем: Рис. 9

6 6 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 Для дальнейших расчётов выбираем, например, 1-й вариант (ОС1). 3. Строим эквивалентную систему (ЭС), соответствующую выбранной основной. Эквивалентность этой системы и исходной будет обеспечена при таких значениях 1 3, когда линейные и угловые перемещения сечения В будут равны Запишем уравнения, фиксирующие этот факт: f f f гор верт углов В В 1,,3,P 1 0,,,P 0 1,, 3,P 0 В Рис. 10 Перепишем систему (), используя принцип суперпозиции (независимости действия сил), т.е. запишем сумму перемещений, создаваемых каждым из 4-х слагаемых системы нагружения. Очевидно, что искомые перемещения вызваны 4-мя причинами. Это 1,, 3, Р. Тогда () P P P (3) где ik перемещение (линейное или угловое) точки приложения реакции i-той связи вдоль линии ее действия под действием реакции связи k. iр перемещение (линейное или угловое) точки приложения реакции связи i связи вдоль линии ее действия под действием системы внешних сил. Сказанное хорошо иллюстрирует рис. 11.

7 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ Рис. 11 В силу линейной взаимосвязи между усилиями и перемещениями (справедлив закон Гука) можно записать:. ik = ik Хk, (4) где ik коэффициент пропорциональности перемещение точки приложения реакции связи i вдоль линии ее действия под действием единичной по величине силы, совпадающей по направлению и точке приложения с реакцией связи k. Подставляем ik из (4) в (3): P P 3P Система (5) является системой канонических уравнений метода сил. Если конструкция является К раз статически неопределимой, т.е. число лишних связей равно К, то система (5) приобретает вид: (5)

8 8 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ k k k k kk k k k... Замечания 1. В силу теоремы о взаимности перемещений 1P P kp (6) ik = ki. (7). Всегда ik > 0, при i = k. (8) 3. При определении величин ip рационально непосредственное интегрирование с использованием формулы Мора, а ik рационально определять способом Верещагина. 4. Если в результате решения системы (5) получаем i < 0, это значит, что действительное направление реакции i противоположно избранному при построении эквивалентной системы. 5. Для многократно статически неопределимых систем целесообразно решение системы (6) на ЭВМ.

18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Общие понятия и определения

18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Общие понятия и определения Лекция 18 Статически неопределимые системы: рамы и фермы. Метод сил. Канонические уравнения метода сил. Примеры расчета статически неопределимых систем. Учет симметрии. 18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени НЭ Баумана»

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Глава 8 СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 8.1. Шарнирно закрепленное твердое тело на упругих стержнях Постановка задачи. Определить усилия в стержнях статически неопределимой системы, состоящей из шарнирно

Подробнее

Строительная механика 1 часть

Строительная механика 1 часть 1 Строительная механика 1 часть Темы 1.Основные положения. 2.Геометрическая неизменяемость расчётных схем. 3.Построение эпюр усилий 4.Многопролётные шарнирные балки 5.Трёхшарнирные расчётные схемы 6.Замкнутый

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. К. Манжосов РАСЧЕТ СТАТИЧЕСКИ

Подробнее

Расчет статически неопределимой плоской рамы методом сил

Расчет статически неопределимой плоской рамы методом сил МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет статически

Подробнее

Расчет плоской рамы методом сил

Расчет плоской рамы методом сил ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет Расчет плоской рамы методом сил

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 ЛЕКЦИЯ Энергетические методы определения перемещений (продолжение) Теорема о взаимности работ Теорема о взаимности работ применима к системам, для которых

Подробнее

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов.

