УДК Г. А. Омарова. Построение траектории движения объекта

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "УДК Г. А. Омарова. Построение траектории движения объекта"

Транскрипт

1 УДК Г А Омарова Èíñòèòóò âû èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè åñêîé ãåîôèçèêè ÑÎ ÐÀÍ ïð Àêàä Ëàâðåíòüåâà, 6, Íîâîñèáèðñê, , Ðîññèÿ Статистическая модель движения тела, учитывающая наличие ошибок в канале связи Построение траектории движения объекта Основными сведениями, определяющими траекторию движения объекта, являются пространственные координаты отметок объекта, изменение которых соответствует закону движения объекта в пространстве В общем случае движение объекта может быть описано координатами ее центра масс, являющимися случайными функциями времени Точное определение вида этих функций требует анализа тактики использования соответствующих средств и их маневренных возможностей Траектория движения объекта зависит от многих факторов и условий, таких, как тип объекта, скорость, маневренные возможности и т д Кроме того, на траекторию объекта оказывает влияние целый ряд случайных факторов (помех), под которыми подразумеваются все причины, искажающие траекторию или затрудняющие обнаружение и воспроизведение Сюда относятся ошибки системы управления объектом; инструментальные ошибки измерения координат радиолокационных систем (РЛС) Коростелев, 969; Романов, Фролов, 97 В ошибках измерения координат учитывают только случайную составляющую Случайные ошибки подчинены нормальному закону распределения Ложные отметки возникают случайно и независимо в пределах всей зоны обзора Предполагается, что ложные отметки распределены по времени равномерно, со средней плотностью, следовательно, можно подсчитать плотность ложных отметок на единицу площади Таким образом, статистически ложные отметки можно охарактеризовать либо средней плотностью во времени р, либо плотностью v на единицу площади зоны обзора Отраженные от целей импульсы в некоторых случаях из-за флуктуации пропадают, что может быть описано законом Пауссона Перечисленные и некоторые другие факторы вынуждают отнести движение целей к категории процессов со случайно изменяющимися во времени параметрами Очевидно, для статистического описания таких процессов необходимо знать законы распределения вероятности параметров, определяющих эти процессы Однако практически таких законов получить не удается, поэтому приходится задаваться некоторыми гипотезами о статистических характеристиках обрабатываемых сигналов, т е исходить из более или менее правдоподобной статистической модели движения цели Выбор конкретной модели движения цели зависит от того, с какими целями конкретно придется иметь дело устройству вторичной обработки Так, например, если устройство предназначено для обработки траекторий баллистических ракет и спутников Земли, то модели их движения могут быть представлены уравнениями кривых второго порядка (эллипс, парабола, окружность) Если устройство предназначено для обработки траекторий других средств, модели движения которых представляют собой совокупность участков с прямолинейным и равномерным движением и участков маневра, за основу может быть взята полиномиальная модель движения Она базируется на представлении процесса изменения координат цели на ограниченном участке наблюдения в виде полинома в степени п относительно времени: (, t) =! t, () = 0 ISSN Âåñòíèê ÍÃÓ Ñåðèÿ: Èíôîðìàöèîííûå òåõíîëîãèè 006 Òîì 4, âûïóñê Ã À Îìàðîâà, 006

2 Ñòàòèñòè åñêàÿ ìîäåëü äâèæåíèÿ òåëà, ó èòûâàþùàÿ íàëè èå îøèáîê â êàíàëå ñâÿçè 5 где коэффициент, определяющий параметры траектории, на которые накладываются те или иные ограничения, исходя из характера движения объекта (случайное чередование участков прямолинейного равномерного движения и маневра) Основные требования к системе: на участках прямолинейного движения гипотезы о характере изменения координат во времени должны быть различными; на участке прямолинейного движения изменение координат во времени проще описывать полиномами первой степени, т е принимать гипотезу о прямолинейном равномерном движении объекта: x ( t) = x0 + vx ( t) = 0 + v () h ( t) = h0 + vh Таким образом, траектория движения объекта представляется в виде последовательности полиномиальных участков с различными коэффициентами и степенями полиномов Предположения о движении объекта В любой момент времени t i мы можем вычислить координаты и вектор скорости подвижного объекта и построить траекторию его движения При передаче информации через канал связи появляются случайные ошибки, они будут фигурировать и в окончательных результатах Поэтому предлагается, каким-либо образом, зная о природе ошибок в канале связи, учитывать это знание в вычислениях и получать сглаженные (с учетом ошибок) результаты Омарова, 998 С 6 Предположения о движении объекта Траектория подвижного объекта лежит в горизонтальной плоскости Входные данные (результаты) наблюдения поступают в прямоугольной системе координат Подвижный объект слабо маневренный, т е существует промежуток времени, в течение которого он движется прямолинейно и равномерно Определение Тактом или базовым промежутком времени t 0 назовем время, в течение которого вероятность того, что подвижный объект маневрирует, очень мала Например, пусть такт t 0 = 0,0, а подвижный объект автомобиль Скорость автомобиля ограничена 55 м/с, тогда за один такт автомобиль будет проезжать менее 0,6 метра, что, очевидно, согласуется с нашими предположениями о перемещениях объекта Согласно формуле () без координаты h получаем следующую модель движения объекта: x ( t) = x0 + vx *, t! 0, t0), t0 такт ( t) = 0 + v Координаты x 0, 0 вычисляются заново через такт t 0 Результаты вычислений показывают, что траектория объекта ломаная Таким образом, задача ставится в следующем виде По дискретным отметкам координатам и скорости, полученным с ошибками, необходимо построить сглаженную ломаную траекторию движения объекта В общем случае по формуле () траекторию представляют в виде суммы некоторых функций времени с параметрами, которые содержат случайные величины или сами являются ими, в частности в виде временного полинома, это значит, что в этом случае координаты траектории представляются в следующем виде: x (, t) =! t = 0 (, t) =!, t = 0 где параметры, содержащие случайные величины (ошибки) Для конкретной задачи необходимо задаться степенью полинома (у нас = ), что эквивалентно выбору рабочей гипотезы о характере изменения во времени координат объекта, подлежащих обработке Предполагается, что суммарный сигнал на входе устройства вторич-

