Излучение и гравитация. Окунев И.В.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Излучение и гравитация. Окунев И.В."

Транскрипт

1 Излучение и гравитация Окунев И.В , Воронежская обл., г.борисоглебск, Северный Микрорайон 29/61. В предлагаемой статье сравниваются процессы излучения и движения под действием гравитационного поля. На основе этого сравнения строится физическая и математическая модель окружающего нас мира. Ключевые слова: излучение, гравитация, непрерывная материя. УДК: PACS: 04 MSC: 83D05 В окружающем нас мире известен и подробно описан процесс электромагнитного излучения, разновидностью которого является свет. Определяя излучение как поток частиц, тем не менее, в описании этого процесса опускается важная деталь: то, что этот поток является расходящимся. Принято считать, что частицы излучения движутся с постоянной скоростью c, которую обычно называют скоростью света. Любая материальная частица в начале своего движения имеет состояние покоя, когда скорость частицы равна нулю. Однако скорость частиц излучения в том месте, где находится источник излучения, не равна нулю (она здесь так же равна c). Следовательно, частицы излучения не начинают свое движение в том месте, где находится источник, а пролетают его со скоростью c. Начинают же они свое движение где-то в другом месте, и это движение происходит в направлении источника. Тогда к источнику частицы движутся в сходящихся направлениях, образуя сходящийся поток. Примером сходящегося потока в окружающем нас мире является движение материальных точек к телу под действием гравитационного поля этого тела. Следовательно, процесс излучения и процесс движения под действием гравитационного поля являются разными фазами одного и того же процесса, т.е. движение под действием гравитационного поля есть начальная фаза этого процесса, а излучение есть конечная фаза того же процесса. Таким образом, базовая модель окружающего нас мира выглядит так: совокупность частиц с бесконечно малой плотностью начинает свое движение в определенной области пространства (имея нулевую начальную скорость) и движется в форме сходящегося потока, при этом плотность и скорость частиц растет. Центром потока является точка, где сходящийся поток становится расходящимся. Плотность частиц в этой точке достигает максимальной величины, и эта величина является конечной (т.е. не бесконечно малой). Плотность частиц в центре потока совпадает с плотностью того тела, которое является источником излучения, т.е. частицы потока в его центре формируют тело источника излучения. Скорость частиц в центре потока так же является максимальной. Соответственно, ускорение частиц равно нулю. Таким образом, создается впечатление (и это действительно так), что частицы сходящегося потока движутся под действием гравитационного поля центра потока. Далее, пройдя центр потока, частицы движутся в виде излучения, образуя расходящийся поток, при этом плотность и скорость частиц уменьшается. Наконец в некоторой области пространства скорость этих частиц достигает нуля, и они останавливаются. Затем частицы опять начинают свое движение к центру потока, и весь процесс повторяется сначала. Такие повторения продолжаются бесконечно долго. Причиной, заставляющей частицы двигаться в сходящихся/расходящихся направлениях, является геометрия сходящегося/расходящегося потока и эту геометрию необходимо подробно рассмотреть. Сформулируем принципы, на которых строится эта геометрия. Основным принципом является утверждение, что материя непрерывно распределена в пространстве. Это

2 означает, что какой-либо разрыв между материальными точками в виде абсолютно пустого пространства не возможен абсолютно пустое пространство не реально. Принято считать абсолютно пустыми такие пространства как межпланетное, межзвездное и межгалактическое. В действительности эти пространства также непрерывно заполнены материей. Только плотность этой материи очень мала. Непрерывность материи является абсолютной, что обеспечивается особой формой мельчайших частиц материи. Этой формой является куб, т.е. мельчайшая частица материи, независимо от того, сжимается она или расширяется, всегда сохраняет форму куба. Ребро этого куба не может быть бесконечно малой величиной первого порядка в силу следующих причин. Так как материя непрерывна, то длина частицы как раз и будет тем расстоянием, которое частица проходит за время, т.е. отношение есть скорость частицы. Тогда, учитывая, что частица все время сохраняет форму куба, можно установить зависимость величины от расстояния между частицей и центром потока, т.е. прийти к дифференциальному уравнению первого порядка. В решении этого дифференциального уравнения будет учтено только одно начальное условие начальное расстояние, но не будет учтено другое начальное условие равенство нулю начальной скорости. Следовательно, мы должны прийти к дифференциальному уравнению второго порядка. Тогда ребро куба должно быть бесконечно малой второго порядка, т.е. d 2 r. Чтобы установить зависимость этой величины от расстояния между частицей и центром потока, обратимся к рисунку 1. Рис.1 Различные положения частицы потока относительно центра потока. На рисунке частица потока представляет собой правильную усеченную пирамиду, форма которой неограниченно приближается к кубу вследствие того, что угол схождения/расхождения частицы равен бесконечно малой величине второго порядка. Все продольные ребра частицы равны. Все поперечные ребра частицы равны. Так как частица в принципе является кубом, то величину можно приравнять величине. Результатом деления выражений и на одну и ту же величину будут выражения и. В силу непрерывности материи величина является ускорением частицы. Поскольку скорость частицы уменьшается с увеличением расстояния, то ускорение частицы является отрицательным. Следовательно, величину необходимо взять со знаком минус, т.е.: (1) Эта формула определяет закон движения частиц потока, принадлежащего единичному источнику излучения. Под единичным источником излучения подразумевается бесконечно малая частица любого тела. Так же единичный источник излучения можно определить как центр потока частиц с бесконечно малой плотностью (только сам центр потока имеет конечную плотность). В нашем случае единичным источником излучения является центр потока в форме куба с ребром, которое является бесконечно малой величиной i-того порядка. Объем единичного источника

3 есть бесконечно малая величина -того порядка. Так как его плотность есть величина конечная, то масса единичного источника есть бесконечно малая величина -того порядка. Важной особенностью потока единичного источника является то, что его частицы не притягиваются другими единичными источниками. Что бы проинтегрировать уравнение (1), умножим левую и правую его части на. Преобразуем это уравнение следующим образом: Проинтегрируем это уравнение, полагая, что переменная (4) (2) (3) находится в пределах от 0 до, а переменная находится в пределах от до ( есть условный радиус Вселенной, который равен большому расстоянию между центром потока и той точкой в пространстве, где частица потока начинает свое движение; величина схождения/расхождения частицы является постоянным): является постоянной, поскольку угол (5) (6) Эта формула определяет зависимость скорости света от расстояния до источника. Однако в опытах по измерению скорости света такой зависимости не установлено. Это объясняется следующим образом. Расстояние настолько велико, что в той области пространства, где проводятся опыты по измерению скорости света, величина ею можно пренебречь. ничтожно мала по сравнению с 1 и c (7) Таким образом, все опыты по измерению скорости света в этой области должны давать постоянное значение этой скорости c. Преобразуем уравнение (6) следующим образом: (8) Проинтегрируем это уравнение, полагая, что переменная находится в пределах от до, а переменная находится в пределах от 0 до : (9) (10) (11) Следовательно, величина есть частота, с которой частица излучения пролетает диаметр Вселенной в прямом и обратном направлении, т.е.: Окончательно имеем: (12) (13)