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов. . РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ Усилия в статически неопределимых фермах как правило определяют методом сил. Последовательность расчета такая же как и для рам.. Степень статической неопределимости

Подробнее

P 1 = = 0 0,1L1 0,3L1 0, 2L2 0,1L

P 1 = = 0 0,1L1 0,3L1 0, 2L2 0,1L Расчёт статически определимой многопролётной балки на неподвижную и подвижную нагрузки Исходные данные: расстояния между опорами L = 5, м L = 6, м L = 7,6м L4 = 4,5м сосредоточенные силы = 4кН = 6 распределённые

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ Учебное пособие по курсу «Механика

Подробнее

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ Министерство путей сообщения Российской федерации Дальневосточный государственный университет путей сообщения Кафедра "Строительная механика" А.В. Хлебородов РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Государственный комитет Российской Федерации по высшему образованию Казанский государственный технологический университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к самостоятельной работе студентов

Подробнее

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы)

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) 1 Классификация внутренних силовых факторов

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА Краткий курс

СТРОИТЕЛЬНАЯ МЕХАНИКА Краткий курс МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ГОРОДСКОГО ХОЗЯЙСТВА ЛНШутенко, ВППустовойтов, НАЗасядько СТРОИТЕЛЬНАЯ МЕХАНИКА Краткий курс РАЗДЕЛ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ

Подробнее

Расчет плоской рамы методом перемещений

Расчет плоской рамы методом перемещений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет плоской

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

Тычина К.А. VII М е т о д с и л

Тычина К.А. VII М е т о д с и л www.tychina.pro Тычина К.А. V М е т о д с и л В в е д е н и е: С помощью уравнений статического равновесия Теоретической механики инженеры научились определять реакции связей в опорах балок и рам и получать

Подробнее

Система сил { } i. Произвольная. система сил. Плоская система сил. Система сходящихся сил. Система параллельных сил. Линейная.

Система сил { } i. Произвольная. система сил. Плоская система сил. Система сходящихся сил. Система параллельных сил. Линейная. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА. СТАТИКА Статика это раздел теоретической механики, в котором излагается общее учение о силах и изучаются условия равновесия материальных тел, находящихся под действием сил Равновесие

Подробнее

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ УЛЬЯНОВСК МИНИСТЕРСТВО ОБЩЕГО И

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

Расчёт статически неопределимой рамы методом перемещений. Задача 5

Расчёт статически неопределимой рамы методом перемещений. Задача 5 варианта, м h,м (1 ригель, стойка) схемы Расчёт статически неопределимой рамы методом перемещений Задача 5 Для рамы (рис. 5) с выбранными по шифру из табл. 5 размерами и нагрузкой требуется выполнить расчет

Подробнее

Рис. 226 Рис Рис. 228 Рис. 229

Рис. 226 Рис Рис. 228 Рис. 229 98 Статически неопределимые системы Раздел 8 a b X a b m Рис. Рис. 7 Пример. Построить эпюры моментов, нормальных и перерезывающих сил в статически неопределимой раме (рис. 8, используя метод сил. В точке

Подробнее

166 Статически неопределимые системы Раздел 8

166 Статически неопределимые системы Раздел 8 166 Статически неопределимые системы Раздел 8 5. Строим эпюры моментов M p и перерезывающих сил Q p n пролетах и консолях (если они есть) балки от действия внешней нагрузки. Каждый пролет представляет

Подробнее

Кафедра «Механика деформируемого твердого тела, основания и фундаменты» А. А. Лахтин ДИНАМИЧЕСКИЙ РАСЧЁТ РАМЫ НА ДЕЙСТВИЕ ВИБРАЦИОННОЙ НАГРУЗКИ

Кафедра «Механика деформируемого твердого тела, основания и фундаменты» А. А. Лахтин ДИНАМИЧЕСКИЙ РАСЧЁТ РАМЫ НА ДЕЙСТВИЕ ВИБРАЦИОННОЙ НАГРУЗКИ Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Механика деформируемого твердого тела, основания и фундаменты» А. А. Лахтин ДИНАМИЧЕСКИЙ

Подробнее

Разработал: д.т.н., проф. Шеин А.И.

