Вариант x Область определения данной функции определяется двумя неравенствами: 1 и

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Вариант x Область определения данной функции определяется двумя неравенствами: 1 и"

Транскрипт

1 Вариант 5 Найти область определения функции : y arcsin + Область определения данной функции определяется двумя неравенствами: и или Умножим первое неравенство на и освободимся от знака модуля: Из левого неравенства находим 5 или 5 Из правого неравенства или Объединяя результаты, получим: Ответ: [, ] Построить график функции: y Данная функция определена на всей числовой оси, кроме точки Если ±, то y + В точке, график функции пересекает обе оси Если ±, то y Вычисляем значения функции в нескольких точках: /7 / /5 / / / По всем данным строим график Ответ: График представлен на рисунке Построить график функции: y cos + Функция определена на всей числовой оси Преобразуем функцию: y cos + cos + Строим сначала cos Затем «растягиваем» график в два раза по оси ОХ и сдвигаем его по оси ОХ на единицы влево Получим график функции y cos + Затем «растягиваем» график по оси ОУ в,5 раза Получим график данной функции Ответ: Последовательность построения представлена на рисунках g Построить график функции: y + cos Исключим параметр : y + g + Получили + cos cos cos уравнение параболы y + с вершиной в точке,,

2 ветви которой направлены вверх Область определения функции - -, Графиком функции является парабола Ответ: График представлен на рисунке 5 Построить график функции: ρ + cosϕ Функция существует для всех значений φ, так как cosϕ Функция уменьшается от при φ до при φ π/, далее до при φ π Затем функция возрастает до в обратном порядке Ответ: график представлен на рисунке n n Вычислить предел: n+ n Возведём все скобки в степени и приведём подобные: n n n n n n+ n n + n + n n n Ответ: n+ n + 7 Вычислить предел: неопределённость вида Приводим к общему знаменателю: Ответ: Вычислить предел: неопределённость вида / + Умножим числитель и знаменатель на сопряжённое к знаменателю выражение: + +, если, то / Ответ: + π Вычислить предел: неопределённость вида / π / cos Сделаем замену переменной: π /, + π /, если π /, то Получим: π π π + π cos + π / sin π / cos π / cos cos + π / sin π π Здесь воспользовались первым замечательным пределом: sin π Ответ: π π / cos 7 5 5

3 Вычислить предел: n+ n n+ неопределённость вида Приведём предел ко второму замечательному пределу: + : z z n+ n+ n+ n+ n+, n + / + n n n n если, то / / + / / n+ / n Ответ: n π Вычислить предел: неопределённость вида / sin π + Воспользуемся эквивалентными величинами: π π π sin π+ π sinπ sinπ ~ π и - ~ π sin π + sinπ π π Ответ: π sin π + Исследовать функцию на непрерывность и построить эскиз графика: + Область определения все действительные числа, кроме В точке функция имеет разрыв, во всех других точках является непрерывной как элементарная функция Исследуем поведение функции в 5 окрестности точки разрыва:, + + Таким образом, в точке имеет место разрыв первого рода Для построения эскиза графика функции рассмотрим поведение функции в бесконечности: 5 Ответ: В точке функция имеет разрыв первого рода, в остальных точках она непрерывна Эскиз графика представлен на рисунке Исследовать функцию на непрерывность и построить эскиз графика: +,, y +, < <,, Область определения функции:, Ось ОХ разбивается на три интервала, на каждом из которых функция f совпадает с одной из указанных непрерывных функций Поэтому точками разрыва могут быть только точки, разделяющие интервалы Вычислим односторонние пределы: f +, f +, y / z

4 f, + f Таким образом, в точке функция + непрерывна, а в точке функция терпит разрыв первого рода Величина скачка функции в точке равна Ответ: В точке функция имеет разрыв первого рода, в остальных точках она непрерывна Эскиз графика представлен на рисунке Исходя из определения производной, найти f : f ln[ sin sin/ ],, f f + f По определению f Заменим на - : f f f f Но, f, поэтому f В данном случае ln[ sin sin/ ] sin sin/ f ln+ ~ при sin/ sin ~ при [ sin/ ], так как sin / всегда Ответ: f 5 Найти производную показательно-степенной функции: Прологарифмируем функцию: y cos5 ln y ln cos5 Берём производную, как производную y 5 sin 5 неявной функции: ln cos5 ln cos5 5g 5 Подставляем сюда y: y cos5 y ln cos5 5g 5 cos5 Ответ: y ln cos5 5g 5 cos5 Составить уравнения касательной и нормали к кривой в данной точке, вычислить y : cos π y g Уравнения касательной и нормали к кривой y f имеют вид y y + y и y y / y, где и y - координаты точки касания Вычислим сначала эти координаты: π / /, y y π / Найдём производные y y и y : y g Тогда y π / cos cos sin cos y cos Далее, y cos 5 cos sin, следовательно, y π / Таким образом, уравнение cos sin cos касательной y /, уравнение нормали y + / / Или + y и y+ 7 Ответ:, y,, y,, + y касательная y y+ 7 нормаль 5 5

