17-е занятие. Норма-супремум. Равномерная сходимость функциональных послед. Матем. анализ, прикл. матем., 3-й семестр

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "17-е занятие. Норма-супремум. Равномерная сходимость функциональных послед. Матем. анализ, прикл. матем., 3-й семестр"

Транскрипт

1 17-е занятие. Норма-супремум. Равномерная сходимость функциональных послед. Матем. анализ, прикл. матем., 3-й семестр Норма-супремум функции f: X C определяется следующей формулой: f = sup f(). X Для краткости, будем называть супремум-норму просто нормой и обозначать через f. Отметим два важных свойства: 1) f ε X f() ε; 2) X f f(). Найти нормы следующих функций: A1 f() = ln, 1. A2 f() = , R. A3 f() = arctg, R. A4 f() = π 2 arctg(1 + 2 ), R. Д 2741 Пусть функции f n (n N) и f определены на X. Доказать, что следующие условия равносильны: (a) ε > 0 N n > N X f n () f() < ε; (b) f n f 0 при n. Напомним важный факт, который был доказан на лекции: T1 Если f n X f и все функции fn непрерывны на X, то функция f тоже непрерывна на X. Исследовать последовательности на равномерную сходимость в указанных промежутках: sin n Д 2755а f n () = n ; R. Д 2755б f n () = sin n ; R. A5 f n () = ; 0. + n Д 2746 f n () = n ; а) ; б) 0 1. Д 2747 f n () = n n+1 ; 0 1. ( ) Д 2754 f n () = n + 1 n ; 0 < < +.

2 Домашнее задание 17 Матем. анализ, прикл. матем., 3-й семестр Найти нормы следующих функций: Д 1437 f() = e, R. Д 1441 f() = sin 2, R. Д 1445 f() = 2, [ 1, 5]. Д 1449 f() = 5 4, [ 1, 1]. Д 1448 f() = + 1, [0.01, 100]. Д 1452 f() = , (0, + ). Исследовать последовательности на равномерную сходимость в указанных промежутках: Д 2749 f n () = 1 + n ; > 0. n Д 2750 f n () = ; n + Д 2752аб f n () = 2n 1 + n 2 2; а) 0 1; б) 1 < < +. Д 2753 f n () = n2; R. Д 2756а f n () = arctg n; > 0. Д 2756б f n () = arctg n; > 0. (Этот пример чуть сложнее других.) Д 2762 f n () = n 1 + n ; 0 2. Дополнительные задания A1 Пусть α, β R, α < β. Найти sup{ : [α, β]}. A2 Пусть f n () = a n,0 + a n, a n,d d и g() = b 0 + b b d d многочлены степени не выше d, причём a n,k b k для каждого k (0 k d). [α,β] Доказать, что f n g на любом конечном сегменте [α, β] Д 2765 Пусть функция f() имеет непрерывную производную f () в интервале (a, b) и f n () = n f + 1 ) ) ( ( f(). Доказать, что f n () f () n на сегменте [α, β], где a < α < β < b.

3 Конспект 17-го занятия. Норма-супремум. Равномерная сходимость функциональных последовательностей Матем. анализ, прикл. матем., 3-й семестр Норма-супремум функции f: X C определяется следующей формулой: f = sup f(). X Для краткости, будем называть норму-супремум просто нормой и обозначать через f. Отметим два важных свойства этой нормы: 1) f ε X f() ε; 2) X f f(). Для краткости, будем называть супремум-норму просто нормой и обозначать через f. Найти нормы следующих функций: A1 f() = ln, 1. Решение. Заметим, что f() 0 при 1. Поэтому f = sup 0 f(). Находим производную: f () = ln 2 = 2 ln 2. Отсюда видно, что e 2 точка максимума, и f = f(e 2 ) = 2 e. A2 f() = , R. Решение. Заметим, что f() 0 при 0 и f( ) = f() при 0. Поэтому f = sup f(). 0 Найдём производную функции f: f () = 2(1 + 2 ) 4 2 ) (1 + 2 ) 2 = 2(1 )(1 + ) (1 + 2 ) 2. Отсюда понятно, что максимум достигается при = 1: f = f(1) = 2 2 = 1.

