Последовательность. n n

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Последовательность. n n"

Транскрипт

1 Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность). Под последовательностью можно также понимать функцию, заданную на множестве натуральных чисел. = f() Число общий или -ный член последовательности. Способы задания последовательности. Наиболее частый способ задания последовательности формулой общего члена, которая позволяет вычислить любой член последовательности по его номеру. Например., y, z Возможно также рекуррентное задание последовательности, когда следующий член последовательности задается на основании предыдущего. = f( - ) Так, например, можно задать арифметическую и геометрическую прогрессию. Определение. Последовательность { } называется ограниченной, если существует такое число M >, что для любого N выполняется неравенство M. В противном случае последовательность называется неограниченной. Определение. Последовательность { } называется возрастающей (неубывающей), если для любого выполняется неравенство + > ( + ). Аналогично определяется убывающая (невозрастающая) последовательность. Неубывающие и невозрастающие последовательности называют монотонными последовательностями. Теорема (Вейерштрасса). Всякая монотонная ограниченная последовательность имеет предел. Предел числовой последовательности. Определение. Число a называется пределом последовательности { }, если для люблого положительного числа ε найдется такое натуральное число N, что при всех > N выполняется неравенство a. В этом случае записывают a или и говорят, что последовательность { }(или переменная величина ) имеет предел равный числу a, или стремится к а. С помощью кванторов это определение можно записать так: N : N a Геометрический смысл предела последовательности.

2 Из неравенства a a a, что означает, что элемент находится в ε окрестности точки а. Поэтому геометрически определение последовательности можно сформулировать: число а называется пределом последовательности { }, если для любой ε окрестности точки а найдется натуральное число N, что все значения, для которых > N, попадут в ε окрестность точки а. Предел функции. Определение. Число А называется пределом функции f в точке ( ), если она определена на некоторой окрестности точки, за исключением быть может самой точки, если для любого положительного числа ε найдется такое положительное число δ, что для всех, удовлетворяющих неравенству выполняется неравенство f A. Записывают f A Короткая запись этого определения. : f. A Геометрический смысл определения предела A f. Если для любой ε окрестности точки А найдется такая δ окрестность точки, что для всех из этой δ окрестности соответствующие значения функции f() лежат в ε окрестности точки А. Определение. Пусть функция y = f() определена на промежутке (- ; + ). Число А называется пределом функции f() при, если для любого положительного числа ε существует такое число M = M(ε) >, что при всех, удовлетворяющих неравенству M выполняется неравенство f A. Короткая запись: M : M f a Геометрический смысл определения: M, что при, M или M,, соответствующие значения функции f() попадают в ε окрестность точки А.

3 Арифметические действия с пределами (основные теоремы о пределах). Рассмотрим теоремы, которые облегчают нахождение пределов функции. Формулировка теорем аналогичны для и, поэтому формулируем теоремы только для первого случая. Теорема. Предел суммы (разности) двух функций равен сумме (разности) их пределов. f f f f Теорема. Предел произведения двух функций равен произведению их пределов. f f f f Следствие. Постоянный множитель можно выносить за знак предела. C f C f Следствие. Предел степени с натуральным показателем равнее той же степени предела. f f Теорема. Предел дроби равен пределу числителя, деленному на предел знаменателя, если предел знаменателя не равен нулю. f f f, f f Бесконечно большая и бесконечно малая величины. Определение. Переменная величина α() (функция) называется бесконечно малой при (под может быть ), если. Это означает, что для любого числа ε > найдется число такое δ >, что для всех, удовлетворяющих неравенству, выполняется неравенство. :