5 7 Функция y, заданная неявно уравнением y + y+, принимает в точке значение y y y y Дифференцируем уравнение по, предполагая, что y y: y + yy + y + Из этого равенства находим: + y y Находим вторую производную: y+ yy + y+ y+ y + y y Вычислим производные в точке: y+ + y yy + y+ y+ y + y y, y Ответ: y, y, y+ y+ y, y Вычислить приближённое значение функции в заданной точке с помощью дифференциала: y,, По определению дифференциала y + y + dy + o или, в других обозначениях, y y + dy + o, d Отсюда получаем формулу для приближённых вычислений: y y + y В данном случае,,5, / y y y /, y y /, y,,5, /, Ответ: y, sin Вычислить предел с помощью правила Лопиталя: + Это неопределённость вида Преобразуем предел: sin ln sin [ ln ] + 5, Тогда sin Найдём предел в показателе степени: + + lnsin / lnsin / cos sin cos sin [ ] sin cos sin cos sin cos sin sin Следовательно, sin Ответ: + + Вычислить предел с помощью правила Лопиталя: Это неопределённость вида - : Ответ: [ ] + + Многочлен по степеням представить в виде многочлена по степеням : f, Запишем формулу Тейлора для многочлена четвёртой степени: f f f f f + f + + +!!!

6 Найдём все производные: f, f, f 7, f 7 Тогда f 7, f, f 7, f, f 7 Подставив это в формулу, получим: f Ответ: f Найти многочлен, приближающий заданную функцию f в окрестности точки с точностью до o : f +, Применяем формулу Тейлора: f f f f + f o!! Вычисляем последовательно: f /, f +, f /, f + + +, f / f , f Ответ: f o + Исследовать поведение функции в окрестности точки с помощью формулы Тейлора: f + sin, Найдём значения функции и её первых четырёх производных в заданной точке: f, f + sin + cos, f, f + cos sin, f, f sin cos, f, f cos + sin, f По формуле Тейлора f / + o Ответ: В окрестности точки, функция ведёт себя как степенная функция четвёртой степени Точка, является точкой максимума ln+ Вычислить предел с помощью формулы Тейлора: По формуле Тейлора ln+ + + o Далее, + + o ln+ Подставим это в предел: / + / + + / / + o / + o ln+ Ответ: 5 Найти асимптоты и построить эскиз графика функции: y 7+ Область определения функции:, / 7 / 7, Функция непрерывна в каждой точке области определения Найдём односторонние пределы в граничной точке области определения:, / 7 7+ / + 7 Отсюда следует, + что прямая / 7 является вертикальной асимптотой Исследуем функцию при ± :

7 [ ], [ ] Следовательно, прямая является наклонной асимптотой Ответ: Эскиз графика представлен на рисунке y 7 + Провести полное исследование поведения функции и построить её график: y Область определения:,, Чётность, нечётность, периодичность отсутствуют, функция положительна в области определения Функция имеет разрыв в точке Исследуем поведение функции в окрестности точки разрыва: асимптотой, + Таким образом, прямая является вертикальной, Следовательно, прямая y является горизонтальной + асимптотой Очевидно, что других асимптот нет 5 Первая производная y [ ] Производная в нуль не обращается Производная остаётся положительной на всей числовой оси Следовательно, в области определения функция монотонно возрастает и экстремумов не имеет Вторая производная: 5 y + Вторая производная обращается в нуль в точке / В точке вторая производная не существует Имеем три интервала: в интервале, производная y > - интервал вогнутости графика функции, в интервале, / производная y > - интервал вогнутости, в интервале /, производная y < - интервал выпуклости графика функции Точка перегиба - / 7 График функции не пересекает осей координат, во всех точках f > Ответ: График функции представлен на рисунке, экстремумов нет Точка перегиба - / /, 7

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию:

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию: Вариант 7 Найти область определения функции : y + / lg Область определения данной функции определяется следующими условиями:, >, те > / Далее, знаменатель не должен обращаться в нуль: или Объединяя результаты,

Подробнее

Вариант 14 x. Область определения данной функции определяется неравенством > 0.