3 5 Ã À Îìàðîâà ной обработки информации можно представить в виде аддитивной смеси полезного сигнала (истинной информации о характере изменения координат) и помехи, т е X (, t) = x (, t) + N( t), / cot * Y (, t) = (, t) + N( t), / cot В дальнейшем вывод формул будем делать для какой-либо одной независимой координаты, для другой все выкладки аналогичны; помеху для этой координаты будем обозначать N(t) Чаще всего помеха в канале связи N(t) рассматривается как нормально распределенный случайный процесс с известной корреляционной функцией и равным нулю средним значением, т е N ( t)! U ( 0, v ) Тогда при принятых предположениях поставленная задача сглаживания сводится к оценке математического ожидания полиномиальной функции Y (, t) со случайными коэффициентами по результатам наблюдения одной ее реализации в дискретном ряде точек t,, t Таким образом, нужно оценить = (, f, ) по результатам наблюдения Y = ((t ),, (t )) Оценка с помощью функции максимального правдоподобия Из свойств многомерного нормального распределения имеем, что все одномерные плотности вероятности это плотности вероятности одномерной нормальной случайной величины с параметрами, определяемыми координатами вектора Y и главной диагональю ковариационной матрицы B (,,, также распределены нормально) Если все коэффициенты корреляционной или ковариационной матрицы B (все ее недиагональные элементы) равны нулю, это означает, что компоненты случайной величины являются независимыми Пусть p = - M, отсюда следует, что p = -! t i i i i i i = 0 Для оценки качества будем руководствоваться методом максимального правдоподобия, на основании которого из всех возможных решений уравнений выбирают такое, которое обращает в максимум плотность вероятности совместного появления именно данной системы измерений,,, Так как измерения независимы, то по теореме умножения законов распределения плотность вероятности L их совместного появления равна произведению плотности вероятности отдельных результатов измерений: L = f ( ) $ f ( ) $ f $ f ( ), где f плотность нормального распределения Метод максимального правдоподобия не всегда приводит к приемлемым результатам, однако в достаточно широком круге практически важных случаев он является в известном смысле наилучшим Так, например, можно утверждать, что если для параметра сущест- вует несмещенная эффективная оценка по выборке объема, то уравнение правдоподобия имеет единственное решение Найдем функцию правдоподобия -мерной выборки случайной функции Y (, t) Так как N ( t)! U ( 0, v ), то получаем, что функция правдоподобия -мерной выборки случайной функции Y (, t) соответствует функции правдоподобия -мерной системы коррелированных нормально распределенных случайных величин L (,, ) exp f = $ K e- ij ( ) det ( B ) det ( B )!! p p o, i j r j = где det ( B ) определитель корреляционной матрицы помехи; R ij = R ji ; R ii = v i ; K j алгебраическое дополнение элемента R ij в определителе det ( B ) Возьмем логарифм от функции правдоподобия: l L (,, ) l f = e K o - ij ( ) det ( B ) det ( B)!! p p i j r j = Дифференцируя по r, получим l L l L pi $ Kij r r et ( B ) j i =!! i j =! e! p i! o p = = j = r = 0 3 Подставляя в полученное выражение p и приравнивая результат к нулю при i получим систему уравнений максимального правдоподобия: r = r,