4 Определение. Переменная величина β() называется бесконечно большой при (под может быть ), если для любого (сколь угодно большого) числа М> существует такое число δ >, что для всех всех, удовлетворяющих неравенству, выполняется неравенство M. Можно условно сказать, что, (хотя вообще говоря, это не совсем верно, так как бесконечно большая величина предела не имеет), при этом, если начиная с некоторого момента все значения величины принимают только положительные значения то говорят величина стремится к + ( + ), а если отрицательные то -. Важные свойства бесконечно большой и бесконечно малой величин. Теорема. Частное от деления бесконечно малой величины на функцию, имеющую отличный от нуля предел, есть функция бесконечно малая. Т. е. если и f a, то f Теорема. Частное от деления функции, имеющей отличный от нуля предел, на бесконечно малую величину, есть бесконечно большая величина. Т. е. если и f a f, то В случае когда и числитель, и знаменатель являются бесконечно малыми или бесконечно большими величинами результат деления заранее неизвестен и мы имеем дело с неопределенными выражениями. Примеры.. Пусть, y, y. и y бесконечно малые величины. y. Пусть, y, y. и y бесконечно малые величины. y

5 . Пусть, y, y. и y бесконечно малые величины. y Эта величина предела не имеет. Раскрытие неопределенных выражений (неопределенностей). Определение. Дробь, у которой и числитель и знаменатель переменные величины стремящиеся к нулю, называется неопределенностью вида. Кроме неопределенностей вида существуют неопределенности вида:,,,,,.. Неопределенность вида, заданная отношением двух многочленов. Чтобы раскрыть такую неопределенность надо и числитель и знаменатель разделить на самую высокую степень, входящую в них (вынести за скобки в наивысшей степени). Пример Неопределенность вида, заданная отношением двух многочленов. Чтобы раскрыть неопределенность такого вида, заданную в форме P надо в числителе и знаменателе выделить критический множитель ( Qm ) и сократить дробь на него. Замечания: а) Критический множитель это множитель равный нулю при предельном значении. Он обязательно выделяется и в числителе и в знаменателе, так как = является корнем обоих многочленов, а потому эти многочлены на основании следствия теоремы Безу делятся на без остатка.

6 б) Возможно, что операцию сокращения на критический множитель придется проделать несколько раз. Пример Неопределенность, заданная иррациональными выражениями. Данный случай раскрытия неопределенности сводится к предыдущему случаю после преобразований, которые позволяют избавиться от иррациональности Первый замечательный предел. Тригонометрические неопределенности. При вычислении пределов функций, которые содержат тригонометрические выражения часто используют предел: si Это первый замечательный предел. Чтобы доказать данную формулу возьмем круг радиуса и обозначим радианную меру угла МОВ за. Пусть. Рассмотрим треугольники: ОМА, ОСВ.

7 Очевидно что AM si, CB tg. Длина дуги МВ численно равно центральному углу. Имеет место соотношение S MOB S сектораmob S COB (). По формулам геометрии: S MOB OB MA si si, Sсек. MOB OB MB, S COB OB CB tg tg. Тогда неравенство () перепишем si tg. Разделим неравенство на si. Получим или si cos si cos. Рассмотрим предел при при ( > ). cos и, то по признаку существования пределов (теорема о пределе промежуточной функции) получаем si при >. Если <, то так как si( ) si (из нечетности функции) si si si si. si То есть также. Таким образом считаем формулу доказанной. На основании формулы первого замечательного предела легко доказать, что tg,,. si tg si a Пример..

8 Положим a =α, отсюда. Если, то при α, поэтому a si a si a si si a a a a si si. si si Второй замечательный предел. Рассмотрим последовательность. Ее значения =, =,5, =,7, =,, 5 =,88. Мы видим, что последовательность возрастающая, т.е. монотонная. Если мы найдем ее дальнейшие значения, то =,59, =,75, =,77, =, 78. Очевидно, что для 5, <. Таким образом последовамтельность ограничена. Так как переменная возрастает и ограничена, то она имеет конечный предел (на основании теоремы Вейерштрасса), то есть существует. Предел переменной называется числом e. e Число е иррациональное. Можно показать, что е =, , но можно использовать приближение е =, 7. Можно доказать, что к числу е будет стремиться функция f, т.е. e Если в равенстве положить e. при ( α при ), оно запишется в виде Эти равенства называются вторым замечательным пределом.