Вариант 14 x. Область определения данной функции определяется неравенством > 0. Вариант Найти область определения функции : lg 5 + Область определения данной функции определяется неравенством > 5+ Найдём корни знаменателя:, Так как ветви параболы 5+ направлены вверх, то 5+ 6< при

Подробнее

Вариант 13. Область определения данной функции определяется двумя неравенствами 1. Данная функция определена на всей числовой оси, кроме точки x = 2

Вариант 13. Область определения данной функции определяется двумя неравенствами 1. Данная функция определена на всей числовой оси, кроме точки x = 2 Вариант Найти область определения функции : y arcsi + Область определения данной функции определяется двумя неравенствами и Умножим первое неравенство на и освободимся от знака модуля: Из левого неравенства

Подробнее

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2 Вариант Найти область определения функции : y + Область определения данной функции определяется неравенством Кроме того знаменатель не должен обращаться в нуль Найдём корни знаменателя: Объединяя результаты

Подробнее

Вариант 18. Область определения данной функции определяется неравенством 1. 2 или x 2 / 3. Из правого неравенства x 2 или x 2

Вариант 18. Область определения данной функции определяется неравенством 1. 2 или x 2 / 3. Из правого неравенства x 2 или x 2 Вариант Найти область определения функции : arccos Область определения данной функции определяется неравенством Освободимся от знака модуля: Если то Из левого неравенства находим или / Из правого неравенства

Подробнее

Область определения данной функции определяется неравенством x 3x 2. 0 являются числа x =, x 4. Так как ветви

Область определения данной функции определяется неравенством x 3x 2. 0 являются числа x =, x 4. Так как ветви Вариант Найти область определения функции Область определения данной функции определяется неравенством > Корнями уравнения являются числа Так как ветви параболы направлены вверх то неравенство > выполняется

Подробнее

Данная функция определена на всей числовой оси, кроме точки x = 2. Если x 2± 0, то y +

Данная функция определена на всей числовой оси, кроме точки x = 2. Если x 2± 0, то y + Вариант Найти область определения функции : y + + lg(5 Область определения данной функции определяется следующими неравенствами: + те 5 > те < 5 Далее знаменатель не должен обращаться в нуль: lg( 5 или

Подробнее

. Преобразуем функцию:, если x

. Преобразуем функцию:, если x Вариант Найти область определения функции : + + + Неравенство + выполняется всегда Поэтому область определения данной функции определяется следующими неравенствами:, те, и, те Решением системы этих неравенств

Подробнее

для всех k. Ответ: График представлен на рисунке. 3. Построить график функции: y = 2. Область определения функции: вся числовая ось: x (,

для всех k. Ответ: График представлен на рисунке. 3. Построить график функции: y = 2. Область определения функции: вся числовая ось: x (, Вариант 9 Найти область определения функции : y + lg Область определения данной функции определяется следующим неравенством: >, те > Далее, знаменатель не должен обращаться в нуль: или ± Объединяя результаты,

Подробнее

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3 Вариант Найти область определения функции : y arccos Область определения данной функции определяется неравенством Умножим неравенство на и освободимся от знака модуля: Из левого неравенства находим или

Подробнее

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами:

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами: Вариант 7 Найти область определения функции : y Область определения данной функции определяется двумя неравенствами: и > Второе неравенство выполняется при всех значениях Корнями уравнения являются числа

Подробнее

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы Вариант 5 Найти область определения функции lg5 Область определения данной функции определяется неравенством 5 > Корнями уравнения 5+ являются числа, Так как ветви параболы + 5 направлены вниз, то неравенство

Подробнее

Область определения данной функции определяется неравенством x x> Освободимся от знака модуля: при x 0 неравенство x x>

Область определения данной функции определяется неравенством x x> Освободимся от знака модуля: при x 0 неравенство x x> Вариант Найти область определения функции : y / Область определения данной функции определяется неравенством > Освободимся от знака модуля: при неравенство > никогда не выполняется; при < неравенство >

Подробнее

ϕ, π ϕ и ϕ. В каждом интервале

ϕ, π ϕ и ϕ. В каждом интервале Вариант + Найти область определения функции: y lg Область определения данной функции определяется неравенством + те Далее знаменатель не должен обращаться в нуль: lg или ± Кроме того аргумент логарифма

Подробнее

Ответы к заданию Определение приращения аргумента Δx

Ответы к заданию Определение приращения аргумента Δx Ответы к заданию приращения аргумента Δ Приращением аргумента Δ f ( называется разность между значением аргумента в точке и любой другой точке из некоторой окрестности точки Δ, U ( : δ приращения f Δ (

Подробнее

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми.

