План лекции. Статистики, свойства оценок. Методы оценки параметров. Доверительные интервалы, оценка статистических ошибок

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "План лекции. Статистики, свойства оценок. Методы оценки параметров. Доверительные интервалы, оценка статистических ошибок"

Транскрипт

1 План лекции Статистики, свойства оценок. Методы оценки параметров метод моментов метод максимума правдоподобия метод наименьших квадратов Доверительные интервалы, оценка статистических ошибок

2 Функция результатов наблюдения (статистика) Рассмотрим новую случайную величину Y = Φ(X 1, X 2..., X n ) любая такая функция Φ функция результатов наблюдения или статистика. Пример: выборочное среднее m = 1 N Xk оценки параметров распределения являются как раз такими функциями.

3 Свойства оценок. Состоятельность Состоятельность оценки наиболее важное свойство, означает: lim ˆθ(X 1,... X n ) = θ n т.е. при увеличения числа наблюдений оценка стремится к оцениваемой величине. Пример: для нормального распределения s 2 = 1 N (Xk m) 2 где m = 1 N X k является оценкой дисперсии (σ 2 )

4 Смещение Смещение это разница математического ожидания оценки и оцениваемого параметра: так, для предыдущего примера β(θ) = E(ˆθ) θ β(σ 2 ) = σ2 N несмещенной оценкой в данном случае является s 2 = 1 (Xk m) 2 N 1

5 Эффективность Оценка считается более эффективной, чем другие, если её дисперсия меньше. Естественно, при этом оценка должна быть состоятельной, в противном случае, например, можно выбрать любое постоянное число, дисперсия будет равна 0.

6 Достаточность Если статистика S(x) такова, что p(x S) θ = 0 т.е. условная вероятность для набора данных при сохранении S(x) не зависит от θ. Другими словами, вся информация, которая может использоваться для получения оценки θ, содержится в S(x).

7 Устойчивость Иногда при обработке наблюдений мы лишь приблизительно знаем форму распределения. Особенно это касается так называемых хвостов распределения. Устойчивая оценка слабо зависит от малых изменений распределения, хвостов. Например, медиана более устойчивая (но, как правило, менее эффективная) оценка параметра положения. Примечание: если вероятность может быть представлена в форме p(x; θ) = p(x θ), то θ параметр положения.

8 Функция правдоподобия Пусть наблюдаемая величина распределена с плотностью вероятности f (x; θ), где θ параметр распределения. Функция правдоподобия это плотность вероятности вычисленная в при измеренном значении x (т.е. это функция от θ при известном значении x). В случае нескольких независимых измерений, ф.п. можно представить как произведение: L(X ; θ) N f (X k ; θ) k=1

9 Функция правдоподобия: пример I Допустим, мы N раз измеряем величину, распределенную по нормальному распределению, тогда ф.п.: ) L(X ; µ, σ) = 1 ( 2πσ ) N exp ( 1 2σ 2 (Xk µ) 2

10 Функция правдоподобия: пример II Счетный эксперимент несколько независимых счетчиков (или гистограмма), в общем случае ф.п.: L(n; θ) = θ n k k e θ k понятно, между θ k могут существовать какие-то зависимостьи, но общая форма именно такая. n k!

11 Информация Фишера Если L(x; θ) функция правдоподобия распределения, зависящая от θ, то информация Фишера: ( ( ) ) 2 ln L I (θ) = E θ это число оценивает, насколько эффективно оценивается параметр θ, используя измерения, распределенные соотв. образом. Интуитивно: чем более резко изменяется ф.п. в зависимости от θ тем, очевидно, больше информации содержится в измерениях. Более точный смысл этого числа на след. слайде. Полезно знать, что для гладкой ф.п.: ( ( ) ) 2 ( ) ln L 2 ln L E = E θ θ 2

12 Неравенство Крамера-Рао Рассмотрим оценку ˆθ, полученную из набора N измерений X k, со смещением β(θ). Теорема Крамера-Рао утверждает, что если диапазон изменения x не зависит от θ, ˆθ имеет конечную дисперсию, и то σ 2^θ (1 + θβ) 2 I (θ)

13 Эффективная оценка Эффективной оценкой является оценка, при которой неравенство становится равенством. Можно показать, что эффективная оценка существует в том и только том случае, если выполняется ln L θ = (f (x) h(θ)) g(θ) если h(θ) = θ то существует несмещенная эффективная оценка.

14 Метод моментов (подстановки) Пусть плотность вероятности некоторого распределения p(x; θ) и некоторую статистику f (x), тогда E(f ) = f (x) p(x; θ) dx = φ f (θ) если функция φ f обратима, то оценку θ можно получить, как ( ˆθ = φ ( 1) 1 ) f f (X i ) N

15 Метод максимума правдоподобия Оценка максимального правдоподобия (ОМП) ˆθ это такое θ, при котором L(x; θ) максимально: L(x; ˆθ) = max L(x; θ) θ

16 Свойства оценки максимума правдоподобия 1. Если существует несмещенная эффективная оценка, то она совпадает с ОМП 2. ОМП асимптотически состоятельна, эффективна, несмещенная и нормально распределена 3. f (θ MLE ) = f (θ) MLE ОМП функции от параметра является функцией от ОМП параметра 4. Если существует достаточная статистика, то ОМП достаточная статистика

17 Пример: Биномиальное распределение Запишем функцию правдоподобия Запишем условие на максимум: L(r; p) = C r N pr (1 p) N r ln L p = p (const + r ln p + (N r) ln(1 p)) = r p N r 1 p = 0 откуда p = r N легко убедиться, что оценка является несмещенной

18 Пример: Нормальное распределение п.в. f (x; m, σ) = 1 e (x m)2 2σ 2 2π σ ф.п. L(X ; m, σ) = (2π) N/2 σ N e 1 N 2σ 2 1 (X k m) 2, здесь удобней пользоваться логарифмом правдоподобия: l(m, σ) ln L = N 2 ln σ2 + (X k m) 2 ln 2π. l m = X k m 2 σ 2 + N 2 σ 2, откуда сразу можно получить m = Xk ( N 2 σ 2 N (X k m) ), 2 σ 2 откуда l = N (X k m) 2 = 1 σ 2 2 σ 2 2 σ 4 σ 2 = 1 N (Xk m) 2 = 1 N X 2 k m2

19 Пример: Равномерное распределение Для равномерного распределения f (x; a, b) = 1, x [a, b]. b a Функция правдоподобия для выборки {X k } L(X ; a, b) = 1, b > a, b X (b a) N k, a X k, или b max X k, a min X k. Т.к. функция строго убывает для b и строго возрастает для a, максимум ф.п. достигается при a = min X k, b = max X k

20 Метод наименьших квадратов Пусть есть набор измерений {x k } с мат. ожиданием {g k = E(x k )}и матрицей ошибок M, тогда минимум формы S = (x g) M 1 (x g) даст оценку методом наименьших квадратов (МНК). Мотивация этого подхода: если x распределены нормально, МНК становится оценкой максимума правдоподобия, а S распределена в соответствии с рапределением χ 2 N r, где r количество независимых параметров.

21 Доверительные интервалы. На практике нас, конечно, интересует не просто оценка некоего параметра, но и то, насколько ей можно доверять. Доверительным интервалом с уровнем доверия α называется отрезок [a, b], для которого вероятность наблюдения параметра θ [a, b] равна α. 1. доверительный интервал характеризует собранные данные, т.е. меньший его размер соответствует более точному измерению 2. доверительный интервал ничего не говорит о реальных параметрах распределения Верхний и нижний пределы.

22 ДИ для нормального распределения Распределение симметрично, характерные интервалы m ± σ α = 68.3% m ± 2σ α = 95.4% m ± 3σ α = 99.7% Многие оценки имеют асимптотически нормальное распределение!

23 Оценка доверитеьного интервала с использованием производных функции правдоподобия Если есть основания предполагать, что распределение приближенно нормально, то для оценки ошибок для ОМП параметра можно использовать обратную 2-ю производную обратного логарифма ф.п.: σ 2 θ = 2 ln L θ 2 Далее доверительная область строится используя соотношения между размером интервала и вероятности на предыдущем слайде. В многомерном матрица ковариации приближенно (для нормального распр. точно) равна 2 ln L θ i θ j 1 ^θ 1

24 Оценка ошибок с использованием отношения функций правдоподобия В более общем случае, хотя и не всегда, доверительный отрезок (область) можно получить следующим образом. Найти максимум ф.п. L (он же минимум функции ln L). Построить границу, на которой ln L = min( ln L) тогда при достаточно общих предположениях получится 68% доверительная область. Для построения 95% доверительной области нужно добавить 2 = (k^2*0.5) и т.д.:

25 Перенос ошибок Для расчета ошибок функции от нескольких параметров, если ошибки достаточно малы, можно пользоваться формулой переноса ошибок, для f (θ i ) δf 2 i,j ρ i,j σ i σ j f θ i f θ j здесь ρ ij корреляционная матрица

26 Метод статистических испытаний (Toy Monte Carlo) Пусть функция зависит от нескольких переменных: f (θ i ), разыгрываем θ i согласно полученным распределениям (как приближение, часто можно использовать нормальное), полученные случайные числа статистически обрабатываем, используя: метод моментов, квантили и т.д.

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Грауэр Л.В., Архипова О.А. CS center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Лекция 2. Статистики первого типа. Точеченые

Подробнее

Задачи к экзамену по курсу «Математическая статистика»

Задачи к экзамену по курсу «Математическая статистика» Задачи к экзамену по курсу «Математическая статистика» весна 2011 01. Пусть (X 1, Y 1 ),..., (X n, Y n ) выборка, соответствующая случайному вектору (ξ, η). Докажите, что статистика T = 1 n 1 n (X i X)(Y

Подробнее

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость.

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость. Поиск оценки может быть рассмотрен как измерение параметра (предполагается, что он имеет некоторое фиксированное, но неизвестное значение), основанное на ограниченном числе экспериментальных наблюдений.

Подробнее

Лекция 9. Тема Введение в теорию оценок.

Лекция 9. Тема Введение в теорию оценок. Лекция 9 Тема Введение в теорию оценок. Содержание темы Предмет, цель и метод задачи оценивания Точечные выборочные оценки, свойства оценок Теоремы об оценках Интервальные оценки и интеграл Лапласа Основные

Подробнее

Лекция 3. Доверительные интервалы

Лекция 3. Доверительные интервалы Лекция 3. Доверительные интервалы Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2015 Грауэр Л.В., Архипова О.А. (CSC) Лекция 3. Доверительные интервалы Санкт-Петербург, 2015 1 / 41 Cодержание Содержание

Подробнее

Логашенко И.Б. Современные методы обработки экспериментальных данных. Оценка параметров

Логашенко И.Б. Современные методы обработки экспериментальных данных. Оценка параметров Оценка параметров Постановка задачи Пусть x вектор случайных величин, описываемых распределением f( x;,,,, параметры распределения (например, положение пика, ширина, масса частицы, { x, x, } Пусть ограниченная

Подробнее

ГЛАВА Несмещенные и состоятельные гиперслучайные оценки гиперслучайных величин

ГЛАВА Несмещенные и состоятельные гиперслучайные оценки гиперслучайных величин ГЛАВА 8 ХАРАКТЕРИСТИКИ ГИПЕРСЛУЧАЙНЫХ ОЦЕНОК ГИПЕРСЛУЧАЙНЫХ ВЕЛИЧИН Для точечных гиперслучайных оценок гиперслучайных величин введены понятия несмещенной, состоятельной, эффективной и достаточной оценок

Подробнее

Ответы на тест по курсу Теория вероятностей и математическая статистика. Июнь 2004 года. A n F. n=1. i=1

Ответы на тест по курсу Теория вероятностей и математическая статистика. Июнь 2004 года. A n F. n=1. i=1 Ответы на тест по курсу Теория вероятностей и математическая статистика. Июнь 2004 года 1 1. Основные понятия теории вероятностей. 1.1 1.2 A B = A B = A B (A \ B) (B \ A) = A B 1.3 A (A B) = A (A B) =

Подробнее

такая, что ' - ее функцией плотности. Свойства функции плотности

такая, что ' - ее функцией плотности. Свойства функции плотности Демидова ОА, Ратникова ТА Сборник задач по эконометрике- Повторение теории вероятностей Случайные величины Определение Случайными величинами называют числовые функции, определенные на множестве элементарных

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

Лекция 4. Доверительные интервалы

Лекция 4. Доверительные интервалы Лекция 4. Доверительные интервалы Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 4. Доверительные интервалы Санкт-Петербург, 2013 1 / 49 Cодержание Содержание 1 Доверительные

Подробнее

Программа курса. Математическая статистика. лектор к.ф.-м.н. И.В. Родионов. Весна 2014

Программа курса. Математическая статистика. лектор к.ф.-м.н. И.В. Родионов. Весна 2014 Программа курса Математическая статистика лектор к.ф.-м.н. И.В. Родионов Весна 2014 1. Вероятностно статистическая модель. Понятия наблюдения и выборки. Моделирование выборки из неизвестного распределения.

Подробнее

Оглавление Введение Выборка и ее характеристики Эмпирическая функция распределения Эмпирические (выборочные) моменты...

Оглавление Введение Выборка и ее характеристики Эмпирическая функция распределения Эмпирические (выборочные) моменты... Введение.... Выборка и ее характеристики... 3.. Эмпирическая функция распределения... 3.. Эмпирические (выборочные) моменты... 6.3. Примеры решения задач... 9. Теория точечных оценок... 4.. Несмещенные

Подробнее

лектор к.ф.-м.н. Д. А. Шабанов Весна 2011

лектор к.ф.-м.н. Д. А. Шабанов Весна 2011 Программа курса Математическая статистика лектор к.ф.-м.н. Д. А. Шабанов Весна 2011 1. Основная задача математической статистики. Понятие вероятностно-статистической модели. Примеры: выборка и линейная

Подробнее

Ульянов В. В. Ушаков В Г. Байрамов Н. Р. Нагапетян Т. А. РЕШЕНИЯ ЗАДАЧ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Ульянов В. В. Ушаков В Г. Байрамов Н. Р. Нагапетян Т. А. РЕШЕНИЯ ЗАДАЧ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Ульянов В. В. Ушаков В Г. Байрамов Н. Р. Нагапетян Т. А. РЕШЕНИЯ ЗАДАЧ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Москва 007 Аннотация. Данное методическое пособие предназначено для подготовки к экзамену по теории вероятности

Подробнее

ТЕМА 10. Статистическое оценивание Точечные и интервальные оценки параметров распределения

ТЕМА 10. Статистическое оценивание Точечные и интервальные оценки параметров распределения ТЕМА 10. Статистическое оценивание. Цель контента темы 10 изучить практически необходимые методы нахождения точечных и интервальных оценок неизвестных параметров распределения. Задачи контента темы 10:

Подробнее

12. Интервальные оценки параметров распределения

12. Интервальные оценки параметров распределения МВДубатовская Теория вероятностей и математическая статистика Лекция 7 Интервальные оценки параметров распределения Для выборок малого объема точечные оценки могут значительно отличаться от оцениваемых

Подробнее

Лекция 3. Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович

Лекция 3. Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович Лекция 3 Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й курс, III поток Сенько Олег Валентинович () МОТП, лекция

Подробнее

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ Точечные оценки. Понятие статистики и достаточной статистики. Отыскание оценок методом моментов, неравенство Рао-Крамера. Эффективность

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Министерство Российской Федерации по связи и информатизации Сибирский государственный университет телекоммуникаций и информатики Н. И. Чернова МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебное пособие Новосибирск 2009

Подробнее

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

4. Методом моментов найти оценки параметров α и β плотности

4. Методом моментов найти оценки параметров α и β плотности Экзаменационный билет по курсу: ИБМ, 3-й семестр (поток Грешилова А.А.). Случайные события. Определение вероятности.. Найти распределение дискретной случайной величины ξ, принимающей значения x с вероятности

Подробнее

Лекция 3. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда

Лекция 3. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда Лекция 3. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда Грауэр Л.В., Архипова О.А. CS center Санкт-Петербург, 2014 Грауэр Л.В., Архипова

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Б.И. Положинцев Теория вероятностей и математическая статистика Введение в математическую статистику Санкт-Петербург Издательство СПбГПУ

Подробнее

Семинар 3. Генерирование случайных величин. Повторение теории вероятностей и математической статистики. Задание для выполнения на компьютерах 1 :

Семинар 3. Генерирование случайных величин. Повторение теории вероятностей и математической статистики. Задание для выполнения на компьютерах 1 : Семинары по эконометрике 0 год Преподаватель: Вакуленко ЕС Семинар 3 Генерирование случайных величин Повторение теории вероятностей и математической статистики Задание для выполнения на компьютерах : Сгенерируйте

Подробнее

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):. Кафедра Общие сведения. Направление подготовки Экономика Математики и математических методов в экономике

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ О.Ю.Пелевин МЕТОДИЧЕСКАЯ РАЗРАБОТКА по курсу «Теория вероятностей и математическая статистика» для студентов физического

Подробнее

Элементы теории оценок и проверки гипотез

Элементы теории оценок и проверки гипотез Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

ГЛАВА 9 ГИПЕРСЛУЧАЙНЫЕ ОЦЕНКИ ГИПЕРСЛУЧАЙНЫХ ФУНКЦИЙ Гиперслучайно-гиперслучайная модель измерения

ГЛАВА 9 ГИПЕРСЛУЧАЙНЫЕ ОЦЕНКИ ГИПЕРСЛУЧАЙНЫХ ФУНКЦИЙ Гиперслучайно-гиперслучайная модель измерения ГЛАВА 9 ГИПЕРСЛУЧАЙНЫЕ ОЦЕНКИ ГИПЕРСЛУЧАЙНЫХ ФУНКЦИЙ Результаты, полученные для гиперслучайных оценок детерминированных и гиперслучайных величин, обобщены на случай гиперслучайных оценок гиперслучайных

Подробнее

Содержание. Предисловие... 9

Содержание. Предисловие... 9 Содержание Предисловие... 9 Введение... 12 1. Вероятностно-статистическая модель и задачи математической статистики...12 2. Терминология и обозначения......15 3. Некоторые типичные статистические модели...18

Подробнее

Теория Вероятностей и Математическая Статистика

Теория Вероятностей и Математическая Статистика ПРИМЕРНАЯ ПРОГРАММА Наименование дисциплины Теория Вероятностей и Математическая Статистика Рекомендуется для направления (ий) подготовки (специальности (ей)) для направления 080100.62 Экономика; для направления

Подробнее

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11 ЧАСТЬ 6 ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция ЗАКОН РАСПРЕДЕЛЕНИЯ И ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФУНКЦИЙ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие функции случайной величины и провести классификацию возникающих

Подробнее

Для студентов, аспирантов, преподавателей, научных сотрудников и инженеров

Для студентов, аспирантов, преподавателей, научных сотрудников и инженеров Ивановский Р. И. Теория вероятностей и математическая статистика. Основы, прикладные аспекты с примерами и задачами в среде Mathcad. СПб.: БХВ- Петербург, 2008. 528 с.: ил. + CD-ROM (Учебное пособие) В

Подробнее

Математическая статистика

Математическая статистика Математическая статистика 1 Выборка X x, x,, x Опр.1 Пусть одномерная с.в., а 1 значения с.в.,полученные в результате испытания. Будем называть полученные значения выборкой из генеральной совокупности

Подробнее

Математическая статистика (программа учебного курса)

Математическая статистика (программа учебного курса) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский национальный исследовательский государственный

Подробнее

Теоретические задания

Теоретические задания Вопросы к зачёту ОУИТ для групп П-1, П- и П- Специальность: 0115 Программирование в компьютерных системах По дисциплине: ЕН.0 Теория вероятностей и математическая статистика 7 семестр 015/16 учебный год

Подробнее

Лекция 6 Тема: Интервальный статистический ряд 1. Основные определения

Лекция 6 Тема: Интервальный статистический ряд 1. Основные определения Лекция 6 Тема: Интервальный статистический ряд 1. Основные определения В случае, когда число значений признака Х велико или признак является непрерывным, составляют интервальный ряд. Опр. Интервальный

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ это распределение числа успехов наступлений определенного события в серии из n испытаний при условии, что для каждого из n испытаний вероятность успеха имеет одно и то же значение

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика Теория вероятностей и математическая статистика Учебное пособие Часть Фарафонов В. Г., Фарафонов Вяч. Г., Устимов В. И., Бутенина Д. В. 009 г. i 1. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ Массовые случайные

Подробнее

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 3 7 6 Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы

Подробнее

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей Оглавление Предисловие Введение Теория вероятностей Глава 1. Основные понятия теории вероятностей 1.1. Опыт и событие Операция умножения событий Операция сложения событий Операция вычитания событий Операция

Подробнее

Лекции по математической статистике 2-й курс ЭФ, отделение «математические методы и исследование операций в экономике»

Лекции по математической статистике 2-й курс ЭФ, отделение «математические методы и исследование операций в экономике» Лекции по математической статистике 2-й курс ЭФ, отделение «математические методы и исследование операций в экономике» Н. И. Чернова cher@nsu.ru Стр. 1 Предлагаемый вашему вниманию курс теоретической статистики

Подробнее

Эконометрика. Модель линейной регрессии. Шишкин Владимир Андреевич. Пермский государственный национальный исследовательский университет

Эконометрика. Модель линейной регрессии. Шишкин Владимир Андреевич. Пермский государственный национальный исследовательский университет Эконометрика Модель линейной регрессии Шишкин Владимир Андреевич Пермский государственный национальный исследовательский университет Вероятностью P(A) события A называется численная мера степени объективной

Подробнее

Лекция 4. Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ. Лектор Сенько Олег Валентинович

Лекция 4. Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ. Лектор Сенько Олег Валентинович Лекция 4 Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

Лекция 3. Условные распределения и условные математические ожидания. Достаточные статистики

Лекция 3. Условные распределения и условные математические ожидания. Достаточные статистики Лекция 3. Условные распределения и условные математические ожидания. Достаточные статистики Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 3. Условные распределения

Подробнее

1. Случайные события. Операции над событиями. Вопросы

1. Случайные события. Операции над событиями. Вопросы ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ ПО КУРСУ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» /009г ИУ-5,7 курс, 4 семестр 1. Случайные события. Операции над событиями. Определения случайного

Подробнее

Математическая статистика

Математическая статистика ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико-математический факультет Кафедра теории вероятностей и математической статистики Н. И. Чернова Математическая статистика

Подробнее

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

Лекция 12.Байесовский подход

Лекция 12.Байесовский подход Лекция 12.Байесовский подход Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Байесовский подход Санкт-Петербург, 2013 1 / 36 Cодержание Содержание 1 Байесовский подход к статистическому

Подробнее

Практикум по теме 10 "Статистическое оценивание"

Практикум по теме 10 Статистическое оценивание Практикум по теме 10 "Статистическое оценивание" Методические указания по выполнению практикума Целью практикума является более глубокое усвоение материала контента темы 10, а также развитие следующих

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Тема. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Содержание Предельные теоремы теории вероятности 2 Неравенство Чебышева

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

ПРОГРАММА ДИСЦИПЛИНЫ. Для подготовки дипломированных специалистов по направлению Менеджмент в организации Квалификация «Менеджер»

ПРОГРАММА ДИСЦИПЛИНЫ. Для подготовки дипломированных специалистов по направлению Менеджмент в организации Квалификация «Менеджер» Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирская Государственная Геодезическая Академия»

Подробнее

1. Биномиальный закон распределения

1. Биномиальный закон распределения Лекция 4 Тема: Законы распределения СВ 1. Биномиальный закон распределения Опр. Дискретная СВ Х имеет биномиальный закон распределения, если выполнены следующие условия: 1) эксперимент заключается в последовательном

Подробнее

Теория вероятностей и математическая статистика. НК-2, третий семестр Математическая статистика. Характеристики выборки

Теория вероятностей и математическая статистика. НК-2, третий семестр Математическая статистика. Характеристики выборки Теория вероятностей и математическая статистика. НК-, третий семестр Математическая статистика. Характеристики выборки Для заданных выборок: построить вариационный и статистический ряды; найти наименьший

Подробнее

Лекция 6. Критерии согласия. Проверка независимости двух номинальных признаков

Лекция 6. Критерии согласия. Проверка независимости двух номинальных признаков Лекция 6. Критерии согласия. Проверка независимости двух номинальных признаков Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Критерии согласия... Санкт-Петербург, 2013 1

Подробнее

Лабораторная работа 3 Оценки параметров распределения

Лабораторная работа 3 Оценки параметров распределения МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

Подробнее

Retinskaya.jimdo.com

Retinskaya.jimdo.com ЛЕКЦИЯ 1 Классификация экспериментальных исследований Определение и свойства функции распределения. Вероятность попадания случайной величины на заданный интервал Квантиль распределения Выборочная функция

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

Логашенко И.Б. Современные методы обработки экспериментальных данных. Случайные величины

Логашенко И.Б. Современные методы обработки экспериментальных данных. Случайные величины Случайные величины Распределения Случайные величины характеризуются распределениями Дискретное Если случайная величина может принимать дискретное множество значений, то соответствующее распределение называется

Подробнее

Автор(ы): преподаватель: Арамян Р. Дисциплина: Теория вероятностей и математическая статистика ЕРЕВАН

Автор(ы): преподаватель: Арамян Р. Дисциплина: Теория вероятностей и математическая статистика ЕРЕВАН ГОУ ВПО РОССИЙСКО-АРМЯНСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ Составлена в соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускников по указанным направлениям и Положением

Подробнее

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

Лекция 2. Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента

Лекция 2. Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Лекция 2 Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Доверительный интервал Задача на практике - при ограниченной выборке оценить точность и надежность вычисления

Подробнее

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ООО «Резольвента», www.resolventa.ru, resolventa@lst.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел.

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел. МВДубатовская Теория вероятностей и математическая статистика Лекция 0 Неравенства Маркова и ЧебышеваЗакон больших чисел Предельные теоремы теории вероятностей В теории вероятностей часто изучаются случайные

Подробнее

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ 1 Случайная величина X называется непрерывной, если она принимает более, чем счётное число значений. Случайная величина X называется

Подробнее

Лекция 20. Проверка статистических гипотез

Лекция 20. Проверка статистических гипотез Лекция. Проверка статистических гипотез Понятие о статистических гипотезах и методах их проверки При решении многих задач возникает необходимость оценки того, подчиняется ли распределение генеральной совокупности

Подробнее

Математическая статистика.

Математическая статистика. Лекция. Математическая статистика. Основной задачей математической статистики является разработка методов получения научно обоснованных выводов о массовых явлениях и процессах из данных наблюдений и экспериментов.

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1 Другие ИДЗ Рябушко можно найти на странице http://mathpro.ru/dz_ryabushko_besplatno.html ИДЗ-8. Найти закон распределения указанной случайной величины X и ее функцию распределения F (X ). Вычислить математическое

Подробнее

= (3) 2 1. КРАТКАЯ ТЕОРИЯ.

= (3) 2 1. КРАТКАЯ ТЕОРИЯ. ИЗУЧЕНИЕ СТАТИСТИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ РАДИОАКТИВНОГО РАСПАДА Лабораторная работа 8 Цель работы: 1. Подтверждение случайного, статистического характера процессов радиоактивного распада ядер.. Ознакомление

Подробнее

Элементы математической статистики

Элементы математической статистики Элементы математической статистики Математическая статистика является частью общей прикладной математической дисциплины «Теория вероятностей и математическая статистика», однако задачи, решаемые ею, носят

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Лекция 14

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Лекция 14 ЧАСТЬ 8 МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Лекция 4 ОСНОВНЫЕ ПОНЯТИЯ И ЗАДАЧИ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЦЕЛЬ ЛЕКЦИИ: определить понятие генеральной и выборочной совокупности и сформулировать три типичные задачи

Подробнее

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω)

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω) Понятие и её закона Одномерные дискретные случайные Определение случайной Случайной величиной (СВ) называется функция (ω), определённая на пространстве элементарных событий Ω, со значениями в одномерном

Подробнее

Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной.

Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной. Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной. Представленный материал охватывает элементарные вопросы

Подробнее

А.В. Иванов, А.П. Иванова. А.В. Иванов, А.П. Иванова МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН, СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ И СЛУЧАЙНЫХ ПРОЦЕССОВ

А.В. Иванов, А.П. Иванова. А.В. Иванов, А.П. Иванова МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН, СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ И СЛУЧАЙНЫХ ПРОЦЕССОВ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Прикладная математика-1 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Прикладная математика-1 А.В. Иванов,

Подробнее

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии Камчатский государственный технический университет Кафедра высшей математики ЭКОНОМЕТРИКА Модель парной регрессии Задания и методические указания для студентов специальностей ФК, БУ, ПИ дневного и заочного

Подробнее

Построение доверительного интервала для математического ожидания генеральной совокупности

Построение доверительного интервала для математического ожидания генеральной совокупности Построение доверительного интервала для математического ожидания генеральной совокупности В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную

Подробнее

Задачи по математической статистике

Задачи по математической статистике Задачи по математической статистике Задача. По данным распределения возрастного состава участников революционного движения в России 70-х годов 9-го века была построена следующая таблица Возраст 7-3 3-9

Подробнее

Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок. Лекция 8

Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок. Лекция 8 Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок Лекция 8 CВОЙСТВА ОЦЕНОК КОЭФФИЦИЕНТОВ РЕГРЕССИИ Для того чтобы полученные по МНК оценки обладали некоторым полезными статистическими свойствами

Подробнее

3. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ Основные понятия статистической проверки гипотезы

3. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ Основные понятия статистической проверки гипотезы 3 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ 3 Основные понятия статистической проверки гипотезы Статистическая проверка гипотез тесно связана с теорией оценивания параметров распределений В экономике, технике, естествознании,

Подробнее

Лекция 1. Выборочное пространство

Лекция 1. Выборочное пространство Лекция 1. Выборочное пространство Грауэр Л.В., Архипова О.А. CS center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Лекция 1. Выборочное пространство Санкт-Петербург, 2014 1 / 29 Cодержание Содержание

Подробнее

Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка

Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка Курс Основы теории вероятностей и математической статистики относится к циклу естественнонаучных

Подробнее

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

Дисциплина: Теория вероятностей и математическая статистика

Дисциплина: Теория вероятностей и математическая статистика ГОУ ВПО РОССИЙСКО-АРМЯНСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ Составлена в соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускников по указанным направлениям и Положением

Подробнее

5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ

5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ Оценка параметров 30 5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ 5.. Введение Материал, содержащийся в предыдущих главах, можно рассматривать как минимальный набор сведений, необходимых для использования основных

Подробнее

ГЛАВА 3 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ГЛАВА 3 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ГЛАВА 3 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ 3 Введение Основные понятия математической статистики 3 Выборка основные задачи математической статистики Рассмотрим случайный эксперимент связанный со случайной

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

Аннотация 1.1. ЦЕЛЬ ПРЕПОДАВАНИЯ ДИСЦИПЛИНЫ. II. Требования к результатам освоения основной образовательной программы

Аннотация 1.1. ЦЕЛЬ ПРЕПОДАВАНИЯ ДИСЦИПЛИНЫ. II. Требования к результатам освоения основной образовательной программы Аннотация Рабочая программа составлена на основании федерального государственного образовательного стандарта высшего профессионального образования по курсу «Теория вероятностей и математическая по направлению

Подробнее

СТАТИСТИЧЕСКАЯ ОБРАБОТКА И АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МАССОВЫХ СЛУЧАЙНЫХ ЯВЛЕНИЙ

СТАТИСТИЧЕСКАЯ ОБРАБОТКА И АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МАССОВЫХ СЛУЧАЙНЫХ ЯВЛЕНИЙ СТАТИСТИЧЕСКАЯ ОБРАБОТКА И АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МАССОВЫХ СЛУЧАЙНЫХ ЯВЛЕНИЙ Хабаровск 004 3 УДК 56 Статистическая обработка и анализ экспериментальных данных массовых случайных явлений: Методические

Подробнее

Оценивание моделей. Метод максимального правдоподобия

Оценивание моделей. Метод максимального правдоподобия Оценивание моделей дискретного выбора Метод максимального правдоподобия План лекции. Метод максимального правдоподобия. Свойства оценок ММП 3. Пример оценки ММП для классической линейной регрессии 4. Модели

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра. Направление подготовки. Дисциплина (модуль) Математики, физики и информационных

Подробнее