9 Они используются при раскрытии неопределенностей вида Следствия из формулы второго замечательного предела: l e,, Односторонние пределы функции. a.,,. В определении предела функции f A считается, что стремиться к любым способом: оставаясь меньшим, чем (слева от ), большим чем (справа от ) или колеблясь около точки,. Бывают случаи, когда способ приближения аргумента к существенно влияет на значение предела функции. Поэтому вводят понятия односторонних пределов. Определение. Число А называется пределом функции y = f() слева в точке, если для любого числа ε > существуетс число δ = δ(ε) > такое, что при, выполняется неравенство f A. Предел слева обозначают: f A Аналогично определяется предел функции справа. Его мы запишем с помощью символов:, f : A f A. Обозначение: Пределы функции слева и справа называются односторонними пределами. f, то существуют и оба односторонних Очевидно, если существует A предела, причем А = А = А. Теорема (о пределе монотонной функции). Если функция f() монотонна и ограничена при < или при >, то существует соответственно ее левый f A f A. предел или ее правый предел. Если существуют оба предела и они равны, то существует предел f A. Если же А А, то предела не существует. Примеры.. Для того чтобы найти предел при справа будем находить значения функции при >, постепенно приближаясь к аргументу, то есть, например при =,5, =,, =,, =,. Запишем соответсвенные значения функции в таблицу.,5,,,

10 ,65 9,567E-7 6,E-6 Мы видим, что функция имеет предел справа. Теперь проделаем те же действия слева.,5,9,99, ,6E+6,6E+ Также очевидно, что данная функция предела не имеет, но можно записать Ряд Под окрестностью символа - понимается любой интервал (-, a), а под окрестностью символа + любой интервал (b, + ) arctg. При +. arctg(),78,56797,569796,57696,57786 То есть arctg arctg() -,78 -, , , ,57786 arctg Непрерывность функции.

11 Пусть функция y = f() определена в точке и в некоторой окрестности этой точки. Функция y = f() называется непрерывной в точке, если существует предел функции в этой точке и он равен значению функции в этой точке, т.е. f f (). Равенство () означает выполнение трех условий: ) функция f() определена в точке и в ее окрестности; ) функция f() имеет предел при ; ) предел функции в точке равен значению функции в этой точке, то есть выполняется равенство (). Это означает, что при нахождении предела непрерывной функции f() можно перейти к пределу под знаком функции. То есть в функции f() вместо аргумента подставить его предельное значение. Еще одно определение непрерывности функции можно дать, опираясь на понятия приращения аргумента и функции. Пусть функция y = f() определена в некотором интервале (a; b). Возьмем произвольную точку a; b. Для любого a; b разность называется приращением аргумента в точке и обозначается. =. = +. Разность соответствующих значений функций f() - f( ) называется приращением функции f() в точке и обозначается y (или f, или f ( )): y = f() - f ( ) или y = f( + ) - f ( ). Очевидно, что приращения и y могут быть как положительными, так и отрицательными числами. f f используя обозначения приращений. Перепишем равенство можно переписать как -, т.е.. f f или y (). То есть функция y = f() называется непрерывной в точке, если она определена в точке и ее окрестности и выполняется равенство (), т.е. бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции. Функция y = f() называется непрерывной в интервале (a; b), если она непрерывна в каждой точке этого интервала.