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми. Контрольная работа Тема Пределы и производные функций Найти пределы нижеследующих функций одной переменной (без правила Лопиталя) а) б) в) г) Пример а) Решение Определяем вид неопределенности При формальных

Подробнее

Вариант 1 1. Исходя из определения производной, найти f '(x 0 ) для функций:

Вариант 1 1. Исходя из определения производной, найти f '(x 0 ) для функций: Вариант Исходя из определения производной, найти f '( 0 ) для функций: tg f ( ) = ( ), 0 = + sin, 0 f ( ) = 0 =0 0, = 0, Найти производную функций: y = ln( +) y = sin + ( ) 5 + + + y = e y = 5 y = + 6

Подробнее

Вариант 6 1. Исходя из определения производной, найти f '(x 0 ) для функций:

Вариант 6 1. Исходя из определения производной, найти f '(x 0 ) для функций: Вариант 6 Исходя из определения производной, найти f '( 0 ) для функций: f ( ) =, 0 = f ( ) = ln( ), 0 0 =0 0, = 0, Найти производную функций: ( ) ln( y = + ) y = 5 0 + sin( ) y = ( ) y = 5 y = + 6 y =

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

Примеры решения задач, аналогичных задачам 1-10 Необходимо найти пределы нижеследующих функций одной переменной (без правила Лопиталя).

Примеры решения задач, аналогичных задачам 1-10 Необходимо найти пределы нижеследующих функций одной переменной (без правила Лопиталя). Контрольная работа 2 (КР-2) Тема 3. Пределы и производные функций Примеры решения задач, аналогичных задачам 1-10 Необходимо найти пределы нижеследующих функций одной переменной (без правила Лопиталя).

Подробнее

ЗАДАЧА 1. Найти пределы функций, не пользуясь правилом Лопиталя в пунктах а) г); с использованием правила Лапиталя в пункте д). 2.

ЗАДАЧА 1. Найти пределы функций, не пользуясь правилом Лопиталя в пунктах а) г); с использованием правила Лапиталя в пункте д). 2. ЗАДАЧА Найти пределы функций, не пользуясь правилом Лопиталя в пунктах а) г); с использованием правила Лапиталя в пункте д) х + х х + + 6х а) lim ; б) lim ; х х + х х х ( + х ) + х в) lim ; х х + Решение

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ М и н и с т е р с т в о о б р а з о в а н и я и н а у к и Р о с с и й с к о й Ф е д е р а ц и и Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный

Подробнее

Тема 1. Предел и непрерывность функции

Тема 1. Предел и непрерывность функции Уметь: Тема 1. Предел и непрерывность функции Вычислять пределы функций и числовых последовательностей, используя различные приемы, в том числе, замечательные пределы, проводить сравнение бесконечно малых

Подробнее

1.Областью определения функции является интервал x ( ;0) 3.Рассмотрим поведение функции в окрестностях точек разрыва. Точка x 0

1.Областью определения функции является интервал x ( ;0) 3.Рассмотрим поведение функции в окрестностях точек разрыва. Точка x 0 Построить график функции y Областью определения функции является интервал ( ;0) (0; ) Функция y является четной, тк y( ) y( ), а ( ) график функции симметричен относительно оси OY 3Рассмотрим поведение

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

1. Производная функции в точке

1. Производная функции в точке приращения аргумента Δ приращения Δ функции f производной функции точке f в Основные правила дифференцирования функций функции в точке Приращением аргумента Δ функции f называется разность между значением

Подробнее

Филиал в г. Домодедово. МАТЕМАТИЧЕСКИЙ АНАЛИЗ (часть 1) Михин М.Н. Методические указания по подготовке к итоговой контрольной работе и экзамену

Филиал в г. Домодедово. МАТЕМАТИЧЕСКИЙ АНАЛИЗ (часть 1) Михин М.Н. Методические указания по подготовке к итоговой контрольной работе и экзамену МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ» (РГГУ) Филиал в г Домодедово

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

Решения типовых задач. Задача 1. Доказать по определению предела числовой последовательности, что lim. Решение. n 2n

Решения типовых задач. Задача 1. Доказать по определению предела числовой последовательности, что lim. Решение. n 2n Решения типовых задач Задача Доказать по определению предела числовой последовательности что n li n n Решение По определению число является пределом числовой последовательности n n n N если найдется натуральное

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК О. В. Исакова Л. А. Сайкова ИНДИВИДУАЛЬНЫЕ РАСЧЁТНЫЕ ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ

Подробнее

и плоскостью, проходящей через точки K(0; 0; 1), L(2; 4; 6), M(2; 2; 3). 4. Дана функция Вычислить ее производную 20-го порядка в точке x = 0.