Разработал: д.т.н., проф. Шеин А.И. Разработал: д.т.н., проф. Шеин А.И. Все инженерные сооружения требуют предварительного расчета, обеспечивающего надежность и долговечность их эксплуатации. Наука о методах расчета сооружений на прочность,

Подробнее

Г96 Методические указания к выполнению расчетно-графической работы «Расчет рамы методом перемещений» / Сост.: С.В.Гусев. Казань: КГАСУ, с.

Г96 Методические указания к выполнению расчетно-графической работы «Расчет рамы методом перемещений» / Сост.: С.В.Гусев. Казань: КГАСУ, с. УДК 624.04 (075) ББК 38112 Г96 Г96 Методические указания к выполнению расчетно-графической работы «Расчет рамы методом перемещений» / Сост.: С.В.Гусев. Казань: КГАСУ, 2012.-26с. Печатается по решению Редакционно-издательского

Подробнее

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета УДК 624.04 (075) ББК 38.112 Г 96 Г96 Методические указания к выполнению расчетно-графической работы «Расчет рамы методом сил» для студентов обучающихся по направлению 270800.62 "Строительство"/ Сост. С.В.

Подробнее

АНДРЕЙ РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ «РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ» ШИФР: Дано: а= 3 м; Р= 10 кн; q= 2 кн/м; EI=const.

АНДРЕЙ РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ «РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ» ШИФР: Дано: а= 3 м; Р= 10 кн; q= 2 кн/м; EI=const. АНДРЕЙ РАСЧЕТНОГРАФИЧЕСКОЕ ЗАДАНИЕ «РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ» ШИФР: 6 3 3 Дано: а= 3 м; Р= кн; q= 2 кн/м; EI=const. Построить эпюры M,Q,N. 1. Кинематический анализ: W=3DCo=3 14=1

Подробнее

РАСЧЕТ СТЕРЖНЕВОЙ КОНСТРУКЦИИ НА ИЗГИБ И УСТОЙЧИВОСТЬ

РАСЧЕТ СТЕРЖНЕВОЙ КОНСТРУКЦИИ НА ИЗГИБ И УСТОЙЧИВОСТЬ Федеральное агентство по образованию Казанский государственный технологический университет РАСЧЕТ СТЕРЖНЕВОЙ КОНСТРУКЦИИ НА ИЗГИБ И УСТОЙЧИВОСТЬ Методические указания к самостоятельной работе студентов

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики

Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики Модуль М-8. МЕТОД СИЛ.Методические указания Структура изучаемого модуля

Подробнее

Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ»

Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ» Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ» Контрольные задания по дисциплине «Строительная механика» 1 Оглавление Общие

Подробнее

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение)

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) В.Ф. ДЕМЕНКО. МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) 1 Правила знаков при построении эпюр поперечных

Подробнее

СТРОИТЕЛЬСТВО РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ. И.И. Фролова, Т.П. Кормилицина. Учебно-практические пособие

СТРОИТЕЛЬСТВО РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ. И.И. Фролова, Т.П. Кормилицина. Учебно-практические пособие СТРОИТЕЛЬСТВО И.И. Фролова, Т.П. Кормилицина РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ Учебно-практические пособие ISBN 978-5-7264-1133-0 НИУ МГСУ, 2015 Оформление. ООО «Ай Пи Эр Медиа», 2015 Москва 2015 УДК

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

РАБОТА 4 РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАБОТА 4 РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ РАБОТА 4 РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ Задание и исходные данные Схема рамы и числовые данные выбираются соответственно на рис.33 и в табл.7 по заданию преподавателя. Таблица

Подробнее

4. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ ПРИ РАСТЯЖЕНИИ И СЖАТИИ 4.1. Основные сведения о статически неопределимых системах

4. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ ПРИ РАСТЯЖЕНИИ И СЖАТИИ 4.1. Основные сведения о статически неопределимых системах Понятие о статически определимых и неопределимых системах. Порядок решения статически неопределимых задач. Расчет статически неопределимой стержневой системы при растяжении и сжатии (на примере семестрового

Подробнее

Кафедра «Динамика и прочность машин» Малинина Н.А., Малинин Г.В. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ БАЛОК И РАМ В МАТРИЧНОЙ ФОРМЕ

Кафедра «Динамика и прочность машин» Малинина Н.А., Малинин Г.В. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ БАЛОК И РАМ В МАТРИЧНОЙ ФОРМЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ И АВТОМАТИЗАЦИИ ПРОИЗВОДСТВА Кафедра «Динамика и прочность машин» Малинина Н.А., Малинин

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИ- МОЙ СТЕРЖНЕВОЙ СИСТЕМЫ НА ИЗГИБ И УСТОЙЧИВОСТЬ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИ- МОЙ СТЕРЖНЕВОЙ СИСТЕМЫ НА ИЗГИБ И УСТОЙЧИВОСТЬ инистерство образования и науки России Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технологический университет» РАСЧЕТ

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА Краткий курс

СТРОИТЕЛЬНАЯ МЕХАНИКА Краткий курс МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ГОРОДСКОГО ХОЗЯЙСТВА Л.Н.Шутенко, В.П.Пустовойтов, Н.А.Засядько СТРОИТЕЛЬНАЯ МЕХАНИКА Краткий курс РАЗДЕЛ 1 СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ

Подробнее

Исходные данные по предпоследней цифре

Исходные данные по предпоследней цифре Методическое руководство Задание Статически неопределимые системы Работа Для балки, изображенной на рисунке (рис.) требуется: ) найти изгибающий момент на левой опоре (в долях ); ) построить эпюры Q y

Подробнее

Статически неопределимые рамы

Статически неопределимые рамы МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ (государственная академия) Кафедра "Высшая математика и строительная механика" Статически неопределимые рамы Методическое пособие. Пример расчета статически неопределимой

Подробнее

Кафедра «Динамика и прочность машин» Н.А. Малинина, Г.В. Малинин РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

Кафедра «Динамика и прочность машин» Н.А. Малинина, Г.В. Малинин РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ И АВТОМАТИЗАЦИИ ПРОИЗВОДСТВА Кафедра «Динамика и прочность машин» Н.А. Малинина, Г.В. Малинин

Подробнее

Тезисы курса сопротивления материалов Часть 2. wb(x) x L

Тезисы курса сопротивления материалов Часть 2. wb(x) x L Тезисы курса сопротивления материалов Часть Глава 7. Перемещения при изгибе При действии внешних сил балка изменяет кривизну. При этом каждое сечение получает два перемещения: линейное - прогиб и угловое

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

Материалы для подготовки к экзамену по строительной механике на 4 курсе заочной формы обучения по специальности ПГС

Материалы для подготовки к экзамену по строительной механике на 4 курсе заочной формы обучения по специальности ПГС Материалы для подготовки к экзамену по строительной механике на 4 курсе заочной формы обучения по специальности ПГС 1.Перечень вопросов к тестам 1-го уровня. Основные понятия, определения, алгоритмы и

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ И ПОНЯТИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ... 4 1.1. Задачи и методы строительной механики... 4 1.2. Понятие о расчетной схеме сооружения и ее элементах.. 6 1.3.

Подробнее

6.1 Работа силы на перемещении

6.1 Работа силы на перемещении 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ. ТЕОРЕМА ВЗАИМНОСТИ РАБОТ ФОРМУЛА МАКСВЕЛЛА-МОРА 6.1 Работа силы на перемещении Пусть к точке приложена сила F и точка получает перемещение u по направлению действия силы

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА.