4 Ñòàòèñòè åñêàÿ ìîäåëü äâèæåíèÿ òåëà, ó èòûâàþùàÿ íàëè èå îøèáîê â êàíàëå ñâÿçè 53 det ( B )! j = = 0 = 0!!! (3) Kij e - i t j o $ ti r r 0 = = 4 Таким образом, найдя r, мы получаем, что ( t) =! t, т е имеем оценку сглаженного значения в момент последнего наблюдения t = 0 В частном случае, когда помеха на интервале между двумя соседними выборками некоррелирована v det ( B ) = v K И кроме того = ij v v = v, = det ( B) v Учитывая, что выполняются следующие условия:!!!, ti 0, ti ti,, ti t i = = f = 0 = 0 = 0 = 0 систему уравнений (3) можно записать в развернутом виде: e i - ti o 0,!! = = 0! e i -! ti oti = 0, = 0 f! e i -! ti oti = 0, = 0 ( + ) уравнений и ( + ) неизвестных При наших предположениях о движении объекта координата описывается полиномом -й степени, это значит, что значение математическое ожидания в i-й точке наблюдения будет ( t) v i = 0 + ti, следовательно, система уравнений упростится к следующими виду:!_ i vti i = 0,!_ i vti iti = 0, раскроем скобки и получим выражение 0 + v! ti =! i, 0! ti + v! ti =! t i i Решаем обычную систему относительно двух переменных: * * 0 v ti i, =-! +! * * e- v! ti +! i o $! ti + v! ti =! t i i, 0 =- v! ti +! i, v f e! ti o -! t p i =! i $! ti -! t i i,

5 54 Ã À Îìàðîâà выражаем v из -го уравнения и подставляем в -е! t i i $! ti -! i! ti 0 =, e ti o t i i! -!! i $! ti -! t i i v0 = e! ti o -! ti Если результаты наблюдений поступают через равные промежутки времени, т е ti = ( i - ) T0 ( T0 = t0), тогда: 0 + u0!( i - ) =! i, 0!( i - ) + u!( i - ) =! ( i - ), где u = v T 0 ( - ) ( ) ( ) Так как ( i ), ( i ) - -! - =! - =, то 6 6i =- - -! i =- ( i ), ( )! h i 0 + u i 6 6 = - -! i = h ( i ) u i ( ) ( )! + - Таким образом, мы можем спокойно вычислять математическое ожидание в i -й точке наблюдения Пример Пусть =, тогда имеем следующую систему: 0 =, * v = - T Используя написанные выше формулы, можно вычислять значения сглаженной на момент i-го (i # ) наблюдения координаты, а также прогнозировать (экстраполировать) ее на p обзоров обычной подстановкой в формулы вместо - ( + p) Далее вычислим возможные ошибки параметров и координат при сглаживании и экстраполяции Для дисперсии ошибки оценки приращения координаты по определению имеем: M ( u v = 8 D ) B = M> e! D h ( i) o = M> e!! D D h ( i) h ( j) o =!! h ( i) h ( j) M7D D A u i u i j u u u u i j j = j = Математическое ожидание произведения двух центрированных случайных величин является корреляционным моментом этих величин Для рассматриваемой статистики зная, что: v, i = j, M7Di DjA = R7Di DjA = * 0, i! j, получаем ( ( i)) i 6 6 u = u = - - v! v!c v ( - ) ( + ) m или v = u v ( - ) ( + ) Среднеквадратичная ошибка сглаженной координаты определяется выражением = ( ) + + v v < F ( + ) Среднеквадратичная ошибка экстраполированной на один обзор координаты равна

6 Ñòàòèñòè åñêàÿ ìîäåëü äâèæåíèÿ òåëà, ó èòûâàþùàÿ íàëè èå îøèáîê â êàíàëå ñâÿçè 55 = ( ) + + v v < F + ( + ) Используя полученные результаты, можно сделать вывод о том, что, зная распределение ошибок в канале связи, можно на каждом шаге сглаживать данные вышеприведенным способом Список литературы Коростелев А А Космические траекторные измерения М: Наука, 969 Романов А Н, Фролов Г А Основы автоматизации систем управления М: Наука, 97 Омарова Г А Разработка и реализация системы поиска и слежения за движущимся объектом с помощью радиосредств // СИТ 98: Материалы III Междунар конф Новосибирск, 998 С 6 Материал поступил в редколлегию

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

1.4. СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ

1.4. СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ ЛЕКЦИЯ Сообщения, сигналы, помехи как случайные явления Случайные величины, вектора и процессы 4 СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ Как уже отмечалось выше основная проблематика теории РТС это

Подробнее

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11 ЧАСТЬ 6 ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция ЗАКОН РАСПРЕДЕЛЕНИЯ И ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФУНКЦИЙ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие функции случайной величины и провести классификацию возникающих

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

такая, что ' - ее функцией плотности. Свойства функции плотности

такая, что ' - ее функцией плотности. Свойства функции плотности Демидова ОА, Ратникова ТА Сборник задач по эконометрике- Повторение теории вероятностей Случайные величины Определение Случайными величинами называют числовые функции, определенные на множестве элементарных

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

3 Операции над матрицами: сложение и вычитание

3 Операции над матрицами: сложение и вычитание Определение детерминанта матрицы Квадратная матрица состоит из одного элемента A = (a ). Определитель такой матрицы равен A = det(a) = a. ( ) a a Квадратная матрица 2 2 состоит из четырех элементов A =

Подробнее

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления УДК 6-5 Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления К.А. Рыбаков В статье вводится понятие спектральных характеристик линейных

Подробнее

Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация)

Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация) Аппроксимация по МНК Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация) Одна из главных задач математической статистики нахождение закона распределения случайной

