По таблице приложения 4 по γ = 0,99 и n = 15 найдем q = 0,73. Искомый доверительный интервал

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "По таблице приложения 4 по γ = 0,99 и n = 15 найдем q = 0,73. Искомый доверительный интервал"

Транскрипт

1 Лекция 9. Оценка точности измерений. Оценка вероятности (биномиального распределения) по относительной частоте. 1. Оценка точности измерений. В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения о случайных ошибок измерений. Для оценки σ используют исправленное среднее квадратическое отклонение s. Поскольку обычно результаты измерений взаимно независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то теория, изложенная в предыдущем параграфе, применима для оценки точности измерений. Пример. По 15 равноточным измерениям найдено исправленное среднее квадратическое отклонение s = 0,12. Найти точность измерений с надежностью 0,99. Решение. Точность измерений характеризуется средним квадратическим отклонением σ случайных ошибок, поэтому задача сводится к отысканию доверительного интервала ( * ), покрывающего σ с заданной надежностью 0,99 (см. 18). По таблице приложения 4 по γ = 0,99 и n = 15 найдем q = 0,73. Искомый доверительный интервал 0,12(1 0,73) < σ < 0,12 (1 + 0,73), θли 0,03 < σ < 0, Оценка вероятности (биномиального распределения) по относительной частоте. Пусть производятся независимые испытания с неизвестной вероятностью р появления события А в каждом испытании. Требуется оценить неизвестную вероятность р по относительной частоте, т.е. надо найти ее точечную и интервальную оценки.

2 А. Точечная оценка. В качестве точечной оценки неизвестной вероятности р принимают относительную частоту W = m/n, где m число появлений события А; n число испытаний (Напомним, что случайные величины обозначают прописными, а их возможные значения строчными буквами. В различных опытах число m появлений события будет изменяться и поэтому является случайной величиной М. Однако, поскольку черезм уже обозначено математическое ожидание, мы сохраним для случайного числа появлений события обозначение т). Эта оценка несмещенная, т.е. ее математическое ожидание равно оцениваемой вероятности. Действительно, учитывая, что М(т) = nр, получим М (W) = М [m/n] = М (т)/n = nр/n р. Найдем дисперсию оценки, приняв во внимание, что D(m) = npq: D (W) = D [m/n] = D (т)/n 2 = npq/n 2 = pq/n. Отсюда среднее квадратическое отклонение; Б. Интервальная оценка. Найдем доверительный интервал для оценки вероятности по относительной частоте. Напомним, что ранее была выведена формула, позволяющая найти вероятность того, что абсолютная величина отклонения не превысит положительного числа δ: P( Х-α <δ) = 2Φ(δ/α), (*) где X нормальная случайная величина с математическим ожиданием М(Х) α.

3 Если n достаточно велико и вероятность р не очень близка к нулю и к единице, то можно считать, что относительная частота распределена приближенно нормально, причем, как показано в п. А, М (W) = р. Таким образом, заменив в соотношении (*) случайную величину X и ее математическое ожидание α соответственно случайной величиной W и ее математическим ожиданием р, получим приближенное (так как относительная частота распределена приближенно нормально) равенство P( W р < δ) = 2Φ(δ/σ w ). (**) Приступим к построению доверительного интервала (p 1 p 2 ), который с надежностью γ покрывает оцениваемый параметр р. Потребуем, чтобы с надежностью γ выполнялось соотношение (**): Р ( W р < δ) = 2Φ (δ/σ) = γ. Заменив σ w через (см. п. А), получим ( ), где. Отсюда и, следовательно, ( ). Таким образом, с надежностью γ выполняется неравенство (чтобы получить рабочую формулу, случайную величину W заменим неслучайной наблюдаемой относительной частотой w и подставим 1 р вместо q):.

4 Учитывая, что вероятность р неизвестна, решим это неравенство относительно р. Допустим, что w > р. Тогда. Обе части неравенства положительны; возведя их в квадрат, получим равносильное квадратное неравенство относительно р: [(t 2 /n) + 1)]p 2 2[w + (t 2 /n)]p + w 2 < 0. Дискриминант трехчлена положительный, поэтому его корни действительные и различные: меньший корень [ ( ) ] (***) больший корень [ ( ) ] (****) Итак, искомый доверительный интервал р 1 < р < р 2 где p 1 и р 2, находят по формулам (***) и (****). При выводе мы предположили, что w > p; тот же результат получим при w < p. Пример. Производят независимые испытания с одинаковой, но неизвестной вероятностью р появления события А в каждом испытании. Найти доверительный интервал для оценки вероятности р с надежностью 0,95, если в 80 испытаниях событие А появилось 16 раз. Решение. По условию, n = 80, m = 16, γ = 0,95. Найдем относительную частоту появления события А:

5 w = m/n = 16/80 = 0,2. Найдем t из соотношения Φ (t) = γ/2 = 0,95/2 = 0,475; οо таблице функции Лапласа (см. приложение 2) находим t = 1,96. Подставив n = 80, w = 0,2, t = 1,96 в формулы (***) и (****), получим соответственно p 1 = 0,128, p 2 = 0,299. Итак, искомый доверительный интервал 0,128 < р < 0,299. Замечание 1. При больших значениях n (порядка сотен) слагаемые t 2 /(2n) и (t/(2n)) 2 очень малы и множитель, поэтому можно принять в качестве приближенных границ доверительного интервала и Замечание 2. Чтобы избежать расчетов концов доверительных интервалов, можно использовать табл. 28 книги: Янко Я. Математико-статистические таблицы. М., Госстатиздат, 1961.


12. Интервальные оценки параметров распределения

12. Интервальные оценки параметров распределения МВДубатовская Теория вероятностей и математическая статистика Лекция 7 Интервальные оценки параметров распределения Для выборок малого объема точечные оценки могут значительно отличаться от оцениваемых

Подробнее

6. Элементы математической статистики.

6. Элементы математической статистики. Минестерство образования Республики Беларусь УО «итебский государственный технологический университет» 6. Элементы математической статистики. Кафедра теоретической и прикладной математики. 90 80 70 60

Подробнее

Лекция 18. Интервальные оценки параметров распределения. Интервальные оценки. Точность. Надежность

Лекция 18. Интервальные оценки параметров распределения. Интервальные оценки. Точность. Надежность Лекция 18 Интервальные оценки параметров распределения Интервальные оценки Точность Надежность Точечные оценки могут значительно отличаться от оцениваемых параметров Достаточно часто это происходит в случае

Подробнее

Математическая статистика. Тема: «Статистическое оценивание параметров распределения»

Математическая статистика. Тема: «Статистическое оценивание параметров распределения» Математическая статистика Тема: «Статистическое оценивание параметров распределения» Введение Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате

Подробнее

Интервальные оценки.

Интервальные оценки. Лекция 1. Интервальные оценки. Точечные оценки параметров генеральной совокупности могут быть приняты в качестве ориентировочных, первоначальных результатов обработки выборочных данных. Их недостаток заключается

Подробнее

Доверительные интервалы: примеры решения задач

Доверительные интервалы: примеры решения задач Доверительные интервалы: примеры решения задач Л. В. Калиновская Кафедра высшей математики, Университет "Дубна" date Доверительные интервалы для оценки математического ожидания нормального распределения

Подробнее

Лекция 16 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Лекция 16 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Лекция 6 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ЦЕЛЬ ЛЕКЦИИ: ввести понятие доверительной вероятности и доверительного интервала, получить интервальные оценки математического ожидания и дисперсии.

Подробнее

def Интервал ( 1 ; 2 ) называют доверительным интервалом для

def Интервал ( 1 ; 2 ) называют доверительным интервалом для .0. Определение доверительного интервала Пусть θ некоторый неизвестный параметр распределения. По выборке X,..., Х из данного распределения построим интервальную оценку параметра θ распределения, то есть

Подробнее

Лекция 15 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Лекция 15 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Лекция 5 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ЦЕЛЬ ЛЕКЦИИ: ввести понятие оценки неизвестного параметра распределения и дать классификацию таких оценок; получить точечные оценки математического

Подробнее

Теория вероятностей и статистика

Теория вероятностей и статистика Теория вероятностей и статистика Тема 7. Статистические оценки параметров распределения Белов А.И. Уральский федеральный университет Екатеринбург, 2018 Содержание 1 Точечные оценки 2 Характеристики положения

Подробнее

МЕТОДЫ И АЛГОРИТМЫ ОБРАБОТКИ СТАТИСТИЧЕСКИХ

МЕТОДЫ И АЛГОРИТМЫ ОБРАБОТКИ СТАТИСТИЧЕСКИХ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ А.Н. Тимошенко, А.Н. Козлов В.В. Трофимов СЕРТИФИКАЦИЯ ОРГАНИЗАЦИЙ АВИАТОПЛИВООБЕСПЕЧЕНИЯ МЕТОДЫ И АЛГОРИТМЫ ОБРАБОТКИ Учебно-методическое

Подробнее

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Математическая статистика занимается методами сбора и обработки статистического материала результатов наблюдений над объектами

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

Лекция 11. Метод наибольшего правдоподобия. Другие характеристики вариационного ряда.

Лекция 11. Метод наибольшего правдоподобия. Другие характеристики вариационного ряда. 1 Лекция 11 Метод наибольшего правдоподобия Другие характеристики вариационного ряда 1 Метод наибольшего правдоподобия Кроме метода моментов, который изложен в предыдущем параграфе, существуют и другие

Подробнее

Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина.

Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина. Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина. Случайной называют величину, которая в результате испытания принимает одно и только одно, значение,

Подробнее

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 3 7 6 Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы

Подробнее

1.33. Неравенство Чебышева. ε ε. = ε. = 2 ε ( x) P( X ε). (Для дискретной случайной величины доказательство аналогично).

1.33. Неравенство Чебышева. ε ε. = ε. = 2 ε ( x) P( X ε). (Для дискретной случайной величины доказательство аналогично). Т Неравенство Чебышева.33. Неравенство Чебышева Пусть случайная величина имеет второй начальный момент MХ, тогда: M 0 P( ) неравенство Чебышева () Док ( непрерывная случайная величина) MХ = x f( x) dx

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Подробнее

4.1 Неравенство Чебышёва. Пусть случайная величина X имеет математическое ожидание m x и дисперсию

4.1 Неравенство Чебышёва. Пусть случайная величина X имеет математическое ожидание m x и дисперсию Лекция План лекции 4 Неравенство Чебышёва 4 Теорема Чебышёва 4 Применение теоремы Чебышёва на практике 43 Теорема Бернулли 4 Неравенство Чебышёва Пусть случайная величина имеет математическое ожидание

Подробнее

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов.

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов. Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ О.Ю.Пелевин МЕТОДИЧЕСКАЯ РАЗРАБОТКА по курсу «Теория вероятностей и математическая статистика» для студентов физического

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

«Оптимизация и математические методы принятия решений»

«Оптимизация и математические методы принятия решений» «Оптимизация и математические методы принятия решений» ст. преп. каф. СС и ПД Владимиров Сергей Александрович Лекция 4 Методы математической статистики в задачах принятия решений Введение С О Д Е Р Ж А

Подробнее

Лекция 9. Тема Введение в теорию оценок.

Лекция 9. Тема Введение в теорию оценок. Лекция 9 Тема Введение в теорию оценок. Содержание темы Предмет, цель и метод задачи оценивания Точечные выборочные оценки, свойства оценок Теоремы об оценках Интервальные оценки и интеграл Лапласа Основные

Подробнее

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия.

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия. Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1),, x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

Подробнее

Исследование операций в экономике Контрольная работа 3. Вариант 58

Исследование операций в экономике Контрольная работа 3. Вариант 58 Исследование операций в экономике Контрольная работа 3 Вариант 58 Задача 8. Малое предприятие имеет два цеха - A и B. Каждому установлен месячный план выпуска продукции. Известно, что цех A свой план выполняет

Подробнее

Тема: Статистические оценки параметров распределения

Тема: Статистические оценки параметров распределения Раздел: Теория вероятностей и математическая статистика Тема: Статистические оценки параметров распределения Лектор Пахомова Е.Г. 05 г. 5. Точечные статистические оценки параметров распределения Статистическое

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380 Задание. По выборочным данным оценить генеральную среднюю, генеральную дисперсию и среднее квадратическое отклонение. Построить полигон относительных частот. Эти же данные разбить на 5 интервалов. По интервальному

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

ü описание явлений упорядочивание статистического материала, представление в удобном для экспериментатора виде (таблица, график, диаграмма);

ü описание явлений упорядочивание статистического материала, представление в удобном для экспериментатора виде (таблица, график, диаграмма); Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате наблюдений над случайными явлениями. При этом решаются следующие задачи: ü описание явлений

Подробнее

Обработка и анализ результатов моделирования

Обработка и анализ результатов моделирования Обработка и анализ результатов моделирования Известно, моделирование проводится для определения тех или иных характеристик системы (например, качества системы обнаружения полезного сигнала в помехах, измерения

Подробнее

DOI: /AUT

DOI: /AUT 30 АВТОМЕТРИЯ. 2016. Т. 52, 1 УДК 519.24 КРИТЕРИЙ СОГЛАСИЯ НА ОСНОВЕ ИНТЕРВАЛЬНОЙ ОЦЕНКИ Е. Л. Кулешов Дальневосточный федеральный университет, 690950, г. Владивосток, ул. Суханова, 8 E-mail: kuleshov.el@dvfu.ru

Подробнее

Контрольная работа по математической статистике МЭСИ

Контрольная работа по математической статистике МЭСИ Контрольная работа по математической статистике МЭСИ Контрольная работа по теме «СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ» Задание. На основании вариационного ряда распределения длины плунжеров,

Подробнее

Контрольная работа 4

Контрольная работа 4 Контрольная работа 4 Тема: Теория вероятностей З а д а ч и 1-10 Задачи 1-10 посвящены вычислениям вероятности событий с использованием основных теорем теории вероятности и комбинаторики. Конкретный пример

Подробнее

Генеральная совокупность и выборка. Центральная предельная теорема

Генеральная совокупность и выборка. Центральная предельная теорема Генеральная совокупность и выборка Точечные оценки и их свойства Центральная предельная теорема Выборочное среднее, выборочная дисперсия Генеральная совокупность Генеральная совокупность множество всех

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

8) для непрерывной случайной величины построить график функции плотности вероятности и сравнить его с гистограммой, для дискретной

8) для непрерывной случайной величины построить график функции плотности вероятности и сравнить его с гистограммой, для дискретной Введение Статистические методы обработки результатов эксперимента используются в курсах численных методов специальными кафедрами без необходимого теоретического обоснования Это вызывает определенные затруднения

Подробнее

Математическая статистика

Математическая статистика Математическая статистика 1 Выборка X x, x,, x Опр.1 Пусть одномерная с.в., а 1 значения с.в.,полученные в результате независимых испытаний. Будем называть полученные значения выборкой из генеральной совокупности

Подробнее

Лекция 3. Генеральная средняя. Выборочная средняя. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних

Лекция 3. Генеральная средняя. Выборочная средняя. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних Лекция 3. Генеральная средняя. Выборочная средняя. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних 1. Генеральная средняя. Пусть изучается дискретная генеральная совокупность

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Исходные данные

ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Исходные данные ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ Исходные данные Задана большая выборка, объем которой п 00..49 3.548 4.409 5.08 0.39.096 5.4 4.586 4.49.678 4.08 3.993 4.3 6.9 -.48 5.8 5.07 3.889.3 5.59 9.377.644

Подробнее

Математическая статистика

Математическая статистика Математическая статистика 1 Выборка X x, x,, x Опр.1 Пусть одномерная с.в., а 1 значения с.в.,полученные в результате испытания. Будем называть полученные значения выборкой из генеральной совокупности

Подробнее

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика»

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» Задача 1. ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0,

Подробнее

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Тема. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Содержание Предельные теоремы теории вероятности 2 Неравенство Чебышева

Подробнее

5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ

5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ Оценка параметров 30 5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ 5.. Введение Материал, содержащийся в предыдущих главах, можно рассматривать как минимальный набор сведений, необходимых для использования основных

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (Часть 1)

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (Часть 1) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» Кафедра алгебры, геометрии

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Типовой расчет по теории вероятностей с решением Вариант 1 Часть. Случайные величины Задача.1. Фекла решила удивить своего бойфренда роскошным ужином и купила для этого в супермаркете пакет с картофелем.

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

n 1 Когда значение измеряемой величины неизвестно, ее оценка Поэтому в случае б) несмещенная оценка дисперсии

n 1 Когда значение измеряемой величины неизвестно, ее оценка Поэтому в случае б) несмещенная оценка дисперсии Элементы математической статистики. Пример. Для определения точности измерительного прибора, систематическая ошибка которого практически равно нулю, было произведено пять независимых измерений, результаты

Подробнее

Оцените математическое ожидание М x и моду Мо. Задача 3 По данным выборки объема 100 получены следующие данные:

Оцените математическое ожидание М x и моду Мо. Задача 3 По данным выборки объема 100 получены следующие данные: Билет Объем выборки равен 60. определить значение 5 и моду Мо. 5 6 8? Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка: a. (5; 0); б. (0; 5); в. (; 7); г. (; 0). Получены

Подробнее

Математика Статистика

Математика Статистика Лукьянова Е.А. Математика Статистика «Сестринское дело» Основные понятия статистики Генеральная совокупность и выборка Типы данных и их представление Точечное оценивание Интервальное оценивание 2015

Подробнее

Задачи по математической статистике

Задачи по математической статистике Задачи по математической статистике Задача. По данным распределения возрастного состава участников революционного движения в России 70-х годов 9-го века была построена следующая таблица Возраст 7-3 3-9

Подробнее

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют:

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют: . На складе 00 деталей, из которых 00 изготовлено цехом, 60 цехом и 40 цехом. Вероятность брака для цеха %, для цеха % и для цеха %. Наудачу взятая со слада деталь оказалась бракованной. Найти вероятность

Подробнее

П Р И Л О Ж Е Н И Е 1 ОШИБКИ ИЗМЕРЕНИЙ ПРИ СЧЕТЕ ЧАСТИЦ

П Р И Л О Ж Е Н И Е 1 ОШИБКИ ИЗМЕРЕНИЙ ПРИ СЧЕТЕ ЧАСТИЦ П Р И Л О Ж Е Н И Е ОШИБКИ ИЗМЕРЕНИЙ ПРИ СЧЕТЕ ЧАСТИЦ Результат физического измерения всегда отклоняется от действительного значения измеряемой величины Это отклонение (ошибка измерения) складывается из

Подробнее

что и требовалось доказать. При доказательстве мы использовали свойство неотрицательности функции плотности и неравенство (*)).

что и требовалось доказать. При доказательстве мы использовали свойство неотрицательности функции плотности и неравенство (*)). Оглавление Глава 5 Предельные теоремы 5 Неравенство Чебышѐва 5 Типы сходимости случайных величин 3 Диаграмма зависимости видов сходимости 3 53 Суммы случайных величин 4 Среднее арифметическое случайных

Подробнее

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

Краткий конспект лекций по теории вероятностей и математической статистике

Краткий конспект лекций по теории вероятностей и математической статистике Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Владимирский государственный университет имени

Подробнее

. Вследствие наличия неизбежных погрешностей при каждом измерении получают значение этой величины α. . Поэтому для повышения точности измерения α

. Вследствие наличия неизбежных погрешностей при каждом измерении получают значение этой величины α. . Поэтому для повышения точности измерения α Методические указания к выполнению лабораторных работ по курсу "Оптические измерения и основы метрологии" предназначены для студентов приборостроительного факультета КПИ обучающихся по оптическим специальностям

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ 1... 13 ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙ... 13 1. Определение теории вероятностей... 13 2. Некоторые примеры... 14 3. Устойчивость частот в массовых статистических

Подробнее

ТЕМА 10. Статистическое оценивание Точечные и интервальные оценки параметров распределения

ТЕМА 10. Статистическое оценивание Точечные и интервальные оценки параметров распределения ТЕМА 10. Статистическое оценивание. Цель контента темы 10 изучить практически необходимые методы нахождения точечных и интервальных оценок неизвестных параметров распределения. Задачи контента темы 10:

Подробнее

Контрольное задание

Контрольное задание http://wwwzachetru/ Контрольное задание Задача Построить полигон относительных частот по данным вариационного ряда ( 0): 3 6 7 0 m 8 0 3 3 Решение 3 6 7 0 m 8 0 3 3 m Полигон относительных частот: 0073

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Подробнее

Лекция 6. Групповая, внутри групповая, межгрупповая и общая дисперсии. Сложение дисперсий. Оценка генеральной дисперсии по исправленной выборочной.

Лекция 6. Групповая, внутри групповая, межгрупповая и общая дисперсии. Сложение дисперсий. Оценка генеральной дисперсии по исправленной выборочной. 1 Лекция 6. Групповая, внутри групповая, межгрупповая и общая дисперсии. Сложение дисперсий. Оценка генеральной дисперсии по исправленной выборочной. 1. Групповая, внутри групповая, межгрупповая и общая

Подробнее

Лекция 5. Доверительные интервалы

Лекция 5. Доверительные интервалы Лекция 5. Доверительные интервалы Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Лекция 5. Доверительные интервалы Санкт-Петербург, 2014 1 / 31 Cодержание Содержание

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Математики и математических методов в экономике 2. Направление подготовки 01.03.02

Подробнее

СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ЧИСЛОВЫХ ХАРАКТЕРИСТИК СЛУЧАЙНОЙ ВЕЛИЧИНЫ

СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ЧИСЛОВЫХ ХАРАКТЕРИСТИК СЛУЧАЙНОЙ ВЕЛИЧИНЫ СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ЧИСЛОВЫХ ХАРАКТЕРИСТИК СЛУЧАЙНОЙ ВЕЛИЧИНЫ Точечное оценивание Как уже говорилось, наиболее полной и исчерпывающей характеристикой для случайной величины является закон распределения:

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

указывать, непрерывной или дискретной является исследуемая случайная величина.

указывать, непрерывной или дискретной является исследуемая случайная величина. Раздел. Основы статистического анализа данных.. Определение случайной выборки Пусть исследуемая случайная величина, F ( x ) = P( < x) ее функция распределения, вообще говоря, неизвестная. В некоторых случаях

Подробнее

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде:

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде: Уравнения В алгебре рассматривают два вида равенств тождества и уравнения Тождество это равенство которое выполняется при всех допустимых) значениях входящих в него букв Для тождества используют знаки

Подробнее

Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей

Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей Закономерности в поведении случайных величин тем заметнее, чем больше число испытаний, опытов или наблюдений Закон больших

Подробнее

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1 Лекция 11. Дискретные случайные величины Случайной величиной Х называется величина, которая в результате опыта может принять то или иное значение х i. Выпадение некоторого значения случайной величины Х

Подробнее

Элементы математической статистики

Элементы математической статистики Элементы математической статистики Математическая статистика является частью общей прикладной математической дисциплины «Теория вероятностей и математическая статистика», однако задачи, решаемые ею, носят

Подробнее

ТЕМА 11. Статистическая проверка гипотез Основные определения и идеи

ТЕМА 11. Статистическая проверка гипотез Основные определения и идеи ТЕМА 11. Статистическая проверка гипотез Цель контента темы 11 изложить основные критерии проверки статистических гипотез. Задачи контента темы 11: Сформулировать задачу проверки статистических гипотез.

Подробнее

Математическая статистика.

Математическая статистика. Лекция. Математическая статистика. Основной задачей математической статистики является разработка методов получения научно обоснованных выводов о массовых явлениях и процессах из данных наблюдений и экспериментов.

Подробнее

Измерения и обработка результатов измерений Случайные погрешности

Измерения и обработка результатов измерений Случайные погрешности В теории вероятностей изучаются различные законы распределения, каждому из которых соответствует определенная функция плотности вероятности Они получены путем обработки большого числа наблюдений над случайными

Подробнее

[] - Гауссово обозначение суммы

[] - Гауссово обозначение суммы Принцип наименьших квадратов, задачи решаемые МНК Параметрический способ уравнивания, оценка точности Коррелатный способ уравнивания Пример уравнивания измеренных углов треугольника параметрическим и коррелатным

Подробнее

Практикум по теме 10 "Статистическое оценивание"

Практикум по теме 10 Статистическое оценивание Практикум по теме 10 "Статистическое оценивание" Методические указания по выполнению практикума Целью практикума является более глубокое усвоение материала контента темы 10, а также развитие следующих

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки 02.03.01

Подробнее

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности.

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. 1 ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел.

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел. МВДубатовская Теория вероятностей и математическая статистика Лекция 0 Неравенства Маркова и ЧебышеваЗакон больших чисел Предельные теоремы теории вероятностей В теории вероятностей часто изучаются случайные

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Принцип умножения. 2. Построение функции распределения для дискретной случайной величины. 3. Генеральная и выборочная совокупности, свойство репрезентативности. Экзаменационный

Подробнее

σ которого известен, σ = σ и проверим, можно ли считать

σ которого известен, σ = σ и проверим, можно ли считать .8. Постановка задачи проверки статистических гипотез Пример _кз Задачу проверки статистических гипотез рассмотрим на примере. Пример _кз (двусторонний критерий). В результате многократных измерений некоторого

Подробнее

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

Подробнее

Случайные величины. Дискретная и непрерывная случайные величины

Случайные величины. Дискретная и непрерывная случайные величины Случайные величины Дискретная и непрерывная случайные величины Наряду с понятием случайного события в теории вероятности используется другое более удобное понятие случайной величины Случайной величиной

Подробнее

, - вероятность того, что из n бросков t раз выпадет «пятерка»,

, - вероятность того, что из n бросков t раз выпадет «пятерка», .6 Бросают три игральных кубика. Найти ряд и функцию распределения числа выпавших «пятерок» Х, а также M(X), D(X) и вероятность того, что Х>. Решение: Пусть Х число выпавших «пятерок». Перечислим все возможные

Подробнее

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ Точечные оценки. Понятие статистики и достаточной статистики. Отыскание оценок методом моментов, неравенство Рао-Крамера. Эффективность

Подробнее

Лекция 20. Проверка статистических гипотез

Лекция 20. Проверка статистических гипотез Лекция. Проверка статистических гипотез Понятие о статистических гипотезах и методах их проверки При решении многих задач возникает необходимость оценки того, подчиняется ли распределение генеральной совокупности

Подробнее

Лекция 5. Генеральная дисперсия. Выборочная дисперсия. Формула для вычисления дисперсии.

Лекция 5. Генеральная дисперсия. Выборочная дисперсия. Формула для вычисления дисперсии. 1 Лекция 5. Генеральная дисперсия. Выборочная дисперсия. Формула для вычисления дисперсии. 1. Генеральная дисперсия. Для того чтобы охарактеризовать рассеяние значений количественного признака X генеральной

Подробнее

Элементы математической статистики

Элементы математической статистики Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Министерства здравоохранения

Подробнее

Тема Основные понятия математической статистики

Тема Основные понятия математической статистики Лекция 6 Тема Основные понятия математической статистики Содержание темы Задача математической статистики Научные предпосылки математической статистики Основные понятия математической статистики Основные

Подробнее

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая

Подробнее

ГЛАВА Несмещенные и состоятельные гиперслучайные оценки гиперслучайных величин

ГЛАВА Несмещенные и состоятельные гиперслучайные оценки гиперслучайных величин ГЛАВА 8 ХАРАКТЕРИСТИКИ ГИПЕРСЛУЧАЙНЫХ ОЦЕНОК ГИПЕРСЛУЧАЙНЫХ ВЕЛИЧИН Для точечных гиперслучайных оценок гиперслучайных величин введены понятия несмещенной, состоятельной, эффективной и достаточной оценок

Подробнее

Математическое ожидание.

Математическое ожидание. Лекция. Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры. Закон распределения (функция

Подробнее

Расчетно-графическая работа

Расчетно-графическая работа Расчетно-графическая работа РГР на тему «Статистический анализ экспериментальных данных» Дана выборка объем генеральной совокупности. 1) Построить статистический ряд распределения и многоугольник распределения.

Подробнее

Приближенные числа и вычисления

Приближенные числа и вычисления ) Основные понятия ) Влияние погрешностей аргументов на точность функции 3) Понятие обратной задачи в теории погрешностей ) Основные понятия I Приближенные числа, их абсолютная и относительная погрешности

Подробнее

Определение 1. Событие это множество возможных исходов.

Определение 1. Событие это множество возможных исходов. Раскин М. А. «Условные вероятности..» L:\materials\raskin Мы рассматриваем ситуацию, дальнейшее развитие которой мы не можем предсказать точно. При этом некоторые исходы (сценарии развития) для текущей

Подробнее