12 Функция y = f() называется непрерывной на отрезке [a; b], если она f f непрерывна в интервале и в точке она непрерывна справа (т. е. a в точке непрерывна слева (т.е. f f b b Точки разрыва функции и их классификация. ). a Определение. Точки в которых нарушается непрерывность функции, называются точками разрыва этой функции. Если = точка разрыва функции y = f(), то в ней не выполняется по крайней мере одно из условий первого определения непрерывности функции, а именно.. Функция определена в окрестности точки, но не определена в самой точке.. Функция определена в точке и ее окрестности, но не существует предела f() при. f, но. Функции определена в точке и ее окрестности, существует этот предел не равен значению функции в точке : f f Точки разрыва функции разделяются на точки разрыва первого и второго рода. Точка называется точкой разрыва первого рода функции y = f(), если в этой точке существуют конечные пределы функции слева и справа (односторонние f A f A. пределы), т.е. и При этом если А = А, то точка называется точкой устранимого разрыва, если А А то точка называется точкой конечного разрыва. Точка разрыва называется точкой разрыва второго рода функции y = f(), если по крайней мере один из односторонних пределов (слева или справа) не существует или равен бесконечности. Теоремы о непрерывных функциях. Теорема. Сумма, произведение и частное двух непрерывных функций есть функция непрерывная (для частного за исключением тех значений аргумента, в которых делитель равен нулю). Теорема. Пусть функция u = φ() непрерывна в точке, а функция y = f(u) непрерывна в точке u = φ( ). Тогда сложная функция f(φ()), состоящая из непрерывных функций, непрерывна в точке. Теорема. Если функция y = f() непрерывна и строго монотонна на [a; b] оси Ох, то обратная функция = φ(y) также непрерывна и монотонна на соответствующем отрезке [c; d] оси Оy. Свойства функций, непрерывных на отрезке.. ), а

13 Теорема. (Вейерштрасса). Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений. То есть существуют точки a, b и a, b, такие что f(α) f() f(β) a, b. Следствие. Если функция непрерывна на отрезке, то она ограничена на нем. То есть M f M, a, b., такое, что Теорема. (о промежуточном значении) (Больцано Коши). Если функция y = f() непрерывна на отрезке [a; b] и A f a, а B f b- значения функции на концах отрезка, то C : A C B существует такое значение аргумента *, что f( * ) = C. Следствие. Если функция y = f() непрерывна на отрезке [a; b] и на его концах принимает значения разных знаков, то внутри отрезка [a; b] найдется хотя бы одна точка с такая, в ней функция f() обращается в ноль f(с) =.

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

Пределы и непрерывность

Пределы и непрерывность Пределы и непрерывность. Предел функции Пусть функция = f ) определена в некоторой окрестности точки = a. При этом в самой точке a функция не обязательно определена. Определение. Число b называется пределом

Подробнее

lim f x f x используя обозначения приращений. 0 (2).

lim f x f x используя обозначения приращений. 0 (2). Лекция подготовлена доц Мусиной МВ Непрерывность функции Пусть функция y = f(x) определена в точке x и в некоторой окрестности этой точки Функция y = f(x) называется непрерывной в точке x, если существует

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

, а всю числовую последовательность - y

, а всю числовую последовательность - y Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности

Подробнее

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...}

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...} Тема Теория пределов Как мы понимаем слово «предел»? В повседневной жизни мы часто употребляем термин «предел», не углубляясь в его сущность В нашем представлении чаще всего предел отождествляется с понятием

Подробнее

Введение в математический анализ. Теория пределов

Введение в математический анализ. Теория пределов Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m Тема Теория пределов Практическое занятие Числовые последовательности Определение числовой последовательности Ограниченные и неограниченные последовательности Монотонные последовательности Бесконечно малые

Подробнее

Пределы. 6.1 Определение предела последовательности и

Пределы. 6.1 Определение предела последовательности и Студент должен знать: определение предела функции; свойства пределов; понятие бесконечно малых функций; понятие ограниченных и бесконечно больших функций; определение непрерывности функции в точке; сравнение

Подробнее

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

ЛЕКЦИЯ 16. Эквивалентные бесконечно малые. Первый и второй замечательные пределы.

ЛЕКЦИЯ 16. Эквивалентные бесконечно малые. Первый и второй замечательные пределы. ЛЕКЦИЯ Эквивалентные бесконечно малые Первый и второй замечательные пределы Сравнение бесконечно больших и бесконечно малых функций Функция f ( ) называется бесконечно малой в точке a (при a ), если (

Подробнее

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии.