СТРОИТЕЛЬНАЯ МЕХАНИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В. К. Манжосов

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

ПРИМЕРЫ ВЫПОЛНЕНИЯ ЗАДАНИЙ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ «ТЕХНИЧЕСКАЯ МЕХАНИКА»

ПРИМЕРЫ ВЫПОЛНЕНИЯ ЗАДАНИЙ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ «ТЕХНИЧЕСКАЯ МЕХАНИКА» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА

СТРОИТЕЛЬНАЯ МЕХАНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СТЕРЖНЕВЫХ СИСТЕМ МЕТОДОМ СИЛ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СТЕРЖНЕВЫХ СИСТЕМ МЕТОДОМ СИЛ Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» А.А. Поляков, В.М. Кольцов РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СТЕРЖНЕВЫХ СИСТЕМ МЕТОДОМ СИЛ Учебное электронное

Подробнее

Часть I. ЛЕКЦИОННЫЙ КУРС

Часть I. ЛЕКЦИОННЫЙ КУРС Часть I. ЛЕКЦИОННЫЙ КУРС 6 Лекция. Основы кинематического анализа в строительной механике. Базовые понятия: изменяемость и неизменяемость систем; диски, связи, степени свободы. Количество связей как критерий

Подробнее

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика»

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика» Вопросы к вступительным экзаменам в аспирантуру по специальности «05.23.17 Строительная механика» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные понятия 1. Задачи сопротивления материалов. Стержень. Основные гипотезы

Подробнее

РАСЧЕТ ПЛОСКИХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАСЧЕТ ПЛОСКИХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ Московский государственный технический университет имени Н.Э Баумана А.Е. Белкин, Н.Л. Нарская РАСЧЕТ ПЛОСКИХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ Рекомендовано Научно-методическим советом МГТУ им. Н.Э. Баумана в качестве

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

РАБОТА 2 РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ФЕРМЫ

РАБОТА 2 РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ФЕРМЫ РАБОТА 2 РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ФЕРМЫ Задание и исходные данные Схема фермы и исходные данные выбираются соответственно на рис25 и в табл по заданию преподавателя Таблица Группа данных I II п/п

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

о МЕТОДЕ РАСЧЕТА НЕРАЗРЕЗНЫХ БАЛОК Канд. техн. наук ЯКУБОВСКИЙ А, Ч., канд. техн. наук, доц. ЯКУБОВСКИЙ Ч. А.

о МЕТОДЕ РАСЧЕТА НЕРАЗРЕЗНЫХ БАЛОК Канд. техн. наук ЯКУБОВСКИЙ А, Ч., канд. техн. наук, доц. ЯКУБОВСКИЙ Ч. А. Металлургия. Металлообработка. Машиностроение УДК 539 о МЕТОДЕ РАСЧЕТА НЕРАЗРЕЗНЫХ БАЛОК Канд. техн. наук ЯКУБОВСКИЙ А, Ч., канд. техн. наук, доц. ЯКУБОВСКИЙ Ч. А. Неразрезными, или многопролетными, называются

Подробнее

Многопролетные балки

Многопролетные балки ТЕТРАДЬ Чернева ИМ Многопролетные балки Метод сил Санкт-Петербург г Чернева ИМ ассистент, доцент кафедры строительной механики ЛИИЖТа, кафедры прочности материалов и конструкций ПГУПС в 96-996гг Оглавление

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ по образовательной программе высшего образования программе подготовки научно-педагогических кадров в аспирантуре ФГБОУ ВО «Орловский государственный университет имени

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Кутовой Л.В., Зинченко Т.П., Овчаренко В.А. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ЧАСТЬ УЧЕБНОЕ ПОСОБИЕ Краматорск 005 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ

Подробнее

Московский государственный технический университет Имени Н.Э. Баумана Учебное пособие Григорьев Ю.В., Бородулина Т.П.