4 Время, за которое свет проходит расстояние от источника до точки остановки, находится из следующего условия: (14) (15) Как было сказано выше, единичный источник излучения имеет конечную по величине плотность, а сам он является центром потока частиц с бесконечно малой плотностью. Очевидно, что материя с конечной плотностью, которую образуют единичные источники, так же непрерывна. Тогда должен существовать и поток частиц с конечной плотностью, т.е. единичные источники должны образовывать сходящийся поток частиц. Центром такого потока не может быть один единичный источник, поскольку, чтобы пройти через него, частица потока должна иметь бесконечно большую плотность, что при условии непрерывного распределения материи в пространстве невозможно. Следовательно, сходящийся поток частиц с конечной плотностью должен иметь бесконечное множество центров, каждый из которых является единичным источником. Таким образом, частица потока с конечной плотностью притягивается бесконечным множеством единичных источников (в то время как частица потока с бесконечно малой плотностью притягивается только одним единичным источником). К тому же единичные источники взаимно притягиваются. Итак, тело, состоящее из бесконечно большого количества единичных источников, создает сходящийся поток бесконечно большого числа других единичных источников и все эти единичные источники взаимно притягиваются. Теперь представим, что частица на рисунке 1 является единичным источником. Очевидно, что величина ее ускорения, обусловленная притяжением одного единичного источника, так же определяется формулой (1). Пусть имеется источник излучения с конечной массой, который на рисунке показан как тело. Это тело состоит из бесконечного множества единичных источников. Тогда, ускорение единичного источника, обусловленное притяжением тела, будет определяться следующей формулой: Здесь коэффициенты учитывают различные условия, которые влияют на величину ускорения единичного источника. Для простоты рассмотрим случай, когда размеры тела пренебрежительно малы по сравнению с расстоянием между этим телом и единичным источником. Количество единичных источников, из которых состоит тело, равно. Так как единичный источник притягивается к каждому из единичных источников тела, то суммарное ускорение единичного источника должно быть в раз больше величины. Следовательно, значение первого коэффициента равно: (17) Пусть масса частицы, излучаемой единичным источником, есть бесконечно малая величина j-ого порядка. Объем этой частицы на расстоянии от источника равен. Тогда плотность частицы в этой точке составляет. В результате движения частицы от источника имеет место уменьшение ее плотности, что аналогично уменьшению количества единичных источников. Соответственно, ускорение единичного источника так же должно уменьшаться. Следовательно, очередной коэффициент есть отношение плотности частицы на расстоянии от источника к ее плотности в центре потока (т.е. к плотности единичного источника). (18) Другие условия, влияющие на величину ускорения единичного источника нам не известны. Следовательно: (16) (19)

5 Из условия, что величина является конечной, находим: j (20) Следовательно, масса частицы излучения единичного источника есть бесконечно малая -того порядка. Если излучением является свет, то, как известно, эта частица есть фотон. Тогда плотность фотона есть бесконечно малая -того порядка. Согласно Закону всемирного тяготения ускорение единичного источника равно: Здесь величина есть гравитационная постоянная. (21) (22) Здесь величина есть количество частиц (фотонов), содержащихся в единичном источнике излучения (света). Эта величина есть бесконечно большая шестого порядка. Преобразуем формулу (23) следующим образом: Здесь выражение есть сложная производная, которая характеризует прохождение некоторого количества частиц за единицу времени через единичный источник. Наиболее вероятными значениями величины являются 1 и 2. Предположим, что тело есть Солнце. Весьма вероятно, что для единичных источников Солнца величина не является постоянной и слабо зависит от времени. Тогда это время легко выразить через время движения какой-либо планеты вокруг Солнца. А время движения можно выразить через расстояние от этой планеты до Солнца. Тогда будет слабой функцией этого расстояния, т.е.: (25) А Закон всемирного тяготения для ускорения будет иметь следующий вид: (26) Математически доказано, что согласно закону (21) траектории планет Солнечной системы должны быть замкнутыми кривыми. Для любого другого закона (в том числе и для закона (26)) эти кривые будут незамкнутыми. Следовательно, траектории планет Солнечной системы должны быть слабо незамкнутыми кривыми, что и подтверждается движением планеты Меркурий. Начальное расстояние для закона (21) будет разным, в зависимости от того как далеко от центра потока частица начинает свое движение, но, очевидно, что это начальное расстояние будет намного меньше величины. Как было сказано выше, вблизи центра потока скорость частицы почти не отличается от значения c. Поэтому все опыты по измерению скорости света в этой области дают постоянное значение этой скорости. На большом расстоянии от центра потока скорость частицы будет заметно уменьшаться. Мы можем установить этот факт, анализируя свет, приходящий к нам от далеких галактик. Анализ этого света показывает наличие красного смещения, т.е. увеличение длин волн линий в спектре источника. На основе изложенной здесь теории, это объясняется следующим образом. Так как длина частицы на рисунке 1 увеличивается с увеличением расстояния от центра потока, то увеличивается и длина волны того колебательного процесса, который имеет место в непрерывном потоке таких частиц. (23) (24)

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома 1 Дифференциальное сечение рассеяния Когда быстрая частица налетает на частицу-мишень, то для того,

Подробнее

О возможной причине гравитации и следствиях из нее

О возможной причине гравитации и следствиях из нее Вильшанский Александр, д-р, Израиль О возможной причине гравитации и следствиях из нее Аннотация Рассматривается гравитационное взаимодействие пробного тела и массивного тела конечных размеров. В модели

Подробнее

ВСЕМИРНОЕ ТЯГОТЕНИЕ. ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ

ВСЕМИРНОЕ ТЯГОТЕНИЕ. ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ Лекция 8 ВСЕМИРНОЕ ТЯГОТЕНИЕ. ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ Термины и понятия Первая космическая скорость Вторая космическая скорость Третья космическая скорость Вес тела Гелиоцентрическая система Гравитационная

Подробнее

УДК: В.А. Горунович, ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ ВЗГЛЯД ИЗНУТРИ. АННОТАЦИЯ. Популярно изложены основные положения полевой теории элементарных частиц.