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии. ЛЕКЦИЯ Числовые последовательности Бесконечно большие и бесконечно малые последовательности Основные свойства бесконечно малых последовательностей Числовые последовательности Если каждому из множества

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Федеральное агентство по образованию. Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Федеральное агентство по образованию. Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Федеральное агентство по образованию Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Методы вычисления пределов Методические указания к решению задач Санкт-Петербург Издательство

Подробнее

Ответы к заданию

Ответы к заданию Ответы к заданию.. понятия одного аргумента.. Основные элементарные.. элементарных функций.4. предела f в точке. х Х Если каждому элементу х из множества Х поставлен в соответствие определенный элемент

Подробнее

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики ФУНКЦИЯ И ЕЕ

Подробнее

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия 35 Глава 2 Дифференциальное и интегральное исчисление функции одной переменной 1 Основные понятия Пусть D некоторое множество чисел Если задан закон, по которому каждому числу из множества D ставится в

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Подробнее

ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ СИБИРСКАЯ АКАДЕМИЯ ФИНАНСОВ И БАНКОВСКОГО ДЕЛА НА Кулагина МВ Черепанова ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ -е издание, исправленное Новосибирск 04 УДК 5 ББК К90 Рецензенты БП Зеленцов д-р техн наук, профессор

Подробнее

1. Понятие числовой последовательности

1. Понятие числовой последовательности Понятие числовой последовательности В курсе математического анализа изучаются переменные величины и зависимость между ними Простейшими переменными величинами являются числовые последовательности Определение

Подробнее

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Тема. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Элементы теории множеств. Основные понятия Одним из основных понятий современной математики является понятие множества.

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ

КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ Е Б Боронина Эта книга написана для студентов технических вузов желающих подготовиться к экзамену по математическому анализу Содержание данной книги полностью соответствует

Подробнее

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

Подробнее

1. Рекуррентный способ Выпишите первые десять членов последовательности, заданной рекуррентно. 10) а 1 = 2, 7) а 1 = 1, a = a + 1

1. Рекуррентный способ Выпишите первые десять членов последовательности, заданной рекуррентно. 10) а 1 = 2, 7) а 1 = 1, a = a + 1 Глава 0 ПОСЛЕДОВАТЕЛЬНОСТИ Алгоритмы А- Задание числовых последовательностей А- Арифметическая прогрессия А- Геометрическая прогрессия А- Суммирование А-5 Бесконечно убывающая геометрическая прогрессия

Подробнее

Лекция 2.4. Непрерывность функции. Классификация точек разрыва

Лекция 2.4. Непрерывность функции. Классификация точек разрыва Лекция 4 Непрерывность функции Классификация точек разрыва Аннотация: Рассматриваются свойства функции, непрерывной на отрезке Приводится пример использования этих свойств при решении нелинейных уравнений

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Вариант 14 x. Область определения данной функции определяется неравенством > 0.

Вариант 14 x. Область определения данной функции определяется неравенством > 0. Вариант Найти область определения функции : lg 5 + Область определения данной функции определяется неравенством > 5+ Найдём корни знаменателя:, Так как ветви параболы 5+ направлены вверх, то 5+ 6< при

Подробнее

МАТЕМАТИКА ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

МАТЕМАТИКА ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В.Н.Думачев С.А.Телкова МАТЕМАТИКА ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ Учебное пособие Воронеж - 06 ББК. Д8 Рассмотрено и одобрен на заседании кафедры математики и моделирования систем. Протокол от.09.06. Рассмотрен

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА ГОУВПО КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Л.Г. Лелевкина, И.В. Гончарова, Н.М. Комарцов ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА Учебно-методическое

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр,

Вопросы и задачи к экзамену по математическому анализу I семестр, Вопросы и задачи к экзамену по математическому анализу I семестр, - Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Q и действительные R числа Натуральные и целые числа

Подробнее

Сборник задач для самостоятельного решения по теме "Предел функции" Составители: А.Н. Максименко, А.Н. Морозов