и плоскостью, проходящей через точки K(0; 0; 1), L(2; 4; 6), M(2; 2; 3). 4. Дана функция Вычислить ее производную 20-го порядка в точке x = 0. Билет Матрицы, действия над ними Числовая последовательность, свойства бесконечно малых последовательностей Вычислить расстояние от точки M( ; ; ) до плоскости, проходящей через точки A( ; ; 0), B( ; ;

Подробнее

Образцы базовых задач и вопросов по МА за 1 семестр

Образцы базовых задач и вопросов по МА за 1 семестр Образцы базовых задач и вопросов по МА за семестр Предел последовательности Простейшие Вычислите предел последовательности l i m 2 n 6 n 2 + 9 n 6 4 n 6 n 4 6 4 n 6 2 2 Вычислите предел последовательности

Подробнее

ВЫСШАЯ МАТЕМАТИКА II часть

ВЫСШАЯ МАТЕМАТИКА II часть Стакун Н.С. ВЫСШАЯ МАТЕМАТИКА II часть Пределы, функции, графики. Дифференциальное исчисление функций одной переменной Учебное пособие для факультета технологии и предпринимательства Москва Введение Настоящее

Подробнее

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Юго-Западный государственный университет» (ЮЗГУ) Кафедра высшей математики УТВЕРЖДАЮ

Подробнее

( ) ( ) ( ) ( ) ( ) ( ) ' 1 ( ) ( ) ( ) (( ) ) ( ) Решение контрольной работы Производная функции и ее применение

( ) ( ) ( ) ( ) ( ) ( ) ' 1 ( ) ( ) ( ) (( ) ) ( ) Решение контрольной работы Производная функции и ее применение Производная функции Контрольная выполнена на wwwmatburoru Решение контрольной работы Производная функции и ее применение Задача Найти производные функций: sin а e Решение sin sin sin sin e e sin e sin

Подробнее

Программа экзамена по математике. Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ

Программа экзамена по математике. Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ Программа экзамена по математике для студентов специальности «Финансы и кредит» (заочная форма обучения) 1 Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ Понятие функции Определение функции,

Подробнее

( ) ( ) ( ) 8 ( )( ) Задание 1. Найти указанные пределы: x 5x. lim. + 5x. x 3 2. Решение:

( ) ( ) ( ) 8 ( )( ) Задание 1. Найти указанные пределы: x 5x. lim. + 5x. x 3 2. Решение: Задание. Найти указанные пределы: а) б) г) д) в) е) ж) з) и) а) Подставим в выражение, стоящее под знаком предела вместо значение. Получим: Получили определенность типа множители. Получим: ; D ( ) 9 9

Подробнее

Т. В. Тарбокова, В. М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ. Производная, и её приложения. Издание третье. / x

Т. В. Тарбокова, В. М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ. Производная, и её приложения. Издание третье. / x ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Т В Тарбокова, В М Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ

Подробнее

1. ПРОИЗВОДНАЯ. f x lim lim x. в точке x. dy Существуют и другие обозначения производной: y,, называется сложной, если u есть функция от x :

1. ПРОИЗВОДНАЯ. f x lim lim x. в точке x. dy Существуют и другие обозначения производной: y,, называется сложной, если u есть функция от x : СОДЕРЖАНИЕ ПРОИЗВОДНАЯ Определение производной Дифференцирование неявных функций Логарифмическое дифференцирование Производные высших порядков Дифференцирование функции, заданной параметрически 6 Уравнение

Подробнее

ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

Подробнее

Пределы. Решение контрольной работы

Пределы. Решение контрольной работы Пределы. Решение контрольной работы Нахождение предела по определению Задача. Доказать, что a a 5 + 5, 5 a a (указать N(ε)) Нужно показать, что для любого ε > найдется такое N ( ε ), что для всех a > N

Подробнее

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления»

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления» 4 Методические указания к выполнению контрольной работы «Производная и ее приложения Приложения дифференциального исчисления» Производная Приложения дифференциального исчисления Производной функции f (

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Министерство образования и науки Российской Федерации Курганский государственный университет Кафедра экономической теории и моделирования экономических процессов МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

Подробнее

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется МАТЕМАТИЧЕСКИЙ АНАЛИЗ 9 ФУНКЦИЯ -ОЙ ПЕРЕМЕННОЙ. ОСНОВНЫЕ ПОНЯТИЯ И ГРАФИКИ. ОПР Величина называется переменной, если в рамках данной задачи она принимает различные числовые значения. ОПР Величина С называется