УДК: В.А. Горунович, ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ ВЗГЛЯД ИЗНУТРИ. АННОТАЦИЯ. Популярно изложены основные положения полевой теории элементарных частиц. УДК: 539.1 В.А. Горунович, ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ ВЗГЛЯД ИЗНУТРИ. АННОТАЦИЯ Популярно изложены основные положения полевой теории элементарных частиц. PACS numbers: 03.50. Kk, 11.10.-z, 1.10.-g 1. ВВЕДЕНИЕ

Подробнее

Лекция 2. Динамика материальной точки. [1] гл.2

Лекция 2. Динамика материальной точки. [1] гл.2 12 Лекция 2. Динамика материальной точки. [1] гл.2 План лекции 1. Законы Ньютона. Основное уравнение динамики поступательного движения. 2. Виды взаимодействий. Силы упругости и трения. 3. Закон Всемирного

Подробнее

Основные понятия кинематики (Лекция 1 в учебном году) Материальная точка. Система отсчета. Перемещение. Длина пути

Основные понятия кинематики (Лекция 1 в учебном году) Материальная точка. Система отсчета. Перемещение. Длина пути Основные понятия кинематики (Лекция 1 в 2015-2016 учебном году) Материальная точка. Система отсчета. Перемещение. Длина пути Кинематика это часть механики, которая изучает движения тел без исследования

Подробнее

Лекция 7. Работа. Теорема об изменении кинетической энергии

Лекция 7. Работа. Теорема об изменении кинетической энергии Лекция 7 Работа. Теорема об изменении кинетической энергии. Консервативные силы. Потенциальная энергия частицы в потенциальном поле. Примеры: упругая сила, гравитационное поле точечной массы. Работа. Теорема

Подробнее

1.5. ВСЕМИРНОЕ ТЯГОТЕНИЕ

1.5. ВСЕМИРНОЕ ТЯГОТЕНИЕ 15 ВСЕМИРНОЕ ТЯГОТЕНИЕ Согласно закону всемирного тяготения, сила с которой материальная точка массой притягивает материальную точку массой, задается следующим выражением:, (1) где и радиус-векторы точек

Подробнее

ЛЕКЦИЯ 9 ФОРМУЛЫ БИНЕ. ЗАДАЧА ДВУХ ТЕЛ. ГЕОМЕТРИЯ МАСС

ЛЕКЦИЯ 9 ФОРМУЛЫ БИНЕ. ЗАДАЧА ДВУХ ТЕЛ. ГЕОМЕТРИЯ МАСС ЛЕКЦИЯ 9 ФОРМУЛЫ БИНЕ. ЗАДАЧА ДВУХ ТЕЛ. ГЕОМЕТРИЯ МАСС Рис. 9.1 Рассмотрим движение точки в центральном поле сил. Точка P массой m движется h] под действием силы вида F = F (R) h], то есть модуль силы

Подробнее

Раздробленная «Чёрная дыра»

Раздробленная «Чёрная дыра» Раздробленная «Чёрная дыра» Борис Дижечко, Леонид Ложкин То, что радиус Шварцшильда сферы, равномерно заполненной веществом с плотностью, которая равна критической плотности, совпадает с радиусом наблюдаемой

Подробнее

Тема 2. Динамика материальной точки и твердого тела

Тема 2. Динамика материальной точки и твердого тела Тема 2. Динамика материальной точки и твердого тела 2.1. Основные понятия и величины динамики. Законы Ньютона. Инерциальные системы отсчета (ИСО). Динамика (от греческого слова dynamis сила) раздел механики,

Подробнее

Эффекты гравитации. П.В. Путенихин. (Получена 27 мая 2007; опубликована 15 июля 2007)

Эффекты гравитации. П.В. Путенихин. (Получена 27 мая 2007; опубликована 15 июля 2007) Эффекты гравитации П.В. Путенихин (Получена 27 мая 2007; опубликована 15 июля 2007) Релятивистское ограничение скорости распространения гравитационного взаимодействия приводит к возникновению эффектов

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Пример ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Какой импульс получит атом водорода при излучении кванта света с длиной волны равной 4 нм? Дано: = 4, 7 м; h / h= 6,6 34 Джс; р Найти: р В процессе излучения фотона, систему

Подробнее

Содержание 1. Законы Кеплера 2. Космические скорости 3. Основные этапы в области освоения космоса

Содержание 1. Законы Кеплера 2. Космические скорости 3. Основные этапы в области освоения космоса Лекция 15. Движение в гравитационном поле Содержание 1. аконы Кеплера. Космические скорости 3. Основные этапы в области освоения космоса аконы Кеплера Основанием для установления закона всемирного тяготения

Подробнее

Вывод барометрической формулы с применением принципа существования адиабатических процессов при сжатии газа полем потенциальных сил

Вывод барометрической формулы с применением принципа существования адиабатических процессов при сжатии газа полем потенциальных сил Косинский Ю.И. Вывод барометрической формулы с применением принципа существования адиабатических процессов при сжатии газа полем потенциальных сил Широко известная барометрическая формула Больцмана: ex,

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

Тихомиров Ю.В. СБОРНИК. контрольных вопросов и заданий с ответами. для виртуального физпрактикума. Часть 1. Механика

Тихомиров Ю.В. СБОРНИК. контрольных вопросов и заданий с ответами. для виртуального физпрактикума. Часть 1. Механика Тихомиров Ю.В. СБОРНИК контрольных вопросов и заданий с ответами для виртуального физпрактикума Часть 1. Механика 1_1. ДВИЖЕНИЕ С ПОСТОЯННЫМ УСКОРЕНИЕМ... 2 1_2. ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ ПОСТОЯННОЙ СИЛЫ...7

Подробнее

План урока по физике. в 10 классе. «Закон всемирного тяготения. Движение в гравитационном поле»

План урока по физике. в 10 классе. «Закон всемирного тяготения. Движение в гравитационном поле» ГБОУ школа 62 Выборгского района Санкт-Петербурга План урока по физике в 10 классе «Закон всемирного тяготения. Движение в гравитационном поле» учитель физики: Шебунина Анна Владимировна Цель урока изучить

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнитные волны Лекция 12 ЛЕКЦИЯ 12

Д. А. Паршин, Г. Г. Зегря Физика Электромагнитные волны Лекция 12 ЛЕКЦИЯ 12 1 Д. А. Паршин, Г. Г. Зегря Физика Электромагнитные волны Лекция 1 ЛЕКЦИЯ 1 Определение заряда при его движении. Инвариантность заряда. Опыт Кинга. Преобразование компонент электрического поля при переходе

Подробнее

Куб в космосе. Каким может быть максимальный размер планеты в форме куба?