Московский государственный технический университет Имени Н.Э. Баумана Учебное пособие Григорьев Ю.В., Бородулина Т.П. Московский государственный технический университет Имени Н.Э. Баумана Учебное пособие Григорьев Ю.В., Бородулина Т.П. Методические указания по выполнению домашнего задания на тему Вынужденные колебания

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ ÞÒ ÑÅËÈÂÀÍÎÂ ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ à ñ ò ü II УДК 59/6(075) ББК Ж11я7- С91 ÈÇÄÀÒÅËÜÑÒÂÎ ÒÃÒÓ Р е ц е н з е н т ы: Кандидат технических наук, профессор АГ Ткачев Генеральный директор ООО "Тамбов-Эксперт-Наладка"

Подробнее

О РАЗРАБОТКЕ УЧЕБНЫХ КОМПЬЮТЕРНЫХ ПРОГРАММ ДЛЯ РЕШЕНИЯ ЗАДАЧ СТРОИТЕЛЬНОЙ МЕХАНИКИ

О РАЗРАБОТКЕ УЧЕБНЫХ КОМПЬЮТЕРНЫХ ПРОГРАММ ДЛЯ РЕШЕНИЯ ЗАДАЧ СТРОИТЕЛЬНОЙ МЕХАНИКИ Прогнозирование способность предвидеть результаты функционирования образовательной среды. Технология опосредованного управления эффективна, когда она обладает такими свойствами, как целенаправленность

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

F 1, затем F 2 точка C сначала перемещается на величину 11, затем

F 1, затем F 2 точка C сначала перемещается на величину 11, затем равна нулю: W +U = 0. (9) Возможными являются любые перемещения, которым не препятствуют наложенные связи. В линейно деформируемых системах вместо бесконечно малых можно рассматривать малые конечные перемещения.

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Подробнее

I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ

I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ Методы определения усилий от неподвижной нагрузки. Виды нагрузок. Методы определения усилий в статически определимых системах: а) метод сечений, б) метод замены связей.

Подробнее

8. ШПРЕНГЕЛЬНЫЕ ФЕРМЫ

8. ШПРЕНГЕЛЬНЫЕ ФЕРМЫ 8. ШПРЕНГЕЛЬНЫЕ ФЕРМЫ 8.1. Образование шпренгельной фермы Для уменьшения панелей грузового пояса в фермах больших пролетов применяют установку дополнительных ферм - шпренгелей, опирающихся в узлы пояса

Подробнее

РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ ИЛИ СЖАТИИ

РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ ИЛИ СЖАТИИ Министерство образования Российской Федерации Кубанский государственный технологический университет Кафедра сопротивления материалов и строительной механики РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ

Подробнее

САНКТ-ПЕТЕРБУРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Инженерно-строительный факультет

САНКТ-ПЕТЕРБУРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Инженерно-строительный факультет САНКТ-ПЕТЕРБУРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Инженерно-строительный факультет ПРОГРАММА дисциплины СД.02 СТРОИТЕЛЬНАЯ МЕХАНИКА Программа рекомендована кафедрой строительной механики и теории

Подробнее

ОПД.Ф СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к решению задач и выполнению расчетнографических

ОПД.Ф СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к решению задач и выполнению расчетнографических ОГЛАВЛЕНИЕ ОПД.Ф.. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к решению задач и выполнению расчетнографических работ Введение.. Указания к задаче Указания к задаче 7 Указания к задаче 9 Указания к

Подробнее

Оценка трудоемкости метода сил и метода конечных элементов при расчете балок

Оценка трудоемкости метода сил и метода конечных элементов при расчете балок Оценка трудоемкости метода сил и метода конечных элементов при расчете балок # 07, июль 015 Ганыш С. М. 1,* УДК: 539.3 1 Россия, МГТУ им. Н.Э. Баумана Введение Метод сил и метод перемещений являются наиболее

Подробнее

РАСЧЕТ ТРЕХШАРНИРНЫХ АРОК

РАСЧЕТ ТРЕХШАРНИРНЫХ АРОК МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ В. К. Манжосов