Подробнее

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ ООП: 120103.65 Космическая геодезия Дисциплина: Математика Время выполнения теста: 80 минут Количество заданий: 45 ТЕМАТИЧЕСКАЯ СТРУКТУРА АПИМ N ДЕ Наименование

Подробнее

Конспект лекции «Линейные динамические системы. Фильтр Калмана.» по спецкурсу «Структурные методы анализа изображений и сигналов» 2011

Конспект лекции «Линейные динамические системы. Фильтр Калмана.» по спецкурсу «Структурные методы анализа изображений и сигналов» 2011 Конспект лекции «Линейные динамические системы. Фильтр Калмана.» по спецкурсу «Структурные методы анализа изображений и сигналов» 211 Ликбез: некоторые свойства нормального распределения. Пусть x R d распределен

Подробнее

Исследование алгоритма завязки и подтверждения траекторий по критерию M из N

Исследование алгоритма завязки и подтверждения траекторий по критерию M из N УДК 621.396.96 Исследование алгоритма завязки и подтверждения траекторий по критерию M из N Чернова Т.С., студент кафедры «Радиоэлектронные системы и устройства», Россия, 105005, г. Москва, МГТУ им. Н.Э.

Подробнее

5.1. Системы массового обслуживания

5.1. Системы массового обслуживания Теория массового обслуживания (ТМО) изучает процессы, в которых возникают требования на выполнение каких-либо видов услуг, и происходит обслуживание этих требований. Объектами (ТМО) могут быть производственные

Подробнее

СТАТИСТИЧЕСКАЯ ТЕОРИЯ РАДИОТЕХНИЧЕСКИХ СИСТЕМ

СТАТИСТИЧЕСКАЯ ТЕОРИЯ РАДИОТЕХНИЧЕСКИХ СИСТЕМ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет СТАТИСТИЧЕСКАЯ ТЕОРИЯ РАДИОТЕХНИЧЕСКИХ

Подробнее

В.Н. Исаков Статистическая теория радиотехнических систем (курс лекций) strts-online.narod.ru

В.Н. Исаков Статистическая теория радиотехнических систем (курс лекций) strts-online.narod.ru 3. Случайные сигналы и помехи в радиотехнических системах 3.1. Случайные процессы и их основные характеристики Помехой называют стороннее колебание, затрудняющее приѐм и обработку сигнала. Помехи могут

Подробнее

Лекция 9. Оптимальные алгоритмы приема при полностью известных сигналах. Когерентный прием

Лекция 9. Оптимальные алгоритмы приема при полностью известных сигналах. Когерентный прием Лекция 9 Оптимальные алгоритмы приема при полностью известных сигналах. Когерентный прием Для решения задачи об оптимальном алгоритме приема дискретных сообщений сделаем следующие допущения:. Все искажения

Подробнее

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора Домашнее задание. Обработка результатов наблюдений двухмерного случайного вектора.1. Содержание и порядок выполнения работы Дана парная выборка (x i ; y i ) объема 50 из двумерного нормально распределенного

Подробнее

Лекция Сглаживание экспериментальных зависимостей. 6. Сглаживание экспериментальных зависимостей

Лекция Сглаживание экспериментальных зависимостей. 6. Сглаживание экспериментальных зависимостей Лекция 5 6. Сглаживание экспериментальных зависимостей 6.. Метод наименьших квадратов 6... Теоретическое обоснование метода наименьших квадратов 7. Проверка статистических гипотез 7..Критерий согласия

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

Статистическая радиофизика и теория информации

Статистическая радиофизика и теория информации Статистическая радиофизика и теория информации. Введение Радиофизика как наука изучает физические явления существенные для радиосвязи, излучения и распространения радиоволн, приема радиосигналов. Предметом

Подробнее

5 Гипотезы и критерии согласия

5 Гипотезы и критерии согласия 5 Гипотезы и критерии согласия Гипотезы и критерии согласия Критерий согласия - Пирсона Пусть,,, выборка из распределения теоретической случайной величины с неизвестной функцией распределения F ( Проверяется

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

Семинар 3. Генерирование случайных величин. Повторение теории вероятностей и математической статистики. Задание для выполнения на компьютерах 1 :

Семинар 3. Генерирование случайных величин. Повторение теории вероятностей и математической статистики. Задание для выполнения на компьютерах 1 : Семинары по эконометрике 0 год Преподаватель: Вакуленко ЕС Семинар 3 Генерирование случайных величин Повторение теории вероятностей и математической статистики Задание для выполнения на компьютерах : Сгенерируйте