4 Другой способ решения. С одной стороны, из неравенства ( 1) 2 0 следует, что , поэтому f 1. С другой стороны, f(1) = 1, поэтому f 1. Поэтому f = 1. При этом способе решения точку = 1 нужно угадать. A3 f() = arctg, R. Решение. Первый способ. Известно, что множество значений arctg есть ( π/2, π/2). Отсюда f = π/2. Второй способ. Функция нечётная, поэтому f = sup 0 arctg = sup arctg. 0 Поскольку arctg возрастает, то f = lim + arctg = π 2. A4 f() = π 2 arctg(1 + 2 ), R. Решение. Сначала выведем формулу для π 2 arctg a, где a 0. Поскольку tg(π/2 arctg a) = ctg(arctg a) = 1/a и π/2 arctg a ( π/2, π/2), то Возвращаемся к нашей задаче: π 2 arctg a = arctg 1 a f() = arctg (a 0). Функция чётная, при 0 убывает. Поэтому f = f(0) = π 4. Д 2741 Пусть функции f n (n N) и f определены на X. Доказать, что следующие условия равносильны: (a) ε > 0 N n > N X f n () f() < ε; (b) f n f 0 при n. Решение. Распишем условие (b): ε > 0 N n > N f n f < ε. Понятно, что последнее строгое неравенство можно заменить нестрогим. По свойства супремума, неравенство g ε равносильно тому, что g() ε для всех из X. Таким образом, условие (b) равносильно следующему: ε > 0 N n > N X f n f ε.

5 Понятно, что последнее нестрогое неравенство можно заменить на строгое. Полученное соотношение совпадает с (a). Напомним важный факт, который был доказан на лекции: T1 Если f n X f и все функции fn непрерывны на X, то функция f тоже непрерывна на X. Исследование функциональной последовательности на равномерную сходимость Схема исследования ф. п. на равномерную сходимость: 1. Мысленно зафиксировать произвольную точку и перейти к пределу при n. Предельную величину (которая может зависеть от ) обозначить через g(). Это поточечный предел. Если нет поточечной сходимости (не существует поточечный предел), то нет и равномерной сходимости. 2. Рассмотреть функцию r n () = f n () g(). Найти r n. Для этого мысленно зафиксировать произвольное n и найти супремум величины r n (), когда пробегает X. 3. Выяснить, стремится ли r n к 0 при n. sin n Д 2755а f n () = n ; R. Решение. Сначала мысленно фиксируем произвольную точку и переходим к пределу при n. Числитель ограничен, поэтому предел равен 0. Предельная функция g тождественный нуль: g 0, r n = f n g = f n. Сходится равномерно. f n = sup R sin n n Д 2755б f n () = sin n ; R. = 1 n 0. Решение. f n () g() 0 при любом из R. Чтобы исследовать на равномерную сходимость, найдём r n = f n g = f n. Заметим, что f n () 1 при всех из R и f n () = 1 при = nπ 2. Поэтому f n = 1, сходится неравномерно. A5 f n () =, 0. + n