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ. Достаточные условия возрастания и убывания функции:

ИССЛЕДОВАНИЕ ФУНКЦИЙ. Достаточные условия возрастания и убывания функции: ИССЛЕДОВАНИЕ ФУНКЦИЙ Достаточные условия возрастания и убывания функции: Если производная дифференцируемой функции положительна внутри некоторого промежутка Х, то она возрастает на этом промежутке Если

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

ТАБЛИЦА ПРОИЗВОДНЫХ / степенные функции. показательно степенные функции. = x( модуль функции. u u = 0, 18. u ; ) (сигнум u). показательные функции

ТАБЛИЦА ПРОИЗВОДНЫХ / степенные функции. показательно степенные функции. = x( модуль функции. u u = 0, 18. u ; ) (сигнум u). показательные функции ТАБЛИЦА ПРОИЗВОДНЫХ. сos) степенные функции. ) a. b. ) c. ) e. ) ) показательные функции. a ) a l a a. e ) e логарифмические функции 4. loga ) l a 4a. l ) a l l a l b l a l a ) b тригонометрические функции

Подробнее

ТАБЛИЦА ПРОИЗВОДНЫХ / степенные функции. показательно степенные функции. = x( модуль функции. u u = 0, 18. u. 1, u < 0; функция знак u (сигнум u).

ТАБЛИЦА ПРОИЗВОДНЫХ / степенные функции. показательно степенные функции. = x( модуль функции. u u = 0, 18. u. 1, u < 0; функция знак u (сигнум u). ТАБЛИЦА ПРОИЗВОДНЫХ. сos ) степенные. ). ) b. ) c. ) e. ) ) показательные. ) l. e ) e логарифмические. log ) l. l ) l l l b l l ) b тригонометрические. si ) cos 6. cos) si 7. g ) cos 8. cg ) si обратные

Подробнее

«ИССЛЕДОВАНИЕ ФУНКЦИЙ»

«ИССЛЕДОВАНИЕ ФУНКЦИЙ» Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

Исследование функций и построение графиков

Исследование функций и построение графиков Исследование функций и построение графиков Теоретический материал Содержание 1) Область определения функции 2) Свойства функции (четность, нечетность, периодичность) 4) Точки пересечения функции с осями

Подробнее

В.И. Иванов С.И. Васин

В.И. Иванов С.И. Васин Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРИНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРИНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ ХАРЬКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ для модуля ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРИНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Харьков

Подробнее

«Предел, непрерывность, дифференциальное исчисление функции одной переменной»

«Предел, непрерывность, дифференциальное исчисление функции одной переменной» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Новосибирский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Основные понятия и формулы Определение 1 Производной функции в точке называется предел отношения приращения функции к приращению аргумента, при условии, что приращение аргумента

Подробнее

1. ПРОИЗВОДНАЯ. называется приращением функции. Если существует предел. , то он называется производной функции f x. f x lim lim

1. ПРОИЗВОДНАЯ. называется приращением функции. Если существует предел. , то он называется производной функции f x. f x lim lim ПРОИЗВОДНАЯ Определение производной Пусть на множестве X задана функция f Фиксируем точку X и задаем приращение аргумента Тогда точка соответствует f и f f называется приращением функции Если существует

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры.

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры. Математический анализ, 27/28 Группы БПМ7 75 Промежуточный экзамен, модули 2 На устном экзамене студент получает два теоретических вопроса и две задачи ВОПРОСЫ К ЭКЗАМЕНУ Расскажите о числах: натуральных,

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ

ИССЛЕДОВАНИЕ ФУНКЦИЙ Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы ИССЛЕДОВАНИЕ ФУНКЦИЙ (для

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Государственное автономное образовательное учреждение высшего профессионального образования города Москвы «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ИНДУСТРИИ ТУРИЗМА ИМЕНИ ЮАСЕНКЕВИЧА» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

Контрольная по высшей математике за 1 курс

Контрольная по высшей математике за 1 курс Контрольная работа выполнена на сайте wwwmatbror Контрольная по высшей математике за курс Найдите производные от данных функций: а, б tg tg, в arctg, Решение a Тк,, то воспользуемся формулой из таблицы

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

Исследование функции и построение её графика

Исследование функции и построение её графика Исследование функции и построение её графика Пункты Исследования: 1) Область определения, непрерывность, четность/нечётность, периодичность функции. 2) Асимптоты графика функции. 3) Нули функции, интервалы