Подробнее

УСТРОЙСТВО ПРИНЯТИЯ РЕШЕНИЙ СИСТЕМЫ ОБНАРУЖЕНИЯ И РАСПОЗНАВАНИЯ ОБЪЕКТОВ РАДИОЛИНИЙ СДВ ДИАПАЗОНА

УСТРОЙСТВО ПРИНЯТИЯ РЕШЕНИЙ СИСТЕМЫ ОБНАРУЖЕНИЯ И РАСПОЗНАВАНИЯ ОБЪЕКТОВ РАДИОЛИНИЙ СДВ ДИАПАЗОНА науково-технічна конференція 5-8 жовтня 0 р. УДК 6.39 УСТРОЙСТВО ПРИНЯТИЯ РЕШЕНИЙ СИСТЕМЫ ОБНАРУЖЕНИЯ И РАСПОЗНАВАНИЯ ОБЪЕКТОВ РАДИОЛИНИЙ СДВ ДИАПАЗОНА М.Ш. Бозиев науч. сотр. кафедры ЭТ ДонНТУ В работе

Подробнее

Лекция 4. Доверительные интервалы

Лекция 4. Доверительные интервалы Лекция 4. Доверительные интервалы Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 4. Доверительные интервалы Санкт-Петербург, 2013 1 / 49 Cодержание Содержание 1 Доверительные

Подробнее

Система линейных уравнений. Система m уравнений с n неизвестными: 8 a 11 x 1 + a 12 x a 1n x n =b 1 a 21 x 1 + a 22 x a 2n x n =b 2

Система линейных уравнений. Система m уравнений с n неизвестными: 8 a 11 x 1 + a 12 x a 1n x n =b 1 a 21 x 1 + a 22 x a 2n x n =b 2 Раздел VI. Глоссарий Матрица. Совокупность чисел, расположенных в виде прямоугольной таблицы, содержащей n строк и m столбцов называется матрицей размерности Определитель матрицы. Определителем квадратной

Подробнее

Показательное распределение.

Показательное распределение. Показательное распределение. 1) Распределение с.в. X подчинено показательному закону с параметром 5. Записать вычислить M X DX. f x Показательное распределение с параметром имеет плотность вероятности:

Подробнее

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 3 7 6 Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы

Подробнее

52. Чем определяется потенциальная точность совместных оценок частоты и задержки сигнала? 53. В чём заключается идея оценивания параметров сигнала с

52. Чем определяется потенциальная точность совместных оценок частоты и задержки сигнала? 53. В чём заключается идея оценивания параметров сигнала с Контрольные вопросы 0. Вывод рекуррентного уравнения для АПВ дискретных марковских 1. Как преобразуются ПВ распределения случайных величин при их функциональном преобразовании? 2. Что такое корреляционная

Подробнее

Введение. Занятие 11. Обработка радиолокационной информации.

Введение. Занятие 11. Обработка радиолокационной информации. Занятие 11. Обработка радиолокационной информации. Введение Основной задачей радиолокации является сбор и обработка информации относительно зондируемых объектов. В многопозиционных наземных РЛС, как нам

Подробнее

3. Перечень практических занятий

3. Перечень практических занятий очное заочное с сокращенным 3. Перечень практических занятий п/п раз де ла Содержание Кол-во часов Рекомендуем ая литература (примечание) 1 Линейная алгебра 4 1,,3,8 Линейные операции над матрицами, вычисление

Подробнее

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей Оглавление Предисловие Введение Теория вероятностей Глава 1. Основные понятия теории вероятностей 1.1. Опыт и событие Операция умножения событий Операция сложения событий Операция вычитания событий Операция

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Учебная дисциплина Б.2.1 - Математика Профиль подготовки: Производственный менеджмент Тематика

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

А.В. Иванов, А.П. Иванова. А.В. Иванов, А.П. Иванова МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН, СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ И СЛУЧАЙНЫХ ПРОЦЕССОВ

А.В. Иванов, А.П. Иванова. А.В. Иванов, А.П. Иванова МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН, СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ И СЛУЧАЙНЫХ ПРОЦЕССОВ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Прикладная математика-1 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Прикладная математика-1 А.В. Иванов,

Подробнее

ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ.

ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ. УДК 63966 ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ Г Ф Савинов В работе получен алгоритм оптимального фильтра для случая когда входные воздействия и шумы представляют собой случайные гауссовы

Подробнее

Контрольная работа T=3. Задание 1. [1, стр. 2]

Контрольная работа T=3. Задание 1. [1, стр. 2] Дана матрица Контрольная работа A 0 T= Задание [, стр ] Определите ее размерность Выпишите характеристики этой матрицы: прямоугольная, квадратная, симметричная, единичная, нулевая, треугольная, диагональная,

Подробнее

8. Различение сигналов 8.1. Постановка задачи различения сигналов

8. Различение сигналов 8.1. Постановка задачи различения сигналов ВН Исаков Статистическая теория радиотехнических систем (курс лекций) strts-onlinenarodru 8 Различение сигналов 81 Постановка задачи различения сигналов Среда где распространяется сигнал РПдУ + РПУ Рис81

Подробнее

3. Используемые методы обучения

3. Используемые методы обучения 3.2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПРЕПОДАВАТЕЛЯМ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ Семестр I Раздел 1. Векторная и линейная алгебра. Практическое занятие 1 1. Цель: Рассмотреть задачи на вычисление определителей второго

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел.