6 Решение. f n () 0 при любом 0. Чтобы исследовать на равномерную сходимость, рассмотрим f n = f n 0. 1-й способ. Вычислив производную или представив f n в виде f n () = + n n + n = 1 n + n, легко показать, что f n возрастает. Поэтому f n = f n (+ ) = 1. Сходится неравномерно. 2-й способ. f n f n (n) = 1 2. Сходится неравномерно. Д 2746 f n () = n ; а) ; б) 0 1. Решение. а) Поскольку 0 1/2, то n 0. Таким образом, предельная функция g есть тождественный нуль. Чтобы исследовать на равномерную сходимость, находим норму разности f n g : f n g = f n = f n (1/2) = 1 [0,1/2] 0 = f 0. 2n б) Сначала исследуем на поточечную сходимость: n 0 при 0 < 1, n 1 при = 1. Предельная функция: { 0, 0 < 1; g() = 1, = 1. Чтобы исследовать на равномерную сходимость, можно найти норму разности: f n g = sup n = <1 Другой способ: функции f n равномерно непрерывны на [0, 1], а функция g разрывна. Поэтому равномерной сходимости быть не может. Д 2747 f n () = n n+1 ; 0 1. Решение. Сначала исследуем на поточечную сходимость: f n () 0 при 0 < 1, f n () = 0 0 при = 1. Таким образом, предельная функция нулевая. Чтобы найти f n, используем производную: ( ) n 1 f n() = n n 1 (n + 1) n = (n + 1) n 1 n + 1. Отсюда ( ) n 1 f n = f n n + 1 = ( ) n ( n 1 1 n 1 ) ( = 1 2 ) n n + 1 n + 1 n n + 1.

7 Из второго замечательного предела следует, что первый сомножитель стремится к e 2. Поэтому f n 0, сходится неравномерно. ( Д 2754 f n () = n + 1 n ) ; 0 < < +. Решение. Сначала найдём поточечный предел ( фиксировано, n ): f n () = n Рассмотрим r n (), где r n () = f n () g(): 1 r n () = + 1 n n = 2 ( + 1 n + ) = = 1/n 2 ( + 1 n + ) 2. Полученная функция положительна и убывает. Сходится неравномерно. r n = lim 0 r n () = +.

18-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр

18-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр 8-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр Исследовать следующие ряды на равномерную сходимость с помощью определения: Д 767

Подробнее

22-е занятие. Дифференцирование СИЗП. Равномерная сходимость НИЗП Матем. анализ, прикл. матем., 3-й семестр

22-е занятие. Дифференцирование СИЗП. Равномерная сходимость НИЗП Матем. анализ, прикл. матем., 3-й семестр 22-е занятие. Дифференцирование СИЗП. Равномерная сходимость НИЗП Матем. анализ, прикл. матем., 3-й семестр ψ(α) d f(, α) = f(ψ(α), α)ψ (α) f(ϕ(α), α)ϕ (α) + dα ϕ(α) ψ(α) ϕ(α) f α(, α). 378а Найти F (α):

Подробнее

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих Лекция НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА Определение и сходимость несобственных интегралов, зависящих от параметра Признаки равномерной сходимости несобственных интегралов, зависящих от параметра

Подробнее

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр 9-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр Необх. усл. равномерной сходимости функц. ряда f x): f 0. A Исследовать функ. ряд на сх-ть:

Подробнее

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр -е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: ( 89 ( ) n n (n!) ) p (n + )! n= Ряд Тейлора f(x)

Подробнее

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики Учебно-методическое пособие для студентов факультета прикладной математики и информатики

Подробнее

16. Равномерная сходимость последовательностей и рядов

16. Равномерная сходимость последовательностей и рядов 16. Равномерная сходимость последовательностей и рядов 16.1. Рассмотрим произвольное множество X и последовательность функций f, определенных на X. Говорят, что последовательность f сходится поточечно

Подробнее

16-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр

16-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр стр. из 9 6-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр A Разложить функцию ln z + 2 z 3 в ряд Лорана в окрестности точки. Корни и кратности

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

Т. И. Коршикова, Ю.А. Кирютенко. Несобственные интегралы, зависящие от параметра (Методическое пособие по практическим занятиям)

Т. И. Коршикова, Ю.А. Кирютенко. Несобственные интегралы, зависящие от параметра (Методическое пособие по практическим занятиям) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Т. И. Коршикова,

Подробнее

Вопросы и задачи к экзамену по математическому анализу ( )

Вопросы и задачи к экзамену по математическому анализу ( ) Вопросы и задачи к экзамену по математическому анализу (2013 2014) 29 августа 2013 г. Тема I. Вещественные числа 1. Определения 1.1. Сформулируйте правило сравнения вещественных чисел. Сформулируйте определение:

Подробнее

Определение 1. Степенным рядом называется функциональный ряд вида

Определение 1. Степенным рядом называется функциональный ряд вида . Радиус сходимости Определение. Степенным рядом называется функциональный ряд вида c 0 + c (t a) + c 2 (t a) 2 + + c (t a) + = c (t a), () где c 0, c, c 2,..., c,... C называются коэффициентами степенного

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 5 ПРЕДЕЛЬНЫЙ ПЕРЕХОД ПОД ЗНАКОМ ИНТЕГРАЛА ЛЕБЕГА

ЛАБОРАТОРНАЯ РАБОТА 5 ПРЕДЕЛЬНЫЙ ПЕРЕХОД ПОД ЗНАКОМ ИНТЕГРАЛА ЛЕБЕГА ЛАБОРАТОРНАЯ РАБОТА 5 ПРЕДЕЛЬНЫЙ ПЕРЕХОД ПОД ЗНАКОМ ИНТЕГРАЛА ЛЕБЕГА I. О с н о в н ы е п о н я т и я и т е о р е м ы Пусть X множество, -алгебра подмножеств множества X и на задана -аддитивная полная

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

Курс лекций. Министерство образования и науки Российской Федерации

Курс лекций. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Подробнее

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр -е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f()

Подробнее

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 1 Определения Сформулируйте определение: 2 ноября 2013 г. 1. ограниченного

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Лекция 7-8. Замкнутые множества и непрерывные функции. 1 Предельные точки.

Лекция 7-8. Замкнутые множества и непрерывные функции. 1 Предельные точки. Лекция 7-8. Замкнутые множества и непрерывные функции. 1 Предельные точки. Определение 1 Предельная точка для множества - это такая точка a, к которой сходится некоторая последовательность точек множества,

Подробнее

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1)

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1) 1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения (2006-2007, сем.1 1. Сформулируйте определение ограниченного множества вещественных чисел. 2. Сформулируйте определение

Подробнее

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ. Учебное пособие

В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ. Учебное пособие МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ Учебное пособие Москва 05 Предисловие

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

УДК 517(075.8) ББК ISBN

УДК 517(075.8) ББК ISBN Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯНКИ КУПАЛЫ» В.Н. Горбузов МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРОВ Учебное

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Глава ПОСЛЕДОВАТЕЛЬНОСТИ ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Функция, определенная на множестве натуральных чисел N и принимающая числовые значения, называется числовой последовательностью или просто последовательностью

Подробнее

Лекция 7 СЛАБАЯ И СИЛЬНАЯ ПРОИЗВОДНЫЕ. 1. Слабая производная

Лекция 7 СЛАБАЯ И СИЛЬНАЯ ПРОИЗВОДНЫЕ. 1. Слабая производная Лекция 7 СЛАБАЯ И СИЛЬНАЯ ПРОИЗВОДНЫЕ 1. Слабая производная Определение 1. Функция v(x) L p loc () называется слабой производной x α функции u(x) L p loc () и пишем v(x) = α u(x), если для всякой функции

Подробнее

Филиал в г. Домодедово. МАТЕМАТИЧЕСКИЙ АНАЛИЗ (часть 1) Михин М.Н. Методические указания по подготовке к итоговой контрольной работе и экзамену

Филиал в г. Домодедово. МАТЕМАТИЧЕСКИЙ АНАЛИЗ (часть 1) Михин М.Н. Методические указания по подготовке к итоговой контрольной работе и экзамену МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ» (РГГУ) Филиал в г Домодедово

Подробнее

Лекция Аналитические функции и их свойства 1 Напоминание

Лекция Аналитические функции и их свойства 1 Напоминание Лекция 3-18. Аналитические функции и их свойства 1 Напоминание Определение 1 Радиусом сходимости степенного ряда an z n (1) называется такое R, что вне круга радиуса R с центром в нуле ряд расходится,

Подробнее

Лекция 8. Слабая и сильная производные

Лекция 8. Слабая и сильная производные Лекция 8. Слабая и сильная производные Корпусов Максим Олегович, Панин Александр Анатольевич Курс лекций по линейному функциональному анализу 9 апреля 2012 г. Определение слабой производной Определение

Подробнее

5. Еще о пределах; ряды

5. Еще о пределах; ряды 5. Еще о пределах; ряды Докажем сначала предложение, на которое нам не хватило времени на прошлой лекции. Предложение 5.. Для всякого b > 0 имеем lim n (ln n=n b ) = 0. (Переход к произвольному основанию

Подробнее

Равномерная непрерывность функций одной переменной.