Сборник задач для самостоятельного решения по теме Предел функции Составители: А.Н. Максименко, А.Н. Морозов ББК В 65я73-4 С 3 УДК 57 Учебное издание Сборник задач для самостоятельного решения по теме "Предел функции" Составители: АН Максименко, АН Морозов Сборник задач для самостоятельного решения по теме "Предел

Подробнее

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется МАТЕМАТИЧЕСКИЙ АНАЛИЗ 9 ФУНКЦИЯ -ОЙ ПЕРЕМЕННОЙ. ОСНОВНЫЕ ПОНЯТИЯ И ГРАФИКИ. ОПР Величина называется переменной, если в рамках данной задачи она принимает различные числовые значения. ОПР Величина С называется

Подробнее

Министерство образования и науки Российской Федерации. РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА

Министерство образования и науки Российской Федерации. РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА Министерство образования и науки Российской Федерации РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА Г.Г. Литова, Д.Ю. Ханукаева ПРЕДЕЛЫ Пособие для студентов, обучающихся по специальности

Подробнее

5. Предел функции. ( ε > 0 δ > 0 x (a δ, a + δ), x a) f(x) l < ε. или так:

5. Предел функции. ( ε > 0 δ > 0 x (a δ, a + δ), x a) f(x) l < ε. или так: 5. Предел функции Определение. Точку p R называют предельной точкой (или точкой сгущения) множества X R, для любого r > 0 существует отличная от p точка x X такая, что x p < r. Говорят, что + (соответственно

Подробнее

для всех k. Ответ: График представлен на рисунке. 3. Построить график функции: y = 2. Область определения функции: вся числовая ось: x (,

для всех k. Ответ: График представлен на рисунке. 3. Построить график функции: y = 2. Область определения функции: вся числовая ось: x (, Вариант 9 Найти область определения функции : y + lg Область определения данной функции определяется следующим неравенством: >, те > Далее, знаменатель не должен обращаться в нуль: или ± Объединяя результаты,

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Степень с рациональным показателем. Степенная функция

Степень с рациональным показателем. Степенная функция Глава Степень с рациональным показателем Степенная функция Степень с целым показателем Напомним определение и основные свойства степени с целым показателем Для любого действительного числа а полагаем а

Подробнее

Тема 2. Функции, их свойства и графики

Тема 2. Функции, их свойства и графики Тема. Функции, их свойства и графики. Числовая функция, способы задания, область определения, множество значений. Основные свойства функции: монотонность, ограниченность, периодичность, четность нечетность.

Подробнее

ТЕСТОВЫЕ ЗАДАНИЯ И ДИКТАНТЫ

ТЕСТОВЫЕ ЗАДАНИЯ И ДИКТАНТЫ Глава 0 ТЕСТОВЫЕ ЗАДАНИЯ И ДИКТАНТЫ Т-00 Вычисление членов последовательности по рекуррентной формуле Т-00 Составление рекуррентной формулы Т-00 Формула общего члена Т-004 Составление арифметической прогрессии

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

1.4. Предел функции Нахождение предела функции с использованием замечательных

1.4. Предел функции Нахождение предела функции с использованием замечательных 1.4. Предел функции 4.1. Нахождение предела функции с использованием замечательных пределов. ТЕОРИЯ Определение предельной точки. Точку p R называют предельной точкой (или точкой сгущения) множества X

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Вариант 13. Область определения данной функции определяется двумя неравенствами 1. Данная функция определена на всей числовой оси, кроме точки x = 2

Вариант 13. Область определения данной функции определяется двумя неравенствами 1. Данная функция определена на всей числовой оси, кроме точки x = 2 Вариант Найти область определения функции : y arcsi + Область определения данной функции определяется двумя неравенствами и Умножим первое неравенство на и освободимся от знака модуля: Из левого неравенства

Подробнее

Глава 2. Пределы функций одной переменной.

Глава 2. Пределы функций одной переменной. Глава Пределы функций одной переменной Предел переменной величины Определение Постоянное число а называется пределом переменной величины х, если для каждого наперед заданного числа ε > можно указать такое

Подробнее

Лекция 1 Вещественные числа.

Лекция 1 Вещественные числа. Лекция 1 Вещественные числа. 1. Рациональные числа. Простейшими числами являются целые положительные числа 1, 2,..., используемые при счете. Они называются натуральными числами, и люди их знали так много

Подробнее

Образцы базовых задач и вопросов по МА за 1 семестр

Образцы базовых задач и вопросов по МА за 1 семестр Образцы базовых задач и вопросов по МА за семестр Предел последовательности Простейшие Вычислите предел последовательности l i m 2 n 6 n 2 + 9 n 6 4 n 6 n 4 6 4 n 6 2 2 Вычислите предел последовательности

Подробнее

Вопросы и задачи к экзамену по математическому анализу ( )

Вопросы и задачи к экзамену по математическому анализу ( ) Вопросы и задачи к экзамену по математическому анализу (2013 2014) 29 августа 2013 г. Тема I. Вещественные числа 1. Определения 1.1. Сформулируйте правило сравнения вещественных чисел. Сформулируйте определение:

Подробнее

Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ. , если выполняются следующие три условия :

Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ. , если выполняются следующие три условия : 57 Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ Определение 1 Функция = f ( ) называется непрерывной в точке, если выполняются следующие три условия : 1) функция = f (

Подробнее

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim Òåîðåìû î ïðåäåëàõ Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Основные теоремы о пределах. Предел числовой последовательности. Первый замечательный предел. Второй замечательный предел. Экспонента. Натуральный логарифм.

Подробнее

Замечание. Теорема дает второе определение предельной точки, теорема определение открытого множества, теорема определение замыкания.

Замечание. Теорема дает второе определение предельной точки, теорема определение открытого множества, теорема определение замыкания. ГЛАВА 3. Предел и непрерывность отображения 1. Предельные точки, открытые и замкнутые множества в метрических пространствах Опр. 3.1.1. Пусть (X, ) метрическое пространство, x X, >. Проколотой - окрестностью

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» М.П. Дымков ВЫСШАЯ МАТЕМАТИКА Второй семестр Курс лекций для студентов экономических специальностей

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

Математика 8 класс Многочлены

Математика 8 класс Многочлены МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 8 класс Многочлены Новосибирск Многочлены Рациональными

Подробнее

Кафедра экономической теории и моделирования экономических процессов ПРЕДЕЛЫ

Кафедра экономической теории и моделирования экономических процессов ПРЕДЕЛЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 6 Предел числовой последовательности СОДЕРЖАНИЕ: Предельный переход в неравенствах Подпоследовательности Фундаментальные последовательности

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ) Кафедра "Прикладная математика-1" Ю.С.Семёнов Кафедра "Прикладная математика-1"

Подробнее

Повторение Алгебра 7 8. Вопросы. 1. Раскрытие скобок 2. Умножение многочленов. 3. График линейной функции. 4. Разложение многочлена на множители. 5.

Повторение Алгебра 7 8. Вопросы. 1. Раскрытие скобок 2. Умножение многочленов. 3. График линейной функции. 4. Разложение многочлена на множители. 5. Повторение Алгебра 7 8. Вопросы.. Раскрытие скобок. Умножение многочленов.. График линейной функции. 4. Разложение многочлена на множители. 5. Свойство степени с натуральным показателем. 6. Формулы сокращенного

Подробнее

201. Арифметическая прогрессия. Примеры решения задач. ТЕСТ Арифметическая и геометрическая прогрессии. ТЕСТ 2.

201. Арифметическая прогрессия. Примеры решения задач. ТЕСТ Арифметическая и геометрическая прогрессии. ТЕСТ 2. Арифметическая прогрессия Примеры решения задач ТЕСТ Найти сумму всех натуральных чисел, каждое из которых кратно и не превосходит по величине ) ) 8 ) 9 ) 8 Найти сумму всех двузначных натуральных чисел,

Подробнее

Лекция 1. Понятие множества. Определение функции, основные свойства. Основные элементарные функции

Лекция 1. Понятие множества. Определение функции, основные свойства. Основные элементарные функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Лекция. Понятие множества. Определение функции основные свойства. Основные элементарные функции СОДЕРЖАНИЕ: Элементы теории множеств Множество вещественных чисел Числовая

Подробнее

«ИССЛЕДОВАНИЕ ФУНКЦИЙ»

«ИССЛЕДОВАНИЕ ФУНКЦИЙ» Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ

ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ ОВ Сорокина Учебное пособие для студентов нематематических

Подробнее

Глава 1. Теория пределов

Глава 1. Теория пределов Глава. Теория пределов.. Числовые последовательности Пусть дано некоторое множество Х. Сопоставим каждому натуральному числу какой-либо определенный элемент X. Получится функция = f: X. () Такая функция

Подробнее

Приложение производных к исследованию функций

Приложение производных к исследованию функций Приложение производных к исследованию функций Лекции 1 6 Л.И. Терехина, И.И. Фикс Курс: Высшая математика Семестр 1, 2009 год portal.tpu.ru Теорема 1 (Ферма) Если функция y = f (x): 1) непрерывна в замкнутом

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

В.И. Иванов С.И. Васин

В.И. Иванов С.И. Васин Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

Введение в математический анализ

Введение в математический анализ Бубнов ВФ, Веременюк ВВ курс лекций для студентов строительных специальностей Введение в математический анализ 3 г ОГЛАВЛЕНИЕ Множества и операции над ними 3 Множества и их элементы 3 Подмножества Операции

Подробнее

Основы алгебры. Числовые множества. Глава 1

Основы алгебры. Числовые множества. Глава 1 Глава 1 Основы алгебры Числовые множества Рассмотрим основные числовые множества. Множество натуральных чисел N включает числа вида 1, 2, 3 и т. д., которые используются для счета предметов. Множество

Подробнее

Математический анализ в вопросах и задачах

Математический анализ в вопросах и задачах ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Математический

Подробнее

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3 Вариант Найти область определения функции : y arccos Область определения данной функции определяется неравенством Умножим неравенство на и освободимся от знака модуля: Из левого неравенства находим или

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАШИНОСТРОЕНИЯ ИИ Поспелов,

Подробнее

Тема 37 «Пределы функций»

Тема 37 «Пределы функций» Тема 37 «Пределы функций» «Математический анализ» - серьезный раздел высшей математики. «Анализируют» здесь довольно тонкие моменты: как ведет себя функция не только в целом, в своей области определения

Подробнее

Лекция 2.5. Производные основных элементарных функций

Лекция 2.5. Производные основных элементарных функций Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

Подробнее

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию:

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию: Вариант 7 Найти область определения функции : y + / lg Область определения данной функции определяется следующими условиями:, >, те > / Далее, знаменатель не должен обращаться в нуль: или Объединяя результаты,

Подробнее

МАТЕМАТИКА Введение в математический анализ

МАТЕМАТИКА Введение в математический анализ Министерство образования и науки Российской Федерации Федеральное агентство по образованию Иркутский государственный технический университет Заочно-вечерний факультет Кафедра общеобразовательных дисциплин

Подробнее

Математический анализ Конспект лекций

Математический анализ Конспект лекций Министерство образования и науки РФ ФГБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Математический анализ Конспект лекций для направления

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

Тематическое планирование по алгебре в 7 классе

Тематическое планирование по алгебре в 7 классе Тематическое планирование по алгебре в 7 классе Тема Количество часов Количество контрольных работ 1 Математический язык. Математическая модель 16 1 2 Линейная функция 15 1 3 Степень с натуральным показателем

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

МАТЕМАТИКА. Последовательности. Пределы. Задание 3 для 10-х классов ( учебный год)

МАТЕМАТИКА. Последовательности. Пределы. Задание 3 для 10-х классов ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Последовательности. Пределы Задание

Подробнее