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел. МВДубатовская Теория вероятностей и математическая статистика Лекция 0 Неравенства Маркова и ЧебышеваЗакон больших чисел Предельные теоремы теории вероятностей В теории вероятностей часто изучаются случайные

Подробнее

Реализация алгоритма построения статистической модели объекта по методу Брандона. Постановка задачи

Реализация алгоритма построения статистической модели объекта по методу Брандона. Постановка задачи Голубев ВО Литвинова ТЕ Реализация алгоритма построения статистической модели объекта по методу Брандона Постановка задачи Статистические модели создают на основании имеющихся экспериментальных данных

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

Лекция 9. Тема Введение в теорию оценок.

Лекция 9. Тема Введение в теорию оценок. Лекция 9 Тема Введение в теорию оценок. Содержание темы Предмет, цель и метод задачи оценивания Точечные выборочные оценки, свойства оценок Теоремы об оценках Интервальные оценки и интеграл Лапласа Основные

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Лекция 14

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Лекция 14 ЧАСТЬ 8 МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Лекция 4 ОСНОВНЫЕ ПОНЯТИЯ И ЗАДАЧИ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЦЕЛЬ ЛЕКЦИИ: определить понятие генеральной и выборочной совокупности и сформулировать три типичные задачи

Подробнее

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А 8 Методические рекомендации по выполнению контрольны работ, курсовы работ К О Н Т Р О Л Ь Н А Я Р А Б О Т А Д и с ц и п л и н а «М а т е м а т и к а» ) Решить систему линейны уравнений методом Гаусса 7

Подробнее

4 Проверка параметрических гипотез

4 Проверка параметрических гипотез 4 Проверка параметрических гипотез Статистическая гипотеза Параметрическая гипотеза 3 Критерии проверки статистических гипотез Статистической называют гипотезу о виде неизвестного распределения или о параметрах

Подробнее

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость.

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость. Поиск оценки может быть рассмотрен как измерение параметра (предполагается, что он имеет некоторое фиксированное, но неизвестное значение), основанное на ограниченном числе экспериментальных наблюдений.

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ООО «Резольвента», www.resolventa.ru, resolventa@lst.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

1.2. Элементы теории вероятностей.

1.2. Элементы теории вероятностей. .. Элементы теории вероятностей.... Случайные события. Случайные события обычное явление в жизни. Примеры случайных событий: выпадение «орла» или «решки» при бросании монеты, выпадение числа при бросании

Подробнее

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 9

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 9 ЧАСТЬ 5 СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 9 ЗАКОН РАСПРЕДЕЛЕНИЯ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие системы случайных величин и закона распределения систем двух случайных величин;

Подробнее

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии Камчатский государственный технический университет Кафедра высшей математики ЭКОНОМЕТРИКА Модель парной регрессии Задания и методические указания для студентов специальностей ФК, БУ, ПИ дневного и заочного

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

Практикум по теме 8 "Системы случайных величин"

Практикум по теме 8 Системы случайных величин Практикум по теме 8 "Системы случайных величин" Методические указания по выполнению практикума Целью практикума является более глубокое усвоение материала контента темы 8, а также развитие следующих навыков:

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

СОВМЕСТНАЯ ОБРАБОТКА СИГНАЛОВ ГРУППЫ ДАТЧИКОВ В СЕЙСМИЧЕСКОЙ СИСТЕМЕ НАБЛЮДЕНИЯ

СОВМЕСТНАЯ ОБРАБОТКА СИГНАЛОВ ГРУППЫ ДАТЧИКОВ В СЕЙСМИЧЕСКОЙ СИСТЕМЕ НАБЛЮДЕНИЯ СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2007. 4(50) 39 44 УДК 621.39.519.2 СОВМЕСТНАЯ ОБРАБОТКА СИГНАЛОВ ГРУППЫ ДАТЧИКОВ В СЕЙСМИЧЕСКОЙ СИСТЕМЕ НАБЛЮДЕНИЯ Д.О. СОКОЛОВА Рассматривается совместная обработка сигналов

Подробнее

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Случайные величины Функции распределения вероятностей случайных величин Простейшая модель физического эксперимента последовательность независимых опытов (испытаний

Подробнее

ГЛАВА 9 ГИПЕРСЛУЧАЙНЫЕ ОЦЕНКИ ГИПЕРСЛУЧАЙНЫХ ФУНКЦИЙ Гиперслучайно-гиперслучайная модель измерения

ГЛАВА 9 ГИПЕРСЛУЧАЙНЫЕ ОЦЕНКИ ГИПЕРСЛУЧАЙНЫХ ФУНКЦИЙ Гиперслучайно-гиперслучайная модель измерения ГЛАВА 9 ГИПЕРСЛУЧАЙНЫЕ ОЦЕНКИ ГИПЕРСЛУЧАЙНЫХ ФУНКЦИЙ Результаты, полученные для гиперслучайных оценок детерминированных и гиперслучайных величин, обобщены на случай гиперслучайных оценок гиперслучайных

Подробнее

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить функции плотности и числовые характеристики случайных величин имеющих равномерное показательное нормальное и гамма-распределение