Равномерная непрерывность функций одной переменной. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов, Н.Т. Левашова, Н.Е. Шапкина Равномерная непрерывность функций одной переменной.

Подробнее

11. Производная (продолжение); непрерывные функции

11. Производная (продолжение); непрерывные функции 11. Производная (продолжение); непрерывные функции На прошлой лекции мы вывели правило дифференцирования произведения функций; сейчас мы разберемся и с дифференцированием частного. Заметим для начала,

Подробнее

24-е занятие. Эйлеровы интегралы (функции Γ и B) Матем. анализ, прикл. матем., 3-й семестр

24-е занятие. Эйлеровы интегралы (функции Γ и B) Матем. анализ, прикл. матем., 3-й семестр 24-е занятие Эйлеровы интегралы (функции Γ и B) Матем анализ, прикл матем, 3-й семестр Определения гамма-функции и бета-функции: Γ(x) = t x 1 e t dt B(x, y) = t x 1 (1 t) y 1 dt Д 3841 Доказать, что функция

Подробнее

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Лекция 1 ТЕОРИЯ МЕРЫ ЛЕБЕГА ИЗ R Необходимость расширения понятия интеграла.

Лекция 1 ТЕОРИЯ МЕРЫ ЛЕБЕГА ИЗ R Необходимость расширения понятия интеграла. Лекция 1 ТЕОРИЯ МЕРЫ ЛЕБЕГА ИЗ R 2. 1. Необходимость расширения понятия интеграла. Сначала обсудим построение интеграла Римана. Пусть функция f(x) определена на собственном отрезке [a, b]. Определим разбиение

Подробнее

Основные определения, формулы и теоремы

Основные определения, формулы и теоремы Основные определения, формулы и теоремы Ряды 1. Супремум и инфинум. Наименьшее число, ограничивающее сверху некоторое множество чисел называется точной верхней гранью или супремумом этого множества. Двойственным

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1)

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1) 8. Степенные ряды 8.. Функциональный ряд вида c n (z ) n, (8.) n= где c n числовая последовательность, R фиксированное число, а z R, называют степенным рядом с коэффициентами c n. Выполнив замену переменных

Подробнее

Ряды аналитических функций

Ряды аналитических функций Лекция 6 Ряды аналитических функций 6.1 Функциональные последовательности Пусть D C и f n : D C. Последовательность функций {f n } сходится поточечно (converges pointwise) к функции f : D C если для каждого

Подробнее

Математический анализ Лекция 5. Математический анализ, Лекция 5 1 / 16

Математический анализ Лекция 5. Математический анализ, Лекция 5 1 / 16 Математический анализ Лекция 5 Математический анализ, Лекция 5 1 / 16 Общие свойства пределов Математический анализ, Лекция 5 2 / 16 Общие свойства пределов Теорема (локальная ограниченность функции) Математический

Подробнее

Лекция 1 ТЕОРИЯ МЕРЫ ЛЕБЕГА МНОЖЕСТВ ИЗ R Необходимость расширения понятия интеграла

Лекция 1 ТЕОРИЯ МЕРЫ ЛЕБЕГА МНОЖЕСТВ ИЗ R Необходимость расширения понятия интеграла Лекция 1 ТЕОРИЯ МЕРЫ ЛЕБЕГА МНОЖЕСТВ ИЗ R 2 1. Необходимость расширения понятия интеграла Сначала обсудим построение интеграла Римана. Пусть функция f(x) задана на собственном отрезке [a, b]. Определим