Подробнее

Лекция 27 Глава 3. Системы линейных неравенств 3.1. Основные понятия

Лекция 27 Глава 3. Системы линейных неравенств 3.1. Основные понятия Лекция 7 Глава. Системы линейных неравенств.. Основные понятия Системы линейных неравенств применяются для решения различных математических задач. Системой линейных неравенств из с неизвестными система

Подробнее

Р А Б О Ч А Я П Р О Г Р А М М А дисциплины Строительная механика для подготовки специалистов «Промышленное и гражданское строительство»

Р А Б О Ч А Я П Р О Г Р А М М А дисциплины Строительная механика для подготовки специалистов «Промышленное и гражданское строительство» МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Подробнее

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета 1 УДК 624.04 (075) ББК 38.112 Г 96 Г 96 Задания и краткие методические указания к выполнению расчетнографических и курсовой работ по дисциплине «Техническая механика» для студентов направления 230400.62

Подробнее

СБОРНИК ЗАДАЧ И УПРАЖНЕНИЙ ПО СТРОИТЕЛЬНОЙ МЕХАНИКЕ

СБОРНИК ЗАДАЧ И УПРАЖНЕНИЙ ПО СТРОИТЕЛЬНОЙ МЕХАНИКЕ Б.Б. Лампси, Н.Ю. Трянина, С.Г. Юдников, И.В. Половец, А.А. Юлина, Б.Б. Лампси, П.А. Хазов СБОРНИК ЗАДАЧ И УПРАЖНЕНИЙ ПО СТРОИТЕЛЬНОЙ МЕХАНИКЕ Часть II. Статически неопределимые системы Учебное пособие

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» М. Н. Гребенников, А. Г. Дибир, Н. И. Пекельный РАСЧЕТ МНОГОПРОЛЕТНЫХ

Подробнее

Областное государственное бюджетное профессиональное образовательное учреждение «Томский автомобильно-дорожный техникум»

Областное государственное бюджетное профессиональное образовательное учреждение «Томский автомобильно-дорожный техникум» Областное государственное бюджетное профессиональное образовательное учреждение «Томский автомобильно-дорожный техникум» Методические указания по выполнению контрольной работы 1 по учебной дисциплине ОП.0

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

СТАТИЧЕСКИ ОПРЕДЕЛИМАЯ МНОГОПРОЛЕТНАЯ БАЛКА. ЛИНИИ ВЛИЯНИЯ

СТАТИЧЕСКИ ОПРЕДЕЛИМАЯ МНОГОПРОЛЕТНАЯ БАЛКА. ЛИНИИ ВЛИЯНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАНИЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМАЯ МНОГОПРОЛЕТНАЯ

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

5.4. Рама Рама 45

5.4. Рама Рама 45 .4. Рама 4 V V H M x M M(x 1) Q(x 1) N(x 1) 1. 12.667 17.8 6. 12.000 49..201-27.41 2 41.7 42.64 9.000 2.867.7 11.1-6.008-46.848 4.426 82.74 0.4 9.777 7.67 4.182-4.8-72.66 4 12.8 28.167 16.70 2.778 20.000-28.889-1.6-21.04

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

Министерство образования и науки Российской Федерации. Ю.А. Федоров, И.Т. Роменская, В.И. Караваев СТРОИТЕЛЬНАЯ МЕХАНИКА И МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ

Министерство образования и науки Российской Федерации. Ю.А. Федоров, И.Т. Роменская, В.И. Караваев СТРОИТЕЛЬНАЯ МЕХАНИКА И МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный архитектурно-строительный

Подробнее

n = или k = k n называется единичным вектором

n = или k = k n называется единичным вектором Лекция 5 Тема: Кривизна и кручение кривой Репер Френе План лекции Кривизна кривой Кручение кривой Репер Френе Формулы Френе Натуральные уравнения кривой Кривизна кривой Соприкасающаяся плоскость Пусть

Подробнее