Подробнее

Б а й е с о в с к а я к л а с с и ф и к а ц и я

Б а й е с о в с к а я к л а с с и ф и к а ц и я МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА

Подробнее

В. В. ГРИГОРЬЕВ, А. Б. БУШУЕВ, А. Н. КОРОВЬЯКОВ, Ю. В. ЛИТВИНОВ

В. В. ГРИГОРЬЕВ, А. Б. БУШУЕВ, А. Н. КОРОВЬЯКОВ, Ю. В. ЛИТВИНОВ 75 УДК 6-5 В. В. ГРИГОРЬЕВ, А. Б. БУШУЕВ, А. Н. КОРОВЬЯКОВ, Ю. В. ЛИТВИНОВ АНАЛИЗ ВЛИЯНИЯ ВЕТРОВЫХ ВОЗМУЩЕНИЙ НА СИСТЕМУ СТАБИЛИЗАЦИИ КУРСА ЛЕТАТЕЛЬНЫХ АППАРАТОВ * Предложена удобная для практического

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

Кафедра прикладной математики. А.Г. Курицын КУРСОВАЯ РАБОТА ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Методические указания

Кафедра прикладной математики. А.Г. Курицын КУРСОВАЯ РАБОТА ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Методические указания Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный технологический институт (Технический университет)

Подробнее

ЧАСТЬ І ОСНОВЫ ТЕОРИИ

ЧАСТЬ І ОСНОВЫ ТЕОРИИ .. Скалярные гиперслучайные величины 4 ЧАСТЬ І ОСНОВЫ ТЕОРИИ ГЛАВА ГИПЕРСЛУЧАЙНЫЕ СОБЫТИЯ И ВЕЛИЧИНЫ Введены понятия гиперслучайного события и гиперслучайной величины. Предложен ряд характеристик и параметров

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ОГЛАВЛЕНИЕ 3 А. ОСНОВЫ АЛГЕБРЫ ВЕКТОРОВ И МАТРИЦ...5

ОГЛАВЛЕНИЕ 3 А. ОСНОВЫ АЛГЕБРЫ ВЕКТОРОВ И МАТРИЦ...5 ОГЛАВЛЕНИЕ Предисловие...3 А. ОСНОВЫ АЛГЕБРЫ ВЕКТОРОВ И МАТРИЦ...5 1. Решение систем линейных уравнений...5 1.1. Линейные уравнения...5 1.2. Системы линейных уравнений...7 1.3. Разрешенные системы линейных

Подробнее

Определенный интеграл. Графический смысл перемещения.

Определенный интеграл. Графический смысл перемещения. Определенный интеграл. Графический смысл перемещения. Если тело движется прямолинейно и равномерно, то для определения перемещения тела достаточно знать его скорость и время движения. Но как подойти к

Подробнее

Лекция 4. Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ. Лектор Сенько Олег Валентинович

Лекция 4. Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ. Лектор Сенько Олег Валентинович Лекция 4 Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й

Подробнее

ПРАКТИКУМ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ. Часть 2

ПРАКТИКУМ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ. Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им НИ Лобачевского ПРАКТИКУМ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ Часть Рекомендовано методической комиссией факультета

Подробнее

ГЛАВА Несмещенные и состоятельные гиперслучайные оценки гиперслучайных величин

ГЛАВА Несмещенные и состоятельные гиперслучайные оценки гиперслучайных величин ГЛАВА 8 ХАРАКТЕРИСТИКИ ГИПЕРСЛУЧАЙНЫХ ОЦЕНОК ГИПЕРСЛУЧАЙНЫХ ВЕЛИЧИН Для точечных гиперслучайных оценок гиперслучайных величин введены понятия несмещенной, состоятельной, эффективной и достаточной оценок

Подробнее

Вопросы по Теории Вероятностей

Вопросы по Теории Вероятностей Вопросы по Теории Вероятностей 1. Понятия испытания и случайного события. 2. Понятие статистической устойчивости. 3. Относительная частота появления случайного события. Статистическое определение вероятности.

Подробнее

Учебно-методические материалы

Учебно-методические материалы http://www-chemo.univer.kharkov.ua/ Учебно-методические материалы Рабочий план и программа курса Хімічна інформатика та хемометрія Примеры экзаменационных билетов Презентации Last updated November, 2008

Подробнее

Заметки по матричным вычислениям и нормальному распределению

Заметки по матричным вычислениям и нормальному распределению Заметки по матричным вычислениям и нормальному распределению Матричные вычисления Здесь и далее вектора будут обозначаться жирным шрифтом x,y,, а матрицы заглавными буквами A,B, При этом под вектором всегда

Подробнее

Задача классификации Предположим, что мы наблюдаем качественный отклик Y, и p разных предикторов X 1,X 2,...,X p. Предположим, что взаимосвязь между

Задача классификации Предположим, что мы наблюдаем качественный отклик Y, и p разных предикторов X 1,X 2,...,X p. Предположим, что взаимосвязь между Классификация "Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D.