Подробнее

. Преобразуем функцию:, если x

. Преобразуем функцию:, если x Вариант Найти область определения функции : + + + Неравенство + выполняется всегда Поэтому область определения данной функции определяется следующими неравенствами:, те, и, те Решением системы этих неравенств

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ Пределы Методические указания

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр,

Вопросы и задачи к экзамену по математическому анализу I семестр, Вопросы и задачи к экзамену по математическому анализу I семестр, - Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

О формулах суммирования и интерполяции

О формулах суммирования и интерполяции О формулах суммирования и интерполяции А В Устинов УДК 51117 1 Введение Известно, что числа Бернулли B n и полиномы Бернулли B n x) возникают в самых разных вопросах теории чисел и приближенного анализа

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

Практикум: «Формула Тейлора». Если функция f (x)

Практикум: «Формула Тейлора». Если функция f (x) Практикум: «Формула Тейлора» Если функция f () имеет производные до (п +)-го порядка включительно в интервале ( 0, 0 ), 0, то для всех х из этого интервала справедлива формула Тейлора (порядка п) ( ) f

Подробнее

1. БИЛЕТ Сформулировать понятие точной верхней и точной нижней Сформулировать понятие окрестности точки и свойства окрестностей

1. БИЛЕТ Сформулировать понятие точной верхней и точной нижней Сформулировать понятие окрестности точки и свойства окрестностей 1. БИЛЕТ 1.1. Сформулировать понятие точной верхней и точной нижней границ числового множества. 1.2. Сформулировать понятие окрестности точки и свойства окрестностей фиксированной точки. 1.3. Сформулировать

Подробнее

3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций

3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций 3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций Рассмотрим два знака менительно к несобственным интегралом с бесконечным верхним пределом. Аналогичные знаки имеют

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности Вопросы и задачи к экзамену по математическому анализу I семестр, - г Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

Интегралы и дифференциальные уравнения. Лекции 9-10

Интегралы и дифференциальные уравнения. Лекции 9-10 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекции 9- Признаки сходимости

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

, а всю числовую последовательность - y

, а всю числовую последовательность - y Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности

Подробнее

Методические указания по подготовке к экзамену по математическому анализу

Методические указания по подготовке к экзамену по математическому анализу Министерство образования Российской федерации Ярославский государственный университет им. П.Г. Демидова Кафедра дискретного анализа Методические указания по подготовке к экзамену по математическому анализу

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

4. Функциональные ряды, область сходимости

4. Функциональные ряды, область сходимости 4. Функциональные ряды, область сходимости Областью сходимости функционального ряда () называется множество значений аргумента, для которых этот ряд сходится. Функция (2) называется частичной суммой ряда;

Подробнее

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции.

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции. Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C -гладкие функции. Определение 1 Функция называется выпуклой (вогнутой), если ее надграфик (подграфик) выпуклая область. Пример 1 x

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Подробнее

Лабораторная работа 5 Предел последовательности: определение, свойства

Лабораторная работа 5 Предел последовательности: определение, свойства Лабораторная работа 5 Предел последовательности: определение, свойства Необходимые понятия и теоремы: определение числовой последовательности, ограниченные и неограниченные последовательности, монотонные

Подробнее

10. Еще о рядах; предел функции

10. Еще о рядах; предел функции 10. Еще о рядах; предел функции До сих пор мы знали только один признак сходимости рядов, применимый не только к рядам с положительными членами, признак абсолютной сходимости. Этот признак, однако, далеко

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

Лекция Несобственные интегралы

Лекция Несобственные интегралы Лекция..9. Несобственные интегралы Аннотация: Рассматриваются несобственные интегралы первого и второго рода. Вводится понятие главного значения несобственного интеграла. Определенный интеграл был введен