Куб в космосе. Каким может быть максимальный размер планеты в форме куба? Куб в космосе Известно, что все крупные тела солнечной системы имеют форму, близкую к шару. В то же время встречаются астероиды, форма которых весьма далека от шарообразной. Понятно, что форма космических

Подробнее

Закон сохранения момента импульса

Закон сохранения момента импульса Закон сохранения момента импульса Введем две новые физические величины. Сначала формально определим их а затем выявим связи и закономерности. Момент силы F относительно начала (некоторой точки пространства)

Подробнее

Е. В. Бурлаченко ТЕОРЕМА О ПОСТОЯНСТВЕ СКОРОСТИ РАСШИРЕНИЯ ВСЕЛЕННОЙ

Е. В. Бурлаченко ТЕОРЕМА О ПОСТОЯНСТВЕ СКОРОСТИ РАСШИРЕНИЯ ВСЕЛЕННОЙ Е. В. Бурлаченко ТЕОРЕМА О ПОСТОЯНСТВЕ СКОРОСТИ РАСШИРЕНИЯ ВСЕЛЕННОЙ Сопоставляя описание расширения Вселенной в двух системах координат в сопутствующей материи системе координат, относительно которой

Подробнее

СКОЛЬКО ВЕСИТ ВИДИМАЯ ВСЕЛЕННАЯ? Зуев Б.К.

СКОЛЬКО ВЕСИТ ВИДИМАЯ ВСЕЛЕННАЯ? Зуев Б.К. СКОЛЬКО ВЕСИТ ВИДИМАЯ ВСЕЛЕННАЯ? Зуев Б.К. (Самара) В монографии «Рождение и эволюция материи» (1) представлена эволюционная модель непрерывно развивающейся Вселенной, где физическое пространство рассматривается

Подробнее

Тема 5. Механические колебания и волны.

Тема 5. Механические колебания и волны. Тема 5. Механические колебания и волны. 5.1. Гармонические колебания и их характеристики Колебания процессы, отличающиеся той или иной степенью повторяемости. В зависимости от физической природы повторяющегося

Подробнее

ОШИБКИ В ТЕОРИИ БОЛЬШОГО ВЗРЫВА.

ОШИБКИ В ТЕОРИИ БОЛЬШОГО ВЗРЫВА. ОШИБКИ В ТЕОРИИ БОЛЬШОГО ВЗРЫВА. ВСЕЛЕННАЯ - ВЕЧНАЯ И БЕСКОНЕЧНАЯ! Брусин С.Д., Брусин Л.Д. brusins@mail.ru Аннотация. Раскрывается ошибка в основе теории Фридмана, а также ошибка Эдвина Хаббла в понимании

Подробнее

СИЛОВОЕ ВЗАИМОДЕЙСТВИЕ ДВУХ ДВИЖУЩИХСЯ ЗАРЯДОВ «ПО НЬЮТОНУ» И ЭНЕРГООБМЕН МЕЖДУ НИМИ Тер-Маркарян А.А., 2008

СИЛОВОЕ ВЗАИМОДЕЙСТВИЕ ДВУХ ДВИЖУЩИХСЯ ЗАРЯДОВ «ПО НЬЮТОНУ» И ЭНЕРГООБМЕН МЕЖДУ НИМИ Тер-Маркарян А.А., 2008 СИЛОВОЕ ВЗАИМОДЕЙСТВИЕ ДВУХ ДВИЖУЩИХСЯ ЗАРЯДОВ «ПО НЬЮТОНУ» И ЭНЕРГООБМЕН МЕЖДУ НИМИ Тер-Маркарян АА 008 Россия Москва e-mail: tenewenegy@mailu Предлагается простой вывод формулы для силы взаимодействия

Подробнее

4-х вектор или контравариантный тензор первого ранга относительно преобразования Лоренца. ct 4-х вектор, так как его свертка с 4-х вектором k

4-х вектор или контравариантный тензор первого ранга относительно преобразования Лоренца. ct 4-х вектор, так как его свертка с 4-х вектором k Основы квантовой механики Волна вероятности, длина волны де Бройля В экспериментах по отражению электронов от металла (~197г) наблюдаются максимумы диаграммы направленности рассеянных электронов Эти максимумы

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Возможная модель аномалии смещения частоты сигналов зондов Пионер 10 и Пионер Введение.

Возможная модель аномалии смещения частоты сигналов зондов Пионер 10 и Пионер Введение. Возможная модель аномалии смещения частоты сигналов зондов Пионер 0 и Пионер. Л. Римша В. Римша laimontas.imsa@yahoo.om vikto@pasvalys.lt Показано, что имеется возможность обьяснить так называемое аномальное

Подробнее

Гравитация и сила времени. Яхонтов В.Н.

Гравитация и сила времени. Яхонтов В.Н. Гравитация и сила времени Яхонтов В.Н. В статьях [1-6 ], представляющих основные положения темпоральной модели пространства, движения и взаимодействия, были обнаружены ошибки, требующие исправления. Данная

Подробнее

Поперечная составляющая ускорения клина выражается, очевидно, как: aa = KK MM HH cos αα + kk MM h ;

Поперечная составляющая ускорения клина выражается, очевидно, как: aa = KK MM HH cos αα + kk MM h ; Поскольку ни одного корректного исчерпывающего решения данной задачи приведено не было. Хотелось поставить, если не точку, то хотя бы точку с запятой в противоречиях, которые она вызывает при решении.

Подробнее

7. Гравитационное поле 7.1. Закон всемирного тяготения

7. Гравитационное поле 7.1. Закон всемирного тяготения 7. Гравитационное поле 7.1. Закон всемирного тяготения Давно замечено, что звезды на небосводе сохраняют взаимное расположение, тогда как планеты описывают сложные, петлеобразные траектории. Для их объяснения

Подробнее

1. При движении планеты из положения C в положение D за тот же интервал времени радиус-вектор описывает площадь S

1. При движении планеты из положения C в положение D за тот же интервал времени радиус-вектор описывает площадь S Лекция 4 Движение планет законы Кеплера. Применение законов сохранения энергии и момента импульса к движению в центральном гравитационном поле. Космические скорости. Основные достижения науки и техники

Подробнее

НЕПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА И СТРОЕНИЕ ВЕЩЕСТВ

НЕПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА И СТРОЕНИЕ ВЕЩЕСТВ НЕПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА И СТРОЕНИЕ ВЕЩЕСТВ Брусин Л.Д., Брусин С.Д. brusins@mail.ru Аннотация. Показано, что существующая планетарная модель атома не имеет научного обоснования. Приводится расчет положения

Подробнее

М.Х. Шульман, АЛЬТЕРНАТИВНАЯ КОСМОЛОГИЯ (презентация книги) г. МГУ, биофак, ауд. М-1

М.Х. Шульман, АЛЬТЕРНАТИВНАЯ КОСМОЛОГИЯ (презентация книги) г. МГУ, биофак, ауд. М-1 М.Х. Шульман, 2011 АЛЬТЕРНАТИВНАЯ КОСМОЛОГИЯ (презентация книги) 13.12.2011 г. МГУ, биофак, ауд. М-1 Статья в журнале Наука и Жизнь, 7, 2011: www.timeorigin21.narod.ru/rus_time/lebedev_shulman.pdf Книга

Подробнее

1.9. Потенциальная энергия. Потенциал поля.

1.9. Потенциальная энергия. Потенциал поля. .9. Потенциальная энергия. Потенциал поля..9.. Понятие потенциальной энергии. Если поле сил (сила, определенная в каждой точке пространства) не зависит от времени, то такое поле сил называется стационарным.

Подробнее

Занятие 21 Тема: Цель: Краткая теория модель абсолютно черного тела серых квантов фотон энергетической светимостью Закон Стефана-Больцмана

Занятие 21 Тема: Цель: Краткая теория модель абсолютно черного тела серых квантов фотон энергетической светимостью Закон Стефана-Больцмана Занятие 1 Тема: Равновесное тепловое излучение Квантовая природа излучения Цель: Законы Стефана-Больцмана, Вина Фотоны Формула Планка Давление излучения Плотность потока фотонов Краткая теория Нагретое

Подробнее

Описание научной идеи.

Описание научной идеи. Автор: Акованцев Петр Иванович. Описание научной идеи. Название научной идеи: «Гравитация как поток Эфира, заполняющего весь объѐм Вселенной в двух агрегатных состояниях-тѐмный эфир(далее Эфир) и светлый

Подробнее

О системах дифференциальных уравнений, содержащих параметры

О системах дифференциальных уравнений, содержащих параметры Математический сборник т 7(69) 95 А Н Тихонов О системах дифференциальных уравнений содержащих параметры Рассмотрим систему дифференциальных уравнений n и решение этой системы определяемое условиями Это

Подробнее

10, для двух протонов, которые являются

10, для двух протонов, которые являются 1 ВВЕДЕНИЕ. ЗАКОН КУЛОНА. ПРИНЦИП СУПЕРПОЗИЦИИ Современной науке известны четыре вида взаимодействия материальных объектов: гравитационное, электромагнитное, сильное (ядерное) и слабое. Все они играют

Подробнее

1.9. Преобразования векторов электромагнитного поля. c v

1.9. Преобразования векторов электромагнитного поля. c v .9. Преобразования векторов электромагнитного поля..9.. Преобразования компонент электромагнитного поля. Полученные и изученные нами законы электродинамики применимы для описания явлений, которые происходят

Подробнее

[УФН , 1225 (2015)]

[УФН , 1225 (2015)] Гравитационная масса фотонов [УФН 185 11, 15 (015)] Р. И. Храпко * Московский авиационный институт, Москва, 1599 Показано, что гравитационная масса фотонов или тел совпадает с их инертной массой. Рассмотрено

Подробнее

Примечание: в случае равномерного движения средняя и мгновенная скорость совпадают.

Примечание: в случае равномерного движения средняя и мгновенная скорость совпадают. Тема 2. Неравномерное движение 1. Средняя и мгновенная скорость Средняя скорость - это такая скорость, с которой тело могло бы двигаться, если бы двигалось равномерно. В действительности скорость тела

Подробнее

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Лекция 4 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Тема: Элементарная кривая Касательная Длина кривой План лекции Понятие и способы задания элементарной кривой Вектор-функция одного переменного Касательная к кривой

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

8. Неинерциальные системы отсчета. 8.1 Силы инерции

8. Неинерциальные системы отсчета. 8.1 Силы инерции 8. Неинерциальные системы отсчета 8.1 Силы инерции Законы Ньютона выполняются только в инерциальных системах отсчета. Относительно всех инерциальных систем тело движется с одним и тем же ускорением a.

Подробнее

Изучение одномерного движения материальной точки под воздействием двух сил - упругой и постоянной, направленных вдоль одной линии

Изучение одномерного движения материальной точки под воздействием двух сил - упругой и постоянной, направленных вдоль одной линии Изучение одномерного движения материальной точки под воздействием двух сил - упругой и постоянной направленных вдоль одной линии Экелекян Варужан Левонович педагог физики ГБОУ Лицей 1561 кандидат физико-математических

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 17 ДИНАМИКА ТОЧКИ ПЕРЕМЕННОЙ МАССЫ. Лектор: Батяев Евгений Александрович

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 17 ДИНАМИКА ТОЧКИ ПЕРЕМЕННОЙ МАССЫ. Лектор: Батяев Евгений Александрович ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1 СЕМЕСТР ЛЕКЦИЯ 17 ДИНАМИКА ТОЧКИ ПЕРЕМЕННОЙ МАССЫ Лектор: Батяев Евгений Александрович Батяев Е. А. (НГУ) ЛЕКЦИЯ 17 Новосибирск, 2016 г. 1 / 18 В природе и технике существует широкий

Подробнее

13 «Генерация и рекомбинация носителей заряда»

13 «Генерация и рекомбинация носителей заряда» 13 «Генерация и рекомбинация носителей заряда» Образование свободных электронов и дырок генерация носителей заряда происходит при воздействии теплового хаотического движения атомов кристаллической решетки

Подробнее

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x) 6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если

Подробнее

Модели роста популяций: модель Ферхюльста (логистический рост), модель с наименьшей критической численностью.

Модели роста популяций: модель Ферхюльста (логистический рост), модель с наименьшей критической численностью. СЕМИНАР Модели роста популяций: модель Ферхюльста (логистический рост), модель с наименьшей критической численностью. ЛОГИСТИЧЕСКИЙ РОСТ (УРАВНЕНИЕ ФЕРХЮЛЬСТА) Частым явлением в природе является ограниченность

Подробнее

Кинематика точки. Задачи. - орты осей X, Y и Z) (A, B, C положительные постоянные, ex. 3. Материальная точка движется вдоль оси x по закону: x( t)

Кинематика точки. Задачи. - орты осей X, Y и Z) (A, B, C положительные постоянные, ex. 3. Материальная точка движется вдоль оси x по закону: x( t) 1 Кинематика точки Задачи (,, положительные постоянные, e, e, ez - орты осей X, Y и Z) 1 Материальная точка движется вдоль оси по закону: ( ) cos ω Найдите проекцию скорости V () Материальная точка движется

Подробнее

ГЛАВА 5. Плоские волны

ГЛАВА 5. Плоские волны ГЛАВА 5 Плоские волны Излучатель электромагнитной волны создает вокруг себя фронт этих волн На больших расстояниях от излучателя волну можно считать сферической Но на очень больших расстояниях от излучателя

Подробнее

Резонирующий космос (Колебательное движение и формирование наклона плоскости вращения планет)

Резонирующий космос (Колебательное движение и формирование наклона плоскости вращения планет) В.Д. Краснов Email: apeyron7@yandex.ru Резонирующий космос (Колебательное движение и формирование наклона плоскости вращения планет) Аннотация Рассмотрен механизм возникновения и формирования наклона плоскости

Подробнее

Вестник Челябинского государственного университета (310) Физика. Вып. 17. С ВАКУУМ И ГРАВИТАЦИЯ

Вестник Челябинского государственного университета (310) Физика. Вып. 17. С ВАКУУМ И ГРАВИТАЦИЯ Вестник Челябинского государственного университета. 2013. 19 (310) Физика. Вып. 17. С. 66 71 ВАКУУМ И ГРАВИТАЦИЯ А. В. Клименко, В. А. Клименко ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА ОДНОРОДНОГО ИЗОТРОПНОГО ВАКУУМА Показано,

Подробнее

1.3. Теорема Гаусса.

1.3. Теорема Гаусса. 1 1.3. Теорема Гаусса. 1.3.1. Поток вектора через поверхность. Поток вектора через поверхность одно из важнейших понятий любого векторного поля, в частности электрического d d. Рассмотрим маленькую площадку

Подробнее

Динамика. в инерциальной системе отсчета направлены в противоположные стороны, а отношение модулей ускорений a / a 1 2

Динамика. в инерциальной системе отсчета направлены в противоположные стороны, а отношение модулей ускорений a / a 1 2 Динамика Первый закон Ньютона утверждает, что существуют такие системы отсчета, в которых любое тело, не взаимодействующее с другими телами, движется равномерно и прямолинейно Системы отсчета, существование

Подробнее

Красное смещение в спектрах космических объектов носит гравитационный характер Вселенная не расширяется.

Красное смещение в спектрах космических объектов носит гравитационный характер Вселенная не расширяется. Красное смещение в спектрах космических объектов носит гравитационный характер Вселенная не расширяется. Тигунцев С.Г. stiguncev@yandex.ru В 1913 году американский астроном Весто Слайфер начал изучать

Подробнее

7. Основные виды волновых полей

7. Основные виды волновых полей 7. Основные виды волновых полей 1 7.1. Понятия физического и реперного пространств Описание физических пространств-полей материи-пространства-времени Вселенной опирается на математические или реперные

Подробнее

З.И. Докторович Москва 2005г. Механико-электромагнитные свойства электрона и физический смысл постоянной Планка.

З.И. Докторович Москва 2005г.  Механико-электромагнитные свойства электрона и физический смысл постоянной Планка. З.И. Докторович Москва 005г. http://www.doctorovich.biz/ Механико-электромагнитные свойства электрона и физический смысл постоянной Планка. В работе представлен расчет главного момента импульса электрона

Подробнее

3.18. ПОТЕРИ НАПОРА В МЕСТНЫХ СОПРОТИВЛЕНИЯХ

3.18. ПОТЕРИ НАПОРА В МЕСТНЫХ СОПРОТИВЛЕНИЯХ Гидравлика 63 3.18. ПОТЕРИ НАПОРА В МЕСТНЫХ СОПРОТИВЛЕНИЯХ Как уже указывалось, помимо потерь напора по длине потока могут возникать и так называемые местные потери напора. Причиной последних, например,

Подробнее

ФИЗИКА ZMV. Основы новой физики. Заставницкий Михаил Васильевич, Республика Молдова, г. Кишинёв.

ФИЗИКА ZMV. Основы новой физики. Заставницкий Михаил Васильевич, Республика Молдова, г. Кишинёв. ФИЗИКА ZMV. Основы новой физики Заставницкий Михаил Васильевич, Республика Молдова, г. Кишинёв. E-mail: fizicazmv@gmail.com Абстракт Начало всех Начал есть гравитационное поле. Оно состоит из хаотически

Подробнее

Принцип физической иррациональности в концепции двигающегося пространства-материи. Дижечко Б.С.

Принцип физической иррациональности в концепции двигающегося пространства-материи. Дижечко Б.С. Принцип физической иррациональности в концепции двигающегося пространства-материи Дижечко Б.С. fizika3@yandex.ru Детализация принципа иррациональности точек двигающегося пространства-материи приводит к

Подробнее

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ.

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ. Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента xиз этого промежутка функция y=f(x)

Подробнее

Методические указания к лабораторной работе «Определение напряженности гравитационного поля Земли при помощи маятника» (УГЛТУ) Кафедра физики

Методические указания к лабораторной работе «Определение напряженности гравитационного поля Земли при помощи маятника» (УГЛТУ) Кафедра физики МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Уральский государственный лесотехнический университет (УГЛТУ) Кафедра физики Заплатина

Подробнее

ГРАВИТАЦИЯ. Сахаров А.В. 1, 2016

ГРАВИТАЦИЯ. Сахаров А.В. 1, 2016 ГРАВИТАЦИЯ Сахаров А.В. 1, 2016 Притяжение так соотносится с отталкиванием, что имеет своей предпосылкой Гегель (1770 1831) В настоящее время нет строгого определения понятия гравитации, его принимают

Подробнее

Коаксиальные кабели Электрические процессы в коаксиальных цепях

Коаксиальные кабели Электрические процессы в коаксиальных цепях Коаксиальные кабели Электрические процессы в коаксиальных цепях Способность коаксиальной пары пропускать широкий спектр частот конструктивно обеспечивается коаксиальным расположением внутреннего и внешнего

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21 1 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность электрического поля системы зарядов.

Подробнее

ГЛАВА 4. РЕШЕНИЕ УРАВНЕНИЙ ДВИЖЕНИЯ Одномерное движение

ГЛАВА 4. РЕШЕНИЕ УРАВНЕНИЙ ДВИЖЕНИЯ Одномерное движение ГЛАВА 4. РЕШЕНИЕ УРАВНЕНИЙ ДВИЖЕНИЯ 4.. Одномерное движение Уравнение движения (.3) в одномерном случае имеет вид dp F( x), p γ x, & γ. (4.) dt x& c -й интеграл этого уравнения, как показано в.9, есть

Подробнее

ГДЕ НАЧИНАЕТСЯ КРИВИЗНА ПРОСТРАНСТВА или БОЛЬШОЙ ВЗРЫВ ОТМЕНЯЕТСЯ

ГДЕ НАЧИНАЕТСЯ КРИВИЗНА ПРОСТРАНСТВА или БОЛЬШОЙ ВЗРЫВ ОТМЕНЯЕТСЯ ГДЕ НАЧИНАЕТСЯ КРИВИЗНА ПРОСТРАНСТВА или БОЛЬШОЙ ВЗРЫВ ОТМЕНЯЕТСЯ Кривизна пространства звучит очень загадочно и таинственно. Настолько таинственно, что и думать страшно. Поэтому, наверное, никто и не

Подробнее

Не смотря на кажущееся разнообразие взаимодействий и сил в окружающем мире, существует всего ЧЕТЫРЕ типа сил:

Не смотря на кажущееся разнообразие взаимодействий и сил в окружающем мире, существует всего ЧЕТЫРЕ типа сил: Тема 4. Силы в природе 1. Многообразие сил в природе Не смотря на кажущееся разнообразие взаимодействий и сил в окружающем мире, существует всего ЧЕТЫРЕ типа сил: 1 тип - ГРАВИТАЦИОННЫЕ силы (иначе - силы

Подробнее

Семинары 3-4. Электромагнитные волны. Давление света.

Семинары 3-4. Электромагнитные волны. Давление света. Семинары 3-4 Электромагнитные волны Давление света Основной материал семинара изложен в конспекте лекций по оптике Здесь только дополнительные моменты 1 В вакууме распространяется электромагнитная волна

Подробнее

Колебания. Периодическая величина: функция f(t) есть периодическая функция (величина) с периодом Т если f(t)=f(t+t)

Колебания. Периодическая величина: функция f(t) есть периодическая функция (величина) с периодом Т если f(t)=f(t+t) Колебания 1Уравнение свободных колебаний под действием квазиупругой силы. Гармонический осциллятор. 3 Энергия гармонического осциллятора. 4 Сложение гармонических колебаний. Колебания Периодическая величина:

Подробнее

2 Величину обозначим как кинетическую энергию, тогда изменение кинетической энергии материальной точки равно работе,

2 Величину обозначим как кинетическую энергию, тогда изменение кинетической энергии материальной точки равно работе, Лекция 5 Законы сохранения Лукьянов И.В. Содержание 1. Работа и энергия 2. Теорема о кинетической и потенциальной энергиях 3. Понятие КПД и мощности 4. Суть законов сохранения 5. Законы сохранения их вывод

Подробнее

Занятие 2. Ускорение. Равноускоренное движение

Занятие 2. Ускорение. Равноускоренное движение Занятие. Ускорение. Равноускоренное движение Вариант 1.1.1. Какая из нижеперечисленных ситуаций невозможна: 1. Тело в некоторый момент времени имеет скорость, направленную на север, а ускорение, направленное

Подробнее

1. Электрическое поле. В этом разделе мы будем изучать физику неподвижных электрических зарядов - электростатику Электрический заряд

1. Электрическое поле. В этом разделе мы будем изучать физику неподвижных электрических зарядов - электростатику Электрический заряд 1 Электричество и магнетизм Первым исследователям электрических явлений могло показаться, что эти явления являются некоторой экзотикой, не имеют отношения ко многим явлениям природы и вряд ли найдут значительное

Подробнее

СОБЫТИЯ, ПРЕДШЕСТВУЮЩИЕ ПАДЕНИЮ МЕТЕОРОИДА

СОБЫТИЯ, ПРЕДШЕСТВУЮЩИЕ ПАДЕНИЮ МЕТЕОРОИДА Фесенко Б.И. СОБЫТИЯ, ПРЕДШЕСТВУЮЩИЕ ПАДЕНИЮ МЕТЕОРОИДА Рассмотрена приближенная статистическая модель эволюции орбиты малого тела, пролетающего время от времени мимо Земли и в то же время не испытывающего

Подробнее

Лекция 3. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ

Лекция 3. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ Лекция 3. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ 1. Движение точечного тела по окружности. Вращение протяженного тела

Подробнее

Распределение Больцмана

Распределение Больцмана Распределение Больцмана 1.Барометрическая формула. 2. Второй опыт Перрена. 3. Распределение Больцмана. Хаотические молекулярные движения приводят к тому, что частицы газа равномерно распределяются по объему

Подробнее

ОТВЕТЫ НА ТРУДНЫЕ ВОПРОСЫ. Комментарии к работе:: Александр Плазар ТРУДНЫЕ ВОПРОСЫ

ОТВЕТЫ НА ТРУДНЫЕ ВОПРОСЫ. Комментарии к работе:: Александр Плазар ТРУДНЫЕ ВОПРОСЫ Брусин С.Д, Брусин Л.Д. Контакт с автором: brusins@mail.ru ОТВЕТЫ НА ТРУДНЫЕ ВОПРОСЫ Комментарии к работе:: Александр Плазар ТРУДНЫЕ ВОПРОСЫ http://sciteclibrary.ru/rus/catalog/pages/12148.html Аннотация.

Подробнее

ЗАКОНОМЕРНОСТИ ДВИЖЕНИЯ ДВУХ ВЗАИМОДЕЙСТВУЮЩИХ

ЗАКОНОМЕРНОСТИ ДВИЖЕНИЯ ДВУХ ВЗАИМОДЕЙСТВУЮЩИХ ЗАКОНОМЕРНОСТИ ДВИЖЕНИЯ ДВУХ ВЗАИМОДЕЙСТВУЮЩИХ ТЕЛ Сухоруков ГИ Братский государственный университет, Макаренко, 40, гбратск 665709, Россия e-i: i_u@bsuu Введение После открытия Ньютоном закона всемирного

Подробнее

М. Петуховский к.т.н., лауреат Государственной премии ИЗЛУЧЕНИЕ ФОТОНОВ И СТРУКТУРА АТОМА В предлагаемой статье автор пытается в популярной форме

М. Петуховский к.т.н., лауреат Государственной премии ИЗЛУЧЕНИЕ ФОТОНОВ И СТРУКТУРА АТОМА В предлагаемой статье автор пытается в популярной форме М. Петуховский к.т.н., лауреат Государственной премии ИЗЛУЧЕНИЕ ФОТОНОВ И СТРУКТУРА АТОМА В предлагаемой статье автор пытается в популярной форме изложить свой взгляд на процесс излучения света и переноса

Подробнее

ЛЕКЦИЯ 6 СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ. ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА. ГРАВИТАЦИОННОЕ ПОЛЕ

ЛЕКЦИЯ 6 СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ. ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА. ГРАВИТАЦИОННОЕ ПОЛЕ ЛЕКЦИЯ 6 СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ. ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА. ГРАВИТАЦИОННОЕ ПОЛЕ Рис. 6.1 На рис. 6.1 показано столкновение двух частиц. Здесь A снаряд, В мишень, С результирующая

Подробнее

Преобразование произвольного тела в сферу комплексного радиуса Якубовский Е.Г.

Преобразование произвольного тела в сферу комплексного радиуса Якубовский Е.Г. Преобразование произвольного тела в сферу комплексного радиуса Якубовский ЕГ e-m uov@rmerru Произвольное тело можно преобразовать с помощью ортогонального преобразования сохраняющего углы в сферическое

Подробнее

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье. Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и

Подробнее

Виталий Соколов, Геннадий Соколов. Эффект Доплера и космологическое красное смещение. 1. Эффект Доплера в акустике. = T0. V = λ0

Виталий Соколов, Геннадий Соколов. Эффект Доплера и космологическое красное смещение. 1. Эффект Доплера в акустике. = T0. V = λ0 Виталий Соколов, Геннадий Соколов Эффект Доплера и космологическое красное смещение В 84 году Доплер показал, что частота звука или света должна изменяться, если источник или наблюдатель движутся относительно

Подробнее

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Физический факультет ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА Методические указания для выполнения лабораторной работы Томск 14 Рассмотрено и утверждено методической

Подробнее

Гравитационное взаимодействие.

Гравитационное взаимодействие. Силы в природе. Слово «сила» имеет огромное количество значений: электродвижущая сила, живая сила, сила света, сила потока и так далее «Зачем надевают кольцо золотое На палец, когда обручаются двое? Меня

Подробнее

понятие момента импульса L. Пусть материальная точка A, движущаяся по окружности радиуса r, обладает импульсом

понятие момента импульса L. Пусть материальная точка A, движущаяся по окружности радиуса r, обладает импульсом Лекция 11 Момент импульса Закон сохранения момента импульса твердого тела, примеры его проявления Вычисление моментов инерции тел Теорема Штейнера Кинетическая энергия вращающегося твердого тела Л-1: 65-69;

Подробнее

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1 Труды международного симпозиума «Надежность и качество 009», Пенза том Горячев ВЯ, Савин АВ ОПРЕДЕЛЕНИЕ СВЯЗИ МЕЖДУ УСКОРЕНИЕМ И ПОПЕРЕЧНОЙ ДЕФОРМАЦИЕЙ УПРУГОГО ЭЛЕМЕНТА ДАТЧИКА Упругий элемент является

Подробнее

z удовлетворяют уравнению F ( x,

z удовлетворяют уравнению F ( x, Аналитическая геометрия в пространстве В главе будут рассмотрены некоторые линии и поверхности в пространстве Будем исходить из наглядного представление о линии и поверхности известного из курса математики

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Законы Ньютона. Принцип относительности Галилея.

Законы Ньютона. Принцип относительности Галилея. 1..1. Законы Ньютона. Принцип относительности Галилея. Опыт показывает, что при определенном выборе системы отсчета справедливо следующее утверждение: свободное тело, т.е. тело, не взаимодействующее с

Подробнее

ТЕМА 16. УРАВНЕНИЯ МАКСВЕЛЛА

ТЕМА 16. УРАВНЕНИЯ МАКСВЕЛЛА ТЕМА 16 УРАВНЕНИЯ МАКСВЕЛЛА 161 Ток смещения 162 Единая теория электрических и магнитных явлений Максвелла Система уравнений Максвелла 164 Пояснения к теории классической электродинамики 165 Скорость распространения

Подробнее

Лекция 10: Эллипс. Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики. Б.М.

Лекция 10: Эллипс. Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики. Б.М. Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В трех предыдущих лекциях изучались прямые и плоскости, т.е.

Подробнее

Оглавление 1. Введение 2. Решение уравнений Максвелла 3. Напряженности 4. Потоки энергии 5.Обсуждение Приложение 1 Приложение 2 Литература

Оглавление 1. Введение 2. Решение уравнений Максвелла 3. Напряженности 4. Потоки энергии 5.Обсуждение Приложение 1 Приложение 2 Литература Хмельник С. И. Второе решение уравнений Максвелла Аннотация Предлагается новое решение уравнений Максвелла для вакуума. Предварительно отмечается, что доказательство единственности известного решения основано

Подробнее

О ВЛИЯНИИ СИЛЫ ТЯЖЕСТИ НА СКОРОСТЬ СВЕТА И ТЕМП ХОДА АТОМНЫХ ЧАСОВ 2017 г. Г. Г. Дмитренко

О ВЛИЯНИИ СИЛЫ ТЯЖЕСТИ НА СКОРОСТЬ СВЕТА И ТЕМП ХОДА АТОМНЫХ ЧАСОВ 2017 г. Г. Г. Дмитренко 1 О ВЛИЯНИИ СИЛЫ ТЯЖЕСТИ НА СКОРОСТЬ СВЕТА И ТЕМП ХОДА АТОМНЫХ ЧАСОВ 017 г. Г. Г. Дмитренко dmitrenko4@mail.ru Рассмотрен физический смысл опыта Паунда и Ребки из которого следует вывод о неизбежном изменении

Подробнее

Геоцентрическая система мира

Геоцентрическая система мира Физика-9 класс Геоцентрическая система мира Попытки объяснения наблюдаемой картины мира,и прежде всего строения Солнечной системы,занимали умы многих великих людей. Во 2 в. н.э. древнегреческим учѐным

Подробнее

9 класс. 1. Решение. Время пролета собственного диаметра D для тела составляет. D T = = v

9 класс. 1. Решение. Время пролета собственного диаметра D для тела составляет. D T = = v 9 класс 1 Условие Какое из трех тел быстрее пролетает свой собственный диаметр Луна (при вращении вокруг Земли), Земля (при вращении вокруг Солнца) или Солнце (при вращении вокруг центра Галактики)? 1

Подробнее

I. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ При обучении физики в курсе 11 класса применяются вербальные, визуальные, технические,

I. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ При обучении физики в курсе 11 класса применяются вербальные, визуальные, технические, I. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ При обучении физики в курсе 11 класса применяются вербальные, визуальные, технические, современно-информационные средства обучения; технологии проблемного и развивающего

Подробнее