Подробнее

Оптимальная фильтрация случайных процессов

Оптимальная фильтрация случайных процессов Оптимальная фильтрация случайных процессов Олег Николаевич Граничин Санкт-Петербургский государственный университет, математико-механический факультет 13 марта 2013 О. Н. Граничин (СПбГУ) стохастическое

Подробнее

Тема 2.3. Построение линейно-регрессионной модели экономического процесса

Тема 2.3. Построение линейно-регрессионной модели экономического процесса Тема 2.3. Построение линейно-регрессионной модели экономического процесса Пусть имеются две измеренные случайные величины (СВ) X и Y. В результате проведения n измерений получено n независимых пар. Перед

Подробнее

, - вероятность того, что из n бросков t раз выпадет «пятерка»,

, - вероятность того, что из n бросков t раз выпадет «пятерка», .6 Бросают три игральных кубика. Найти ряд и функцию распределения числа выпавших «пятерок» Х, а также M(X), D(X) и вероятность того, что Х>. Решение: Пусть Х число выпавших «пятерок». Перечислим все возможные

Подробнее

Ответы на тест по курсу Теория вероятностей и математическая статистика. Июнь 2004 года. A n F. n=1. i=1

Ответы на тест по курсу Теория вероятностей и математическая статистика. Июнь 2004 года. A n F. n=1. i=1 Ответы на тест по курсу Теория вероятностей и математическая статистика. Июнь 2004 года 1 1. Основные понятия теории вероятностей. 1.1 1.2 A B = A B = A B (A \ B) (B \ A) = A B 1.3 A (A B) = A (A B) =

Подробнее

Лекция 10. Распределение? 2.

Лекция 10. Распределение? 2. Распределение?. Пусть имеется n независимых случайных величин N 1, N,..., N n, распределенных по нормальному закону с математическим ожиданием, равным нулю, и дисперсией, равной единице. Тогда случайная

Подробнее

1 Обработка экспериментальных данных

1 Обработка экспериментальных данных Занятие 3 РЕГРЕССИОННЫЙ АНАЛИЗ ДЛЯ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА Регрессионный анализ часто используется в химии с целью обработки экспериментальных данных, совокупность которых представлена некоторой

Подробнее

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Сибирский математический журнал Январь февраль, 2010. Том 51, 1 УДК 519.233.5+519.654 О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Аннотация. Рассмотрена

Подробнее

МАТЕМАТИКА. Контрольные работы 1 и 2. Для студентов ЗФ 1 курса 1-го семестра обучения

МАТЕМАТИКА. Контрольные работы 1 и 2. Для студентов ЗФ 1 курса 1-го семестра обучения Министерство транспорта Российской Федерации (Минтранс России) Федеральное агентство воздушного транспорта (Росавиация) ФГОУ ВПО «Санкт-Петербургский государственный университет гражданской авиации» МАТЕМАТИКА

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа Корреляционный анализ Оглавление Понятие корреляционного и регрессионного анализа... 3 Парный корреляционный анализ. Коэффициент корреляции... 4 Задание

Подробнее

Методические указания к выполнению курсовой работы

Методические указания к выполнению курсовой работы Методические указания к выполнению курсовой работы "СЛУЧАЙНЫЕ ВЕКТОРЫ" для студентов специальности 655Д «Роботы и робототехнические системы» Кафедра математики г Описание работы Курсовой проект предполагает

Подробнее

Оценивание скорости убывания экспоненциального хвоста распределения

Оценивание скорости убывания экспоненциального хвоста распределения Информационные процессы, Том 9, 3, 2009, стр. 210 215. c 2009 Давиденко. МАТЕМАТИЧЕСКИЕ МОДЕЛИ, ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ Оценивание скорости убывания экспоненциального хвоста распределения М.Г. Давиденко

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011 Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2 Проблема анализа многомерных данных При решении различных задач

Подробнее

КИНЕМАТИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ

КИНЕМАТИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ КИНЕМАТИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ПРЕДИСЛОВИЕ Физика является одной из тех наук, знание которой необходимо для успешного изучения общенаучных и специальных дисциплин При изучении курса физики студенты

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

Тестовые задания по математике для студентов 1 2 курсов СГГА

Тестовые задания по математике для студентов 1 2 курсов СГГА Тестовые задания по математике для студентов курсов СГГА Пояснение к выполнению тестового задания. Прочитайте внимательно текст задания.. Если в ответах указан символ «Ο» то нужно выбрать единственный

Подробнее

В данной главе исследуются флуктуации для равновесных термодинамических

В данной главе исследуются флуктуации для равновесных термодинамических 7 РАВНОВЕСНЫЕ ФЛУКТУАЦИИ В данной главе исследуются флуктуации для равновесных термодинамических систем. 7.1 Флуктуации энергии Рассматривается закрытая система, состояние которой представляется каноническим

Подробнее

Лекция 12. Байесовские сети Методы анализа выживаемости. Лектор Сенько Олег Валентинович

Лекция 12. Байесовские сети Методы анализа выживаемости. Лектор Сенько Олег Валентинович Лекция 12 Байесовские сети Методы анализа выживаемости Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й курс, III поток Сенько Олег Валентинович () МОТП, лекция 12

Подробнее