Подробнее

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы 1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. 1.1 Теорема о промежуточных значениях Теорема 1. (Больцано-Коши) Пусть функция f непрерывна на отрезке [a, b], причем f(a) f(b). Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ (a, b), что f(γ) = C. Доказательство. Пусть, например, f(a) = A < B = f(b) и A < C < B. Функция g(x) = f(x) C, очевидно, непрерывна на [a, b]. Кроме того, g(a) < 0, g(b) > 0. Для доказательства теоремы достаточно показать, что существует такая точка γ (a, b), что g(γ) = 0. Разделим отрезок [a, b] точкой x 0 на два равных по длине отрезка, тогда либо g(x 0 ) = 0 и, значит, искомая точка γ = x 0 найдена, либо g(x 0 ) 0 и тогда на концах одного из полученных промежутков функция g принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом - больше. Обозначим этот отрезок [a 1, b 1 ] и разделим его снова на два равных по длине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке γ, в которой g(γ) = 0, либо получим последовательность вложенных отрезков [a n, b n ] по длине стремящихся к нулю и таких, что g(a n ) < 0 < g(b n ) (1) Пусть γ - общая точка всех отрезков [a n, b n ], n = 1, 2,... Тогда γ = lim a n = lim b n. Поэтому, в силу непрерывности функции g Из (1) находим, что g(γ) = lim g(a n ) = lim g(b n ) (2) Из (2) и (3) следует, что g(γ) = 0. lim g(a n ) 0 lim g(b n ) (3) Следствие 1. Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль. 1.2 Первая и вторая теоремы Вейерштрасса Будем говорить, что функция f, определенная на множестве E достигает на нем своей верхней (нижней) границы β = sup E f (α = inf E f), если существует такая точка x 0 E, что f(x 0 ) = β (f(x 0 ) = α). 1

Подробнее

Тема 1 = (закрепление = и , сдача ДР = ) Функция. График.

Тема 1 = (закрепление = и , сдача ДР = ) Функция. График. Функция. График. Тема = 0.09.0 (закрепление = 07.09.0 и 08.09.0, сдача ДР = 4.09.0). Преобразования графиков (?) (Правила преобразований [?, стр. 4 6], примеры 4 [?, 6 0]) а) линейные функции 237 (237,

Подробнее

e (x α)2 dx (1) Решение. Заметим, что при фиксированном α R данный интеграл сходится e (x α)2 dx ε

e (x α)2 dx (1) Решение. Заметим, что при фиксированном α R данный интеграл сходится e (x α)2 dx ε МАТЕМАТИЧЕСКИЙ АНАЛИЗ Ориентировочный план семинаров, 4 семестр, 213 1. Интегралы, зависящие от параметра. 1.1. Понятие равномерной интегрируемости параметризованного семейства функций. Критерий Коши Больцано

Подробнее

ЗАДАЧИ ПО ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ

ЗАДАЧИ ПО ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ПЕТРОЗАВОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Е.

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ

Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ 28.1. Пространства D, D основных и обобщенных функций Понятие обобщенной функции обобщает классическое понятие функции и дает возможность выразить в математической форме такие

Подробнее

19-е занятие. Вычисление действительных интегралов с помощью вычетов Матем. анализ, прикл. матем., 4-й семестр

19-е занятие. Вычисление действительных интегралов с помощью вычетов Матем. анализ, прикл. матем., 4-й семестр стр. из 9-е занятие. Вычисление действительных интегралов с помощью вычетов Матем. анализ, прикл. матем., 4-й семестр Найти следующие тригонометрические интегралы с помощью вычетов: A π + cos ϕ. A π 3

Подробнее

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1 РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ Найти область определения D и множество значений Е функции y Р е ш е н и е Функция y определена если те если Поэтому областью определения функции является множество f ; D R Поскольку

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды Числовые и функциональные ряды. Числовые ряды: основные понятия и свойства.. Определение числового ряда и его суммы. Пусть задана бесконечная последовательность чисел ) u, u, K, u,k. (.) (Напомним, что

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки:

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: 4 Сходимость знакопеременных рядов Определение 4 Ряд a с членами произвольных знаков называют знакопеременным Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: a

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

9. Некоторые следствия из свойств полноты

9. Некоторые следствия из свойств полноты 9. Некоторые следствия из свойств полноты Начнем с понятия, которое нам уже знакомо (как минимум в примерах). Речь идет о понятии подпоследовтаельности. Именно, пусть у нас есть последовательность {x n

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

(1=n; 1 1=n), и конечного подпокрытия из этого покрытия не выберешь. Приведем теперь позитивный пример.