Подробнее

Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Лекция 7 Производная функции Правила и формулы дифференцирования П л а н Задачи, приводящие к понятию производной Понятие производной Основные

Подробнее

Программа письменного экзамена по «Высшей математике» в зимнюю сессию учебного года, для I курса экономического факультета дневного

Программа письменного экзамена по «Высшей математике» в зимнюю сессию учебного года, для I курса экономического факультета дневного Программа письменного экзамена по «Высшей математике» в зимнюю сессию - учебного года для I курса экономического факультета дневного отделения (специальностей «экономика» и «экономическая теория») заочного

Подробнее

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 3 ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ. БАЗОВЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 4

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 3 ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ. БАЗОВЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 4 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 3 ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ. БАЗОВЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 4 РАЗДЕЛ 1. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ... 8 1. ФУНКЦИЯ. СПОСОБЫ ЗАДАНИЯ. ОСНОВНЫЕ ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ... 8 1.1.

Подробнее

ПЛУЖНИКОВА Елена Леонидовна РАЗУМЕЙКО Борис Григорьевич ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

ПЛУЖНИКОВА Елена Леонидовна РАЗУМЕЙКО Борис Григорьевич ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ПЛУЖНИКОВА Елена Леонидовна РАЗУМЕЙКО Борис Григорьевич ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Учебно-методическое пособие для студентов всех специальностей Рецензент проф ЕА Калашников Редактор

Подробнее

3. Выпуклость и вогнутость кривой. Точки перегиба

3. Выпуклость и вогнутость кривой. Точки перегиба 3. Выпуклость и вогнутость кривой. Точки перегиба ОПРЕДЕЛЕНИЕ. Пусть l кривая, M 0 точка кривой, причем в M 0 существует невертикальная касательная к l. Кривую l называют выпуклой в точке M 0, если в некоторой

Подробнее

~ 1 ~ «Признаки монотонности функции»

~ 1 ~ «Признаки монотонности функции» ~ 1 ~ «Признаки монотонности функции» Теорема: Для того чтобы функция f(x), дифференцируемая на a,b возрастала (убывала) на a,b необходимо и достаточно, чтобы x a,b выполнялось неравенство f (x) 0 (f (x)

Подробнее

Исследование функций и построение графиков. Исследование на монотонность на интервале. a, монотонно

Исследование функций и построение графиков. Исследование на монотонность на интервале. a, монотонно Функция Исследование функций и построение графиков. Исследование на монотонность на интервале. f на интервале b не убывает, если f f ; не возрастает, если f f ; a, монотонно строго возрастает, если f f

Подробнее

7. Общий план исследования функции и построение её графика

7. Общий план исследования функции и построение её графика 7 Общий план исследования функции и построение её графика Нижеследующий план-схема исследования функции обобщает результаты, изложенные в предыдущих параграфах Исследование функции по этому плану позволит

Подробнее

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Производная сложной и неявно заданной функции нескольких переменных Касательная плоскость и нормаль к поверхности Пусть f ( где (t (t причём функции f ( (t (t дифференцируемы Тогда

Подробнее

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики АВ Капусто Минск 016 016 Кафедра высшей

Подробнее

Вопросы к экзамену по курсу 1-2 модулей

Вопросы к экзамену по курсу 1-2 модулей На устном экзамене студент получает два вопроса и две задачи. Вопросы к экзамену по курсу 1- модулей 1. Расскажите о числах: натуральных, целых, рациональных и иррациональных. Расскажите о числовой прямой

Подробнее

Глава 4 Элементарные функции и их графики.

Глава 4 Элементарные функции и их графики. Глава Элементарные функции и их графики Построение графиков функции с помощью геометрических преобразований Построить график функции y f () по известному графику y f () При одном и том же значении ординаты

Подробнее

«Пределы, непрерывность. Производные»

«Пределы, непрерывность. Производные» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Приложение производных к исследованию функций

Приложение производных к исследованию функций Приложение производных к исследованию функций Лекции 1 6 Л.И. Терехина, И.И. Фикс Курс: Высшая математика Семестр 1, 2009 год portal.tpu.ru Теорема 1 (Ферма) Если функция y = f (x): 1) непрерывна в замкнутом

Подробнее

ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» 1 семестр

ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» 1 семестр ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» семестр. Разложить вектор X по векторам P, Q, R. Систему решить ) методом Крамера, ) матричным методом,

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ''Оренбургский государственный

Подробнее

Построение графиков функций

Построение графиков функций Построение графиков функций 1. План исследования функции при построении графика 1. Найти область определения функции. Часто полезно учесть множество значений функции. Исследовать специальные свойства функции:

Подробнее

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте Перечень тем и вопросов, выносимых на зимнюю сессию 2013-2014 уч. год, 1 курс, 2 поток Дисциплина Математический анализ, лектор к.ф.-м.н., доцент Фроленков И.В. 1. Понятие функции. График функции. Обзор

Подробнее

Контрольная работа 1 ...

Контрольная работа 1 ... Контрольная работа Тема Матрицы, операции над матрицами Решение систем линейных уравнений Матрицей называется прямоугольная таблица чисел, имеющая m срок n столбцов Для обозначения матриц применяются круглые

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

Тесты по контролю промежуточных знаний по высшей математике для студентов I курса I семестра факультетов МТ и АТ

Тесты по контролю промежуточных знаний по высшей математике для студентов I курса I семестра факультетов МТ и АТ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Московский государственный технический университет «МАМИ» Кафедра «Высшая математика» Проф, дф-мн Кадымов ВА Доц, кф-мн Соловьев ГХ Тесты по контролю промежуточных

Подробнее

Исследование функций и построение графиков.

Исследование функций и построение графиков. Исследование функций и построение графиков. ) Исследовать методами дифференциального исчисления функцию f и построить её график. Область определения функции: Dy R\. Функция общего вида: y y y Критические

Подробнее

Дифференциальное исчисление. Часть 2. "ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ". Составитель В.П.Белкин

Дифференциальное исчисление. Часть 2. ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. Составитель В.П.Белкин Дифференциальное исчисление Часть "ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ" Составитель ВПБелкин Приращение функции Пусть функция y f () определена в некоторой окрестности точки Изменим это значение аргумента на новое

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? . КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком

Подробнее

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ БИЛЕТ 1. y =. x 4x. x 8x. Утверждаю Зав. кафедрой БИЛЕТ 2. Математика. 1 3arcsin

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ БИЛЕТ 1. y =. x 4x. x 8x. Утверждаю Зав. кафедрой БИЛЕТ 2. Математика. 1 3arcsin БИЛЕТ _Математика Функция Область определения, множество значений функции Найти область определения функции y = Найти пределы функций, не пользуясь правилом Лопиталя: cos lim ) lim ) lim ) lim 9 0 n n

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА. Контрольная работа для студентов заочной формы обучения

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА. Контрольная работа для студентов заочной формы обучения Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный архитектурно-строительный университет»

Подробнее

Урок на тему: Построение графиков.

Урок на тему: Построение графиков. Урок на тему: Построение графиков. Ребята, мы с вами строили уже не мало графиков функций, например параболы, гиперболы, тригонометрических функций и другие. Давайте вспомним, как мы это делали? Мы выбирали

Подробнее

23 ВЫПУКЛОСТЬ И ВОГНУТОСТЬ ГРАФИКА ФУНКЦИИ. ТОЧКИ ПЕРЕГИБА

23 ВЫПУКЛОСТЬ И ВОГНУТОСТЬ ГРАФИКА ФУНКЦИИ. ТОЧКИ ПЕРЕГИБА Лекция 23 ВЫПУКЛОСТЬ И ВОГНУТОСТЬ ГРАФИКА ФУНКЦИИ ТОЧКИ ПЕРЕГИБА График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале График

Подробнее

Глава 5. Производная и ее приложения

Глава 5. Производная и ее приложения Глава 5 Производная и ее приложения 5 Производная и дифференциал Определение Производной функции y f() в точке называют предел f ( 0 + Δ) f ( 0) Δy li li Δ 0 Δ Δ 0 Δ Если этот предел существует и конечен,

Подробнее

Лекции подготовлены доц. Мусиной М.В. Производная функции.

Лекции подготовлены доц. Мусиной М.В. Производная функции. Производная функции Понятие производной является одним из основных математических понятий Производная широко используется при решении целого ряда задач математики, физики и других наук, в особенности при

Подробнее

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждениевысшего образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Математика (основы математического анализа)

Математика (основы математического анализа) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НАУЧНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ДД Даммер Математика (основы математического анализа) Учебное пособие Томск Издательский

Подробнее

СХЕМА ПОЛНОГО ИССЛЕДОВАНИЯ ФУНКЦИИ ПРИМЕРЫ

СХЕМА ПОЛНОГО ИССЛЕДОВАНИЯ ФУНКЦИИ ПРИМЕРЫ СХЕМА ПОЛНОГО ИССЛЕДОВАНИЯ ФУНКЦИИ Найти область определения функции Исследовать четность и периодичность функции Исследовать точки разрыва найти вертикальные асимптоты 4 Найти наклонные асимптоты (если

Подробнее