(1=n; 1 1=n), и конечного подпокрытия из этого покрытия не выберешь. Приведем теперь позитивный пример. 21. Компактность Компактность чрезвычайно важное техническое понятие топологии и анализа. Начнем с определения. Определение 21.1. Топологическое пространство X называется компактным, если оно обладает

Подробнее

ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега. 1. Типы сходимости функциональных последовательностей

ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега. 1. Типы сходимости функциональных последовательностей ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега 1. Типы сходимости функциональных последовательностей На лекции 3 было отмечено, что имеются следующие виды сходимости функциональных последовательностей:

Подробнее

2. Сформулируйте определение того, что предел (по Коши) функции f(x) не равен + 3. Вычислите предел, не используя правила Лопиталя: lim

2. Сформулируйте определение того, что предел (по Коши) функции f(x) не равен + 3. Вычислите предел, не используя правила Лопиталя: lim Билет 1 1 Сформулируйте определение того, что предел (по Коши) функции f(x) равен + при x + Сформулируйте и докажите теорему о пределе произведения двух функций 2 Сформулируйте определение того, что предел

Подробнее

4. ЛЕКЦИЯ 4. НЕПРЕРЫВНЫЕ ФУНКЦИИ И ОБРАТНАЯ ФУНКЦИЯ. 3

4. ЛЕКЦИЯ 4. НЕПРЕРЫВНЫЕ ФУНКЦИИ И ОБРАТНАЯ ФУНКЦИЯ. 3 MA ksm-n4a-непрерывные функции 4. ЛЕКЦИЯ 4. НЕПРЕРЫВНЫЕ ФУНКЦИИ И ОБРАТНАЯ ФУНКЦИЯ. 3 4.. Непрерывные функции одной переменной. 3 4... Непрерывность функции в точке. 3 4... Точки разрыва, устранимые 9

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

( ) ( ) ( ) ( ) ϕ x называется. ϕ называется финитной, δ примет следую- ε, то предельная плотность ( x) δ нельзя восстановить массу при помощи

( ) ( ) ( ) ( ) ϕ x называется. ϕ называется финитной, δ примет следую- ε, то предельная плотность ( x) δ нельзя восстановить массу при помощи Лекция 6 ОБОБЩЕННЫЕ ФУНКЦИИ Общие понятия Пространства основных и обобщенных функций 3 Операции над обобщенными функциями Общие понятия Понятие обобщенной функции было вызвано не стремлением к обобщениям

Подробнее

13. Экспонента и логарифм

13. Экспонента и логарифм 13. Экспонента и логарифм Для завершения доказательства предложения 12.8 нам остается дать одно определение и доказать одно предложение. Определение 13.1. Ряд a i называется абсолютно сходящимся, если

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Лекция 7. Несобственные интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла -го рода. Критерий Коши. Признаки

Подробнее

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ М и н и с т е р с т в о о б р а з о в а н и я и н а у к и Р о с с и й с к о й Ф е д е р а ц и и Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им МВ Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА МАТЕМАТИКИ НТ Левашова, НЕ Шапкина НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ Пособие для студентов II курса

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2 Вариант Найти область определения функции : y + Область определения данной функции определяется неравенством Кроме того знаменатель не должен обращаться в нуль Найдём корни знаменателя: Объединяя результаты

Подробнее

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие Российский Университет Дружбы Народов Марченко В. В., Сорокина М. В. Числовые ряды Учебно-методическое пособие Москва 205 Аннотация Учебное пособие знакомит студентов с основными понятиями, методами